REAL

Energy based approach of local influence of global climate change in maize stand

Dióssy, L. and Anda, A. (2008) Energy based approach of local influence of global climate change in maize stand. Cereal Research Communications, 36 (4). pp. 591-600. ISSN 0133-3720

[img] Text
crc.36.2008.4.8.pdf
Restricted to Repository staff only until 31 December 2028.

Download (101kB)

Abstract

We approximated the influence of global climate change on the energy consumption of maize by a simulation model in Keszthely, referring to the average July weather. The period of 1961–1990 was considered as the basic run. We quantified the changes of the close past on the basis of the decade between 1997 and 2006. The other 6 scenarios were elaborated on the one hand by downscaling the IPCC (2007) report (A2 and B2), on the other hand by taking into account a more serious weather change. At determining plant and soil characteristics of the individual scenarios we applied the principle of analogy being extensively used in meteorological practice; in this method we selected the values of that year from the observation data series of almost 30 years that were the closest to the year to be simulated. The ratio of latent heat decreased by 4.8% only at doubling CO <sub>2</sub> concentration. The largest difference in the ratio of sensible and latent heat was in the case of the run containing the highest warming up and largest precipitation decrease, where the ratio of latent heat increased by 8.8%.One of the causes of global warming is the raised CO <sub>2</sub> concentration narrowed the stoma openings by 14.3% in itself; it is the quantified value of the positive impact of global warming on plant evaporation, referring to Keszthely. Warming up over 6 °C raised the latent heat compared to the basic run in a statistically justifiable way in the case of each scenario; according to this, in Keszthely, assuming an average July, even in the case of a temperature rise of 6 °C there are some humidity reserves that can be used for transpiration by maize plant. Precipitation loss of 30% associated with warming up of 9 °C, however, reduced this reserve to a minimum. In our opinion, water seems to be the bottleneck of the future; farmers have to prepare to face the lack of water, even in the case if nowadays the forecast of precipitation changes is rather volatile.

Item Type: Article
Subjects: S Agriculture / mezőgazdaság > S1 Agriculture (General) / mezőgazdaság általában
Depositing User: Barbara Payer
Date Deposited: 16 Nov 2017 16:45
Last Modified: 16 Nov 2017 16:45
URI: http://real.mtak.hu/id/eprint/59803

Actions (login required)

Edit Item Edit Item