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Minkowski valuations on lattice polytopes

Karoly J. Boroczky and Monika Ludwig

Abstract

A complete classification is established of Minkowski valuations
on lattice polytopes that intertwine the special linear group over the
integers and are translation invariant. In the contravariant case, the
only such valuations are multiples of projection bodies. In the equi-
variant case, the only such valuations are generalized difference bodies
combined with multiples of the newly defined discrete Steiner point.

2000 AMS subject classification: 52B20, 52B45

1 Introduction and statement of results

Two classification theorems were critical in the beginning of the theory of
valuations on convex sets: first, the Hadwiger theorem [23] for valuations on
convex bodies (that is, compact convex sets) in R™ and second, the Betke
& Kneser theorem [11] for valuations on lattice polytopes (that is, convex
polytopes with vertices in Z™). In recent years, numerous classification results
were established for valuations defined on convex bodies (see, for example,
[4115, 91 205 211 291,132, 33, [45. 52] and [23,26]40,42] for more information). In
particular, such results were obtained for convex-body valued valuations (see,
for example, [IH3L6L1819,27,28,31,43,44,[49-51]). The aim of this article is
to establish classification results for convex-body valued valuations defined
on lattice polytopes. The question leads us to define and classify the discrete
Steiner point.

A function z defined on a family F of subsets of R" with values in an
abelian group (or more generally, an abelian monoid) is a valuation if

2(P) +2(Q) =2(PUQ) +2(PNQ) (1)
whenever P,Q,PUQ,PNQ € F and z()) = 0.
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In the Hadwiger theorem, F is the family, (R™), of convex bodies and
important further results regard the family, P(R"), of convex polytopes in
R™. In both cases, the spaces are equipped with the topology coming from
the Hausdorff metric. A functional z : KL(R") — R is rigid motion invariant,
if it is translation invariant and invariant with respect to orthogonal linear
transformations.

Theorem 1 (Hadwiger [23]). A functional z : KK(R™) — R is a continuous
and rigid motion invariant valuation if and only if there exist constants cg,
Cl,...,Cn € R such that

2(K) =coVo(K) + -+ ¢, Vo (K)
for every K € KC(R™).

Here Vo(K), ..., V,(K) are the intrinsic volumes of K € KC(R"). An elegant
proof of this result is due to Klain [25] (or see [261/48]).

In the Betke & Kneser theorem (and in this article), F is the family,
P(Z"), of lattice polytopes. A functional z : P(Z") — R is called translation
invariant if z(P + z) = z(P) for x € Z" and P € P(Z"). It is SL,(Z)
invariant if z(¢P) = z(P) for ¢ € SL,(Z) and P € P(Z"), where SL,(Z) is
the special linear group over Z, that is, the group of invertible n x n matrices
with integer coefficients and determinant 1. We remark that Betke & Kneser
formulated their theorem for unimodularly invariant valuations (that is, also
admitting matrices with determinant —1) but that their proof also establishes
the following result.

Theorem 2 (Betke & Kneser [11]). A functional z : P(Z") — R is an
SL,(Z) and translation invariant valuation if and only if there exist constants
Coy C1y-- ., Cn € R such that

Z(P) :CoLo(P)++CnLn(P)
for every P € P(Z").

Here Lo(P),...,L,(P) are the Ehrhart functionals of P € P(Z"), that is,
the coefficients of the Ehrhart polynomial (see Section [3 for the definition).



An operator Z : F — K(R") is called a Minkowski valuation if Z satisfies
(@) and addition on IC(R™) is Minkowski addition; that is,

K+L={x+y:x€K,ye L}

An operator Z : F — K(R") is called SL,(R) equivariant if Z(¢pP) = ¢ Z P
for ¢ € SL,(R) and P € F. Define SL,(Z) equivariance of operators on
P(Z™) analogously. In recent years, SL,,(R) equivariant operators on convex
bodies and the associated inequalities have attracted increased interest (see,
for example, [13,22,134H36/138]). For valuations Z : P(R") — K(R™) that are
SL,(R) equivariant and translation invariant, a complete classification has
been established. Let n > 2.

Theorem 3 ([30]). An operator Z : P(R") — KC(R") is an SL,(R) equi-
variant and translation invariant Minkowski valuation if and only if there
exists a constant ¢ > 0 such that

7P =c(P— P)
for every P € P(R™).

The operator P +— P—P = {x—y : x,y € P} assigns to P its difference body.
We remark that no complete analogue of Hadwiger’s theorem for Minkowski
valuations (that is, no complete classification of rotation equivariant and
translation invariant Minkowski valuations) has been established. It follows
from, for example, [49] that the set of such valuations does not depend on
only finitely many parameters.

The aim of this article is to classify Minkowski valuations on lattice poly-
topes. The following result is an analogue of Theorem Bl Let n > 2.

Theorem 4. An operator Z : P(Z") — K(R™) is an SL,(Z) equivariant and
translation invariant Minkowski valuation if and only if there exist constants
a, b >0 such that

ZP =a(P—1{,(P))+b—P+((P))
for every P € P(Z").

Here for a lattice polytope P, the point ¢;(P) is its discrete Steiner point
that is introduced in this paper.



The discrete Steiner point is defined in Section [3] as the one-homogeneous
part of the Ehrhart expansion of the discrete moment vector

U(P) = Z x.

rePNZ™

That such an expansion exists follows from results by McMullen [39]. The
discrete moment vector plays for SL,,(Z) equivariant vector-valued valuations
on P(Z") a role similar to that of the moment vector

Mus1(K) = / x dx
K

for rigid motion equivariant valuations on IC(R™).

The discrete Steiner point is characterized in the following result, where
z: P(Z") — R™ is called translation equivariant if z(P + x) = z(P) + z for
x € Z" and P € P(Z").

Theorem 5. A function z : P(Z") — R™ is an SL,(Z) and translation
equivariant valuation if and only if z = (1.

Theorem [ corresponds to the following characterization of the classical
Steiner point my, which is the one-homogeneous part of the Steiner expansion
of the moment vector (see Section [2 for the definition).

Theorem 6 (Schneider [47]). A function z : IC(R™) — R" is a continuous
and rigid motion equivariant valuation if and only if z = m;.

A function z : P(Z") — R" is called additive if z(P + Q) = z(P) + z(Q)
for P,Q € P(Z"). The discrete Steiner point is also characterized in the
following result.

Theorem 7. A function z : P(Z") — R" is SL,(Z) and translation equi-
variant and additive if and only if z = /4.

Theorem [7] corresponds to the following characterization of the classical
Steiner point.

Theorem 8 (Schneider [46]). A function z : K(R") — R" is continuous,
rigid motion equivariant and additive if and only if z = m;.



For operators mapping P(Z") to P(Z"), we obtain the following result.
Write LCM for the least common multiple and let n > 2.

Theorem 9. An operator Z : P(Z") — P(Z") is an SL,(Z) equivariant and
translation invariant Minkowsk: valuation if and only if there exist integers
a, b>0 withb—a € LCM(2,...,n+1)Z such that

for every P € P(Z").

An operator Z : F — K(R") is called SL,,(R) contravariant if Z(¢P) =
¢~ t'Z P for ¢ € SL,(R) and P € F, where ¢~ is the inverse of the trans-
pose of ¢. Define SL, (Z) contravariance of operators on P(Z") analogously.
In recent years, SL,(R) contravariant operators on convex bodies and the
associated inequalities have attracted increased interest (see, for example,

[12122[34,137]). For SL, (R) contravariant Minkowski valuations on P(R"), a
complete classification has been established. Let n > 2.

Theorem 10 ([30]). An operator Z : P(R™) — K(R") is an SL,(R) contra-
variant and translation invariant Minkowski valuation if and only if there
exists a constant ¢ > 0 such that

ZP=cIlP
for every P € P(R").
Here II P is the projection body of P (see Section 2l for the definition).
For operators on lattice polytopes, we obtain the following result.

Theorem 11. (i) For n =2, an operator 7 : P(Z?*) — K(R?) is an SLy(Z)
contravariant and translation invariant Minkowski valuation if and only if
there exist constants a,b > 0 such that

for every P € P(Z?).

(i) For n > 3, an operator Z : P(Z") — KC(R") is an SL,(Z) contravariant
and translation invariant Minkowsk: valuation if and only if there exists a

constant ¢ > 0 such that
ZP=cIlP

for every P € P(Z").

Here pr/» denotes the rotation by an angle 7/2 in R®. Note that for n = 2,
the projection body is obtained from the difference body by applying p /2.
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For operators mapping P(Z") to P(Z"), we obtain the following result.

Theorem 12. (i) For n =2, an operator Z : P(Z?) — P(Z?) is an SLy(Z)
contravariant and translation invariant Minkowski valuation if and only if
there exist integers a,b > 0 with b —a € 6 Z such that

ZP = apga(P ~ (4(P)) + b peps(—P + 6(P))

for every P € P(Z?).

(ii) For n > 3, an operator Z : P(Z") — P(Z") is an SL,(Z) contravariant
and translation invariant Minkowsk: valuation if and only if there exists a
constant ¢ > 0 with ¢ € (n — 1)!Z such that

ZP=cIlP
for every P € P(Z").

2 Preliminaries

We collect notation and results on convex bodies, valuations and lattice poly-
topes. General references are Schneider [48], Gruber [17], Barvinok [7] and
Beck & Robins [§].

Every convex body K € K(R™) is determined by its support function,

hK,v) =max{v-x:2z € K}

for v € R™, where v-x is the inner product of v, x € R"™. Note that for v € R"

we have
hK + L,v) = h(K,v) + h(L,v).

Support functions of convex bodies are sublinear, that is, they are convex
and positively homogeneous of degree 1, and every sublinear function is the
support function of a convex body in R".

For M C R", we denote the affine hull by aff M and the dimension (that
is, the dimension of aff M) by dim(M). Define the centroid of a k-dimensional
set M with positive k-dimensional volume Vi (M) by

cen(M) = Vk(lM) /M:c dH*(z),

where H* is the k-dimensional Hausdorff measure. We denote the convex
hull of xy,..., 2, € R” by [z1,. .., 2]
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2.1 Minkowski summands

Understanding the structure of summands is critical to our argument. A
convex body L is a summand of a convex body K if there exists a convex
body M such that K = L + M.

For L € K(R") and v € R"\{o}, we define the face of L having v as one
of its normal vectors by

F(Lyiv)={xz€L:v-x=h(L,v)}.
It follows that if L, M € IC(R™) and s,t > 0, then
F(sL+tM,v)=sF(Lv)+tF(M,v). (2)

Note that if K = L + M is a polytope, then so are L and M. Also note
that the only summands of a simplex S are translates of ¢S with ¢ € [0, 1]
and that a summand of a direct sum of two convex bodies is the direct sum
of summands of these bodies (see [48], Section 3.2]). Combined with (2)) this
implies the following.

Lemma 13. Let S be a simplez and R a convex body with dim(S + R) =
dim(S) + dim(R). If a convex body L is a summand of S + R, then there
erist t € [0,1] and R’ C aff R such that L is a translate of tS + R'.

2.2 Projection bodies

For u € S"™! (where S"™! is the (n—1)-dimensional unit sphere), let 7, denote
the orthogonal projection to the subspace orthogonal to u. For K € KC(R"),
the projection body II K is defined by

h(II K, u) = |m, K|

for u € S"7!, where | - | denotes (n — 1)-dimensional volume. Note that if P
is an n-dimensional polytope in R™ with facets (that is, (n — 1)-dimensional
faces) Fi,...,F,,, and corresponding facet normals (that is, exterior unit
normals) g, . .., Uy, then
1 m
[P = 5Zw [— g, ;). (3)
i=1



The Minkowski relation states that

m

Z|F,~|ui:0. (4)

i=1

See [16] for more information on projection bodies.

2.3 The Steiner point

The intrinsic volumes that are characterized in Hadwiger’s theorem are the
coefficients of the Steiner polynomial, that is,

V(K +sB") = Zs" 0, Vi(K),

where B" is the n-dimensional Euclidean unit ball and v; is the j-dimensional
volume of the j-dimensional Fuclidean unit ball. The corresponding expan-
sion for the moment vector is

n+1
Mng1 (K +sB") = 8" o ymy(K).

j=1
The Steiner point, m;(K), can also be represented as
1
i (K) = - / wh(K,u) A" (u).
v S§n—1

For more information on Steiner points, see [48] Section 5.4].

2.4 The inclusion-exclusion principle

Betke (unpublished) and McMullen [41] extended () to an inclusion-exclusion
principle. Let G be an abelian group.

Theorem 14 (McMullen [41]). If z : P(Z") — G is a valuation, then for
lattice polytopes Py, ..., Py,

2(PLU--UP) = > (=) '«(P,n--NP,)

1<iy < <ip<m
1<k<m

whenever Py U ---U P, and all intersections of the form P, N---N P, are
lattice polytopes.



The inclusion-exclusion formula is actually needed for cell decompositions
in this paper. We call a dissection of the n-dimensional lattice polytope @)
into n-dimensional lattice polytopes P, ..., P, a cell decomposition if ;N P;
is either empty or a common face of P; and P; for any 1 < ¢ < j < m. The
faces of the cell decomposition are the faces of all P; for i = 1,...,m. Let
int () denote the interior of Q).

Corollary 15. If z : P(Z") — G is a valuation and Q) an n-dimensional
lattice polytope, then

2(Q)= Y, (=) P y(F),
FeF
FNint Q#0

where F is the set of faces of a cell decomposition of Q) into lattice polytopes.

Proof. Let 1p be the characteristic function of P € P(Z") and [P](Z") the

additive abelian group generated by characteristics functions of lattice poly-

topes. McMullen [41l, Theorem 8.1(c)] established the following form of the

inclusion-exclusion principle. For any valuation z: P(Z") — G there exists

a homomorphism [z] : [P](Z™) — G such that z(P) = [z](1p) for P € P(Z").
Hence it suffices to show that

lo= Y (=11 (5)

FeF
Fnint Q#0

Clearly, (B) is true on the complement of Q). For z € @, let S, be the set
of faces of F that have non-empty intersection with int () and contain z
and let £, be the boundary complex of the set underlying S,. For a family
of polytopes G, define x(G) as the number of even dimensional polytopes
minus the number of odd dimensional polytopes in G. For the cell complex
S. U L,, we obtain the Euler characteristic and x(S,) + x(£,) = 1 since the
underlying set is homeomorphic to an n-dimensional ball. This also implies
X(L;) =1—(—1)". Hence

Do (= = (—1)"(S,) = (—1)"(1 = x(La)),

FeS,

which proves (). O



2.5 Triangulations

Write eq, ..., e, for the standard orthonormal basis of R”, which generates
Z", and write o for the origin. Define Ty = {0} and T; = [o,e,...,¢;] for
1=1,...,n. We call a lattice simplex basic if it is obtained from T} for some

i=0,...,n by amap from SL,(Z) followed by a translation.

In addition, let [0,1]* = [0, e1] + - - -+ [0, ;] be the standard i-dimensional
unit cube. One of the main ideas in this paper is to relate ZT,, and Z[0, 1]"
for a Minkowski valuation Z on P(Z"™). In order to do that, we write R, for
the convex hull of all vertices of [0,1]™ but o. Hence R, UT, = [0,1]" and
R,NT, =[ey,...,e,). Since Z is a valuation, we get

Z00,1]" + Zler, . .., en] = ZTy + Z Ry (6)

In the case of SL,(Z) equivariant and translation invariant Minkowski
valuations, we also need another specific cell decomposition involving T5,.
For the prism T,,_1 = T,,_1 + [0, e,], it will be useful to consider a cell de-

composition of T;,_; into n simplices S7,...,95,. Setting eg = o, we define
S; =1, and
Si=leo+en, ..., €1+ €n€i1,...,6n1] fori=2,... n. (7)

Note that each S; is basic and that dim(S;N.S;) =n—1for ¢ < j if and only
if j =i+ 1 (see, for example, [24, Section 2.1]).
We also require the following result (see, for example, |14, Section 6.3]).

Lemma 16. There ezists a triangulation of [0,1]"™ into n! basic simplices
using only the vertices of the cube such that T, is one of these simplices.

2.6 The Betke & Kneser theorem

Betke [10] and Betke & Kneser [11] proved Theorem [2 by using suitable
dissections and complementations of lattice polytopes by lattice simplices.

Proposition 17 (Betke & Kneser [11]). For every lattice polytope P € P(Z")
there exist basic simplices Sy, ..., Sy, and integers ki, ...,k such that

2(P) =Y kiz(S;)
i=1
for all valuations z on P(Z"™) with values in an abelian group.
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The following statement is a direct consequence of this proposition.

Corollary 18. If Z,7': P(Z") — K(R"™) are SL,(Z) equivariant (or SL,(Z)
contravariant) and translation invariant Minkowski valuations such that

2T, =7'"T; for i=0,...,n, (8)
then Z = 7' on P(Z").

Proof. For v € R™, the functions P +— h(Z P,v) and P + h(Z' P,v) are real-

valued valuations on P(Z"). For P € P(Z"), Proposition [ implies that

there are basic simplices 51, ..., S, and integers ki, ..., k,, such that
WZPv) =Y kh(ZS;,v) and WZ P,v) =Y kh(Z S;,v).

i=1 =1

Since Z and Z' are SL,(Z) equivariant (or SL,(Z) contravariant) and trans-
lation invariant, () implies that Z = Z’ on P(Z"). O

2.7 Translation invariant valuations

We say that a valuation z with values in an abelian semigroup is homogeneous
of degree i € Nifz(kP) = k' z(P) for k € Nand P € P(Z"), where N denotes
the set of non-negative integers.

McMullen [39] established the following theorem under the assumption
of the inclusion-exclusion principle contained in Theorem [I4] which he later
established in [41].

Theorem 19 (McMullen). If z : P(Z") — R is a translation invariant
valuation, then z(kP) is a polynomial in k € N of degree dim(P) for every
PePzZ).

As an application of Theorem [I9, we consider Minkowski valuations. The
following construction goes back to [30].

Lemma 20. Let Z: P(Z") — K(R") be a translation invariant Minkowski
valuation. For P € P(Z"), there ezists a convez body

Z,P = lim Z(kP)

koo km

and Z, is a Minkowski valuation on P(Z"), which is homogeneous of degree
n. If Z is SL,(Z) equivariant or SL,(Z) contravariant, then so is Zj.
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Proof. For v € R", the function P +— h(Z P,v) is a real-valued valuation
on P(Z"™), which is translation invariant as 7 is translation invariant. By
Theorem [[9, there exist coefficients ¢;(P,v) € R, ¢ = 0,...,n, for v € R"
and P € P(Z"™) such that

h(Z(kP),v) = ici(P, v)k' for k € N.

1=0

Hence the limit c¢,(P,v) = limg_,o, h(Z(kP),v)/k™ exists for v € R™ and
¢y (P, ) is a sublinear function on R"™. Therefore ¢, (P, -) is the support func-
tion of a convex body, which we call Z,, P. Since Z is a Minkowski valuation,
so is Z,. In addition, for fixed v, the function P — ¢, (P, v) is homogeneous of
degree n in P by Theorem [19] Thus the same holds for Z,,. The equivariance
follows immediately from the definition. O

2.8 Transforming into a regular simplex

Because of Corollary [I8, we concentrate on determining 7 7,, in the proof of
Theorems [ and 1l We will make extensive use of the symmetries of ZT,.

Let GL,(R) denote the group of general linear transformations on R™.
We write T' = T,, and set T = T — cen(T'), where cen(T) is the centroid of
T. We fix a transformation o € GL,,(R) such that aT is the regular simplex
T, of circumradius one,

ol = [vg,...,v,] =T, 9)
where vy = — cen(aT’) and v; = vo+ae; fori = 1,...,n. Let Sym(7,) denote
the group of orientation preserving isometries of the regular simplex 7.

Note that
- 1 ifi =y,
”Z"”ﬂ'—{—% if i (10)
We set
Wy, =Vg+ - F+v, form=0,....n—1
and obtain

F(T.,wm) = [vo, ..., U, an

F(Te, —wm) = [Vmi1s- -+, Un),
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and form=1,...,n—1,

F(lvr,...,vn),wm) = [v1,...,0m), 12)
F([vr, ... vn], —wm) = [Umt1,--., Un).

Note that all faces of T, are obtained as image of F'(T, w,,) by suitable maps
from Sym(T,) for all m =0,...,n — 1.

In the equivariant case, generalized difference bodies are important for
us. A facet normal of the polytope T, — T is a positive multiple of }._; v,
where [ is a proper subset of {0,...,n}. Because of (2), the same holds true
for the facet normals of s T, — ¢t T, with s,¢ > 0. Since (in any dimension)

ST*—tT*: [Svi—tvj :i,j:O,...,n,i;«éj],

we get
sT, —tT, = [pF(sTy — tTe,wy,) : p € Sym(T,)] (13)

for each m = 0,...,n — 1. Indeed, the right side is clearly contained in
sT, —tT, and it follows from (IIJ) that each sv; —tv; for i # j is contained
in the right side.

3 The discrete Steiner point

For P € P(Z"), let L(P) denote the number of lattice points in P, that is,

L(P)= > L (14)

xePNZ"

The function L : P(Z") — Z is a valuation that is invariant with respect to
unimodular linear transformations. In addition, if z € Z", then

L(P + z) = L(P),

that is, L is translation invariant. We call a function that is invariant with
respect to unimodular linear transformations and translations by integer vec-
tors unimodularly invariant.
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Ehrhart [15] established the following result.

Theorem 21 (Ehrhart). There exist L; : P(Z") — Q fori=0,...,n such
that

L(kP) = i Li(P)k

for k € N and P € P(Z™). For each i, the functional L; is a unimodularly
inwvariant valuation which is homogeneous of degree i.

Note that L,, is the n-dimensional volume and L is the Euler characteristic.
A special case of a more general result by McMullen [39, Theorem 6]
implies

Theorem 22 (McMullen). If Py,..., P, € P(Z"), then the number of lattice
points L(kiPy + - -+ + knBy) is a polynomial in ky, ...k, € N.

From this, the following analogue of Remark 6.3.3 in Schneider [48] is ob-
tained.

Corollary 23. The functional Ly : P(Z™) — Q is Minkowski additive.

Proof. For P,Q) € P(Z") and k,l € N, by Theorem 22 we see that L(k P+1Q)
is a polynomial in k£ and [. Considering the expression first as a function of
[ when k& = 0 and second as a function of &k when [ = 0, we deduce that the
linear term in L(kP +1Q) is L1(P)k + Li(Q)!l. In particular, the linear
term in the one variable polynomial L(k P+k Q) is L1(P) k+ L(Q) k on the
one hand and by Theorem 2T we get Li(P + @) k on the other hand. Hence

In analogy to (I4]), for P € P(Z"), we define the discrete moment vector

by
(Py= >y

rePNZ™

The discrete moment vector ¢ : P(Z™) — Z" is a valuation that is equivariant
with respect to unimodular linear transformations. In addition, if z € Z",
then

P+ z)=((P)+ L(P)=. (15)

In particular, ¢ is not translation invariant or equivariant. In the terminology
of [39], ¢ is an extended Z"-valuation.
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As a special case of a more general result by McMullen [39, Theorem 14]
we obtain the following result.

Theorem 24 (McMullen). There exist £; : P(Z") — Q" fori=1,...,n+1

such that
n+1

((kP) =Y ;(P)k

for k € N and P € P(Z"™). For each i, the function ¢; is a valuation which
s equivariant with respect to unimodular linear transformations and homo-
geneous of degree 1.

We call ¢1(P) the discrete Steiner point of the lattice polytope P.
A special case of a more general result by McMullen [39, Theorem 14]
implies the following result.

Theorem 25 (McMullen). If Py,..., P, € P(Z"), then the discrete moment
vector L(kyPy + -+ - + ky Py) s a polynomial in ky, ..., k,, € N.

From this, we deduce as in Corollary 23] the following result.
Corollary 26. The functional ¢, : P(Z") — Q" is additive.

In the next proposition, we collect some properties of the functional /¢;.
We require the following lemma.

Lemma 27. If z: P(Z") — R" is an SL,(Z) equivariant valuation, then
z((m+ 1)T,, — cen((m + 1)T;,)) = o.
Proof. First, let m = n. Note that cen((n + 1)T},) € Z". Set
S = (n+ 1)1, — cen((n+ 1)T,,).

Since z is SL,(Z) equivariant, we obtain from a™!pa.S, = S, (with « defined

in ([@)) that
az(S,) = paz(Sy,)

for all p € Sym(7,). Thus the statement holds for m = n. The lower
dimensional case follows by considering the statement in an appropriate sub-
space. [
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Proposition 28. The functional {1 : P(Z") — Q™ is an SL,(Z) and trans-
lation equivariant valuation. If P € P(Z") is a basic simplex or centrally
symmetric, then ¢1(P) = cen(P).

Proof. That ¢, : P(Z™) — Q™ is an SL,(Z) equivariant valuation is part of
Theorem 24l That /¢, is translation equivariant follows from Theorem 24] and
@).
If T is an m-dimensional basic simplex, then it follows from Lemma 27 and
the translation equivariance that ¢,((m + 1)T") = cen((m + 1)T). As both ¢,
and the centroid are homogeneous of degree one, we conclude ¢,(7T") = cen (7).

If P € P(Z"™) is centrally symmetric, then cen(P) is the center of symme-
try of P. If xq is a vertex of P, then its image x; by the reflection through
cen(P) is also a vertex. Thus g, 1 € Z" and cen(P) = 1(zo + x1). The
unimodular map ¢ defined by 2z — —z + x¢ + 21 is the reflection through
cen(P) and its only fixed point is cen(P). Since both cen(P) and ¢;(P) are
fixed points of ¢, we conclude that ¢;(P) = cen(P). O

3.1 Proof of Theorem

That ¢; : P(Z") — R™ is an SL,(Z) and translation equivariant valuation is
part of Proposition 28 So the following proposition concludes the proof of
the theorem. Let n > 2.

Proposition 29. If z : P(Z") — R™ is an SL,(Z) and translation equi-
variant valuation, then z = {.

Proof. Define w : P(Z") — R" by w(P) = z(P) — ¢,(P). Note that w is
an SL,(Z) equivariant and translation invariant valuation. Applying Theo-
rem [[9 to w shows that if P € P(Z") and k € N, then

w(kP) = Zwi(P)ki

where for each i, the function w; : P(Z") — R" is an SL,,(Z) equivariant and
translation invariant valuation which is homogeneous of degree 1.

Lemma 27 applied with w = w;, the SL,,(Z) equivariance and translation
invariance of w; imply that

wi((m+1)T,,) = w;((m + 1)T,,, — cen((m + 1)T},,)) = o
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for i =0,...,n. Since w; is homogeneous of degree i, we obtain w;(7,,) = o
fori=0,...,n. Thus Corollary [[§ implies that w(P) = o for P € P(Z"). In
particular, z(P) = ¢1(P) for any P € P(Z"). 0O

3.2 Proof of Theorem [7

Since any additive function on P(Z") is a valuation, Corollary 26 implies the
statement of the theorem.

4 Contravariant valuations

In this section, we first prove Theorem [[I], that is, we prove that for every
SLy(Z) contravariant and translation invariant Minkowski valuation Z on
P(Z?), there are a,b > 0 such that ZP = aprj2(P — {1(P)) 4 b prjo(—P +
01(P)) for every P € P(Z?) and we prove for n > 3 that for every SL, (%)
contravariant and translation invariant Minkowski valuation Z on P(Z"),
there is ¢ > 0 such that Z = cII. Second, we prove Theorem [I12

Note that a simple consequence of the symmetry properties of 7T}, and the
SL,,(Z) contravariance of Z is the following result.

Lemma 30. Let Z : P(Z™) — K(R") be an SL,(Z) contravariant and trans-
lation invariant Minkowski valuation. If 7T, # {o}, then o € int(ZT,).

4.1 Lower dimensional polytopes

The next lemma was proved in [19,28] for SL,,(R) equivariant (and homo-
geneous) valuations on P(R™).

Lemma 31. Let Z : P(Z™) — K(R™) be an SL,(Z) contravariant and trans-
lation invariant Minkowski valuation and let P € P(Z").

(i) If dim(P) <n — 2, then Z P = {o}.

(11) There exists ¢ > 0 (depending on Z) such that if dim(P) = n — 1 and
w is a unit normal to aff P, then Z P = ¢ |P| [—w, w].
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Proof. By translation invariance and SL,,(Z) contravariance, we may assume
that span P = span{ey, ..., eq}, where d = dim(P) <n — 1.
First we claim that

Z P C span{e;} for j=d+1,...,n. (16)

To simplify the notation, let j = n in (I6]).

For j € Z and k € {1,...,n — 1}, we define ¢;;, € SL,(Z) by ¢,re; = e;
if i # n, and ¢je, = jer + e,. It follows that ¢;,P = P. If we have
r=> . tie €ZP, then

n—1
drr =ty — jti)en + L. (17)
i=1
Since gb;lf 7P = 7 P, the vector gbj_,fx is contained in a bounded set. Since
ke{l,...,n—1} and j € Z are arbitrary in (I7), we conclude that t; =
-+ =t,-1 = 0. Thus (I6) and therefore also (i) are proved.

To prove (i), we identify span{es,...,e, 1} with R*~!. By (I6), there
exist real z;(P) < zy(P) such that Z P = [z,(P), z2(P)]e, for a lattice poly-
tope P € P(Z™'). In particular, z; and zy are SL,_(Z) and translation
invariant valuations. Let a; = z;(Ty,—1)/|Tn-1]- Since z1(S) = z2(S) = 0 by
(i) if S is a basic simplex of dimension at most (n—2), the (n—1)-dimensional
version of Corollary [[§ implies that z;(P) = a; |P| for P € P(Z"™1).

To relate a; and as for n > 3, we consider ¢ € SL,, (Z) defined by ¢e; = eq,
pes = ey, ¢e, = —e, and ¢e; = ¢; if 2 <1 < n. Then ¢T,,_1 = T,_1 and
¢~' = ¢. Hence c = ay = —ay > 0. If n = 2, then the SLy(Z) and translation
invariance imply for ¢ € SLy(Z) defined by 1e; = —e; and ey = —ey that

ZT1 = Z(Tl — €1> = Z(¢T1) = wZTl
Thus again ¢ = as = —ay > 0. O

Combining Lemma [31] and the inclusion-exclusion property leads to the
following result.

Corollary 32. Let Z : P(Z") — K(R™) be an SL,(Z) contravariant and
translation invariant Minkowski valuation. If Py, ..., Py € P(Z"™) form a cell
decomposition of an n-dimensional lattice polytope, then

k
Z(PU---UP) + Y. L(BNP)=)» 7P

dim(P;NPj)=n—1 =1
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4.2 Simple valuations

A valuation Z on P(Z") is called simple, if Z P = {o} for every lower dimen-
sional P € P(Z").

Lemma 33. Let Z : P(Z") — K(R™) be an SL,(Z) contravariant and trans-
lation invariant valuation. If Z is simple, then 7]0,1]™ = {o}.

Proof. First, we consider the case n = 2 to show the idea. In this case [0, 1]?
can be triangulated into Ty and Ty = e; 4+ e5 — Ts, and hence

Z0,1* =ZTy + ZT,.
The SLo(Z) contravariance and the translation invariance of Z imply that

Let ¢ € SLy(Z) be defined by e = ea—eq, pea = —e;. We have ¢Ty = To—eq
and ¢Ty = Ty —2e;. Hence Z[0, 1]? is invariant under ¢~*. In addition, define
Y € SLy(Z) by 1e; = —ey and ey = e1. Note that Z[0, 1)? is invariant under
Y=y

Suppose that there exists z = (x1,23) € Z[0,1]*\{0} and seck a contra-
diction. By the ¢ invariance of Z[0,1]?, we may assume that zo # 0. We
observe that for ¢ = 1) o ¢~ ¢, we have

vr = (Il — .CL’Q,LUQ) S Z[O, 1]2

Since Z[0,1]? is invariant under ¥* for any k > 1, it follows that the points
(z1 — kxg, z9) € Z]0,1]? for any k > 1. This contradicts the boundedness of
Z[0,1]2.

Next, let n > 3 and let

Q="+ Z[o, e;] and Q' =T, + Z[o, el
1=3 1=3

We define n € SL,,(Z) by ne; = —eq, nes = —eg and ne; = ¢ for j =3,....n.
This map satisfies Q' = e; + e3 + 7@ and 7" = 7. Hence

70 =n7ZQ. (18)
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In addition, let v € SL,(Z) be defined by ve; = es — €1, ves = —eq, and
ve; = e¢; for 5 =3,...,n. Thus

Y21, w0y ) = (=T, Ty — T2, T3, ., Ty). (19)
Since vQ) = @ — e; and v commutes with 7, it follows from (I8) that
YPZQ=720Q and v'ZQ =72Q' . (20)

We observe that @) and @’ form a polytopal cell decomposition of [0, 1], and
hence Z[0,1]" =ZQ + Z Q’. We conclude from (20)) that

v Z[0,1]" = Z[o, 1]".

Finally, suppose that there exists x = (z1,...,x,) € Z[0,1]"\{0}, and
seek a contradiction. For i,m € {1,...,n} with i # m, define v, € SL,(Z)
by setting Yime; = €m, Vimem = —e; and Y;e; = e; for j # i,m. By the
¥ ;41 invariance of [0,1]" for i = 1,...,n — 1, we may assume that z, # 0.
We deduce by ([[9) that ¥ = 1hy; oy~ satisfies

Y = (21 — T, T, T3, . .., Ty) € Z[0,1]".
Since Z[0,1]" is invariant under ¥* for any k > 1, it follows that

(x1 — kxo, x9, 23, ..., x,) € Z]0,1]"

for any k£ > 1. This contradicts the boundedness of Z[0, 1]". O

4.3 The cube

Let n > 2 and recall that the constant ¢ was defined in Lemma 311

Lemma 34. If Z : P(Z") — K(R") is an SL,(Z) contravariant and trans-
lation invariant Minkowski valuation, then

Z(k[0,1]") + ¢ (k™ — k"Y) 110, 1] = k" Z[0, 1]"

for k € N.
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Proof. For k > 1, we subdivide k[0, 1]" into a cell decomposition of £ unit
cubes, and hence all m-dimensional faces are unit cubes of dimension m.
For i = 1,...,n, there exist k""1(k — 1) facets of the cell decomposition
which intersect the interior of k[0, 1]™ and whose unit normal vector is e;.

We deduce from Lemma BTl and Corollary [32] that

Z(k[0,1]") + (K" — k™Y Xn:c [—e:, e, = k" Z[0, 1]".

i=1
The definition of the projection body, ([B]), gives [—c¢, ¢ = ¢II]0, 1]™. O

Proposition 35. If Z : P(Z") — K(R™) is an SL,(Z) contravariant and
translation invariant Minkowski valuation, then Z[0,1]" = cII[0, 1]™ .

Proof. Consider the SL,,(Z) contravariant and translation invariant valuation
Z, defined in Lemma Since Z,, is homogeneous of degree n, we deduce
from Lemma [34] applied to Z, that Z, is simple. Lemma [33 implies that
Zn[0,1]" = {o}. In particular, we have limy_, Z(k[0,1]")/k™ = {o}. Next
we apply Lemma [34] to Z. Dividing both sides by k™ and letting & — oo
implies that Z[0, 1|* = ¢I1]0, 1]™. O
4.4 The planar case

It is easy to see that

Pr/2 ¢p—7r/2 = ¢_t for any ¢ € SL2(R)
As in [30], we deduce the following result.

Lemma 36. An operator Z : P(Z?) — K(R?) is SLy(Z) equivariant if and
only if pr2Z:P(Z*) — K(R?) is SLy(Z) contravariant.

For the next lemma, recall that for given Z, the constant ¢ was defined in
Lemma 311

Lemma 37. If Z : P(Z*) — K(R?) is an SLy(Z) contravariant and trans-
lation invariant Minkowsk: valuation, then there exist a,b > 0 such that

2Ty = apr)2(Th — cen(T5)) + b prja(—To + cen(13))

and a + b = 2c.
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Proof. We dissect [0, 1]? into the triangles Ty and Ty = e; + €5 — Ty. Since Z
is a valuation,

Z0,1? + Z(ToN'Ty) = Z Ty + Z Ty,
Combining Lemma [BT] and Proposition [35] leads to

C[—1,1]2+C[—(61+€2),€1—|—62] :ZT2+ZT2/ (21)

Therefore Z T3 is a Minkowski summand of the hexagon on the left hand side.
If ¢ =0, then ZT; = {0}, and Lemma BTl implies that Z is simple. Therefore
Z P = {o} for all P € P2 So let ¢ > 0. Since Z is SLy(Z) contravariant, we
have ZT) = — 7T, and (21]) implies that ZT; is a two-dimensional polygon
whose sides are parallel to e; or es or e; + e5. In addition, let ¢ € SLy(Z) be
defined by ¢e; = ey — e; and ¢ey = —e;. Then Z T, is invariant under ¢~
Since ¢ permutes e;, —e; + eg, —eg on the one hand and —eq,e; — e3,e5 on
the other hand, we have h(Z Ty, e1) = h(Z Ty, —e1 + e3) = h(Z T, —ey) and
WMZTy, —e1) = h(ZTy,e1 — e3) = h(Z Ty, e5). Thus it is easy to check that

2Ty = apr)2(Th — cen(T3)) + b prja(—T5 + cen(T3))

for suitable a,b > 0. From (2II) we obtain a 4+ b = 2c. O

Proof of Theorem [I1]in the planar case. It follows from Proposition 28
that P — P —{1(P) and P — —P +/{1(P) are SLy(Z) equivariant and trans-
lation invariant Minkowski valuations on P(Z?). We deduce from Lemma
that P +— pr/o(P — (1(P)) and P +— pr/o(—P + (,(P)) are SLy(Z) contra-
variant and translation invariant Minkowski valuations.

Since ¢4 (T;) = cen(T;) for i = 1,2 by Proposition 28, combining Lemma 37]
Lemma [31] and Corollary [I§ shows that any SLy(Z) contravariant and trans-
lation invariant Minkowski valuation Z is of the form

ZP = apra(P —{1(P))+bpz2(—P + (1(P)),

where a,b > 0. O

4.5 Proof of Theorem [17] for n > 3

For Minkowski summands, we need the following (probably well-known)
statement, for which we have not found a reference. Let n > 3.
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Lemma 38. Let vy, ..., v, be vectors in R™ such that any n of these vectors
are linearly independent. If P is an n-dimensional polytope such that every
edge of P is parallel to some v;, then P is a translate of > ., a; [0, v;] with
a; Z 0.

Proof. A polytope is a zonotope, if all its two-dimensional faces are centrally
symmetric (cf. [48, Theorem 3.5.2]). Thus it is sufficient to show that P has
centrally symmetric two-dimensional faces.

We may assume that P has an edge parallel to v; for every i =1,...,m.
Let [z, y] be an edge of P parallel to v,, where y = = + a,,v,, for a,, > 0. We
claim that for any vertex w of m, P, there exists a vertex z of P such that

T, 2 = W and z + a,,vy, is a vertex of P. (22)

Since there is a path of the edge graph of m, P connecting 7, x and w, we
may assume that [w, 7, x| is an edge of m, P. Let L be the span of v,, and
w — 7, x. 1t follows that (z + L) N P is a two-dimensional face of P. As
no three vectors from V = {vy,...,v,} are linearly dependent, we deduce
that for some ¢ € {1,...,m — 1} we have LNV = {v;,v,,}. As the two-
dimensional face F' = (z + L) N P has only edges parallel to v; and v,,, it is
a parallelogram and hence centrally-symmetric. O

Let ¢ > 0 be the constant of Lemma [BIl First we use the triangulation
S1,...,Sn of [0,1]™ into basic simplices given by Lemma [I6 with S; = T,,.
If dim(S; N S;) = n — 1, then Lemma Bl provides a non-zero p;; € R™ such
that Z(S; N S;) = ¢[—pij, pi;]. Applying Corollary 32 and Proposition B3] to
the cell decomposition of [0, 1]", we deduce that

n!

[—C, C]n + Z Cc [_pija plﬁ] = Z 7 Sz (23)
dim(S;NS;)=n—1 =1

If ¢ = 0, then (23) implies that Z7T,, = ZS; = {0} and we conclude from

Lemma [B1] and Corollary [I§ that Z P = {o} for P € P(Z").

Assume that ¢ > 0. Hence the left hand side of (23) is full dimensional.
Since ZS; = ¢; ' ZT,, for ¢; € SL,(Z) with S; = ¢;Ty,, it follows that ZT,, #
{o}. We deduce from Lemma B0l that dim(Z T,) = n.

We consider the decomposition of [0,1]" into 7}, and R,, from (@). For
w=—e; — -+ — e,, Lemma [31] implies that

—w, w).

Z[el,...,en]:ﬁ[
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Therefore it follows from Proposition [35] that (6] can be written in the form

C

[—C, C]n + m [—w, w]

=72T,+7R,. (24)
We deduce from (24) right away that Z T, is a polytope. Each edge of the
left side of (24]) is parallel to either w or to an e;, i = 1,...,n. As any n of
the vectors w, ey, ..., e, are linearly independent, (24]) and Lemma [38 imply
that

ZT, is a translate of aglo, w| + aio,e1] + - -+ ayo, €, (25)

where a; > 0 for i =0,...,n.
Let a be defined as in (Q) and let p € Sym(7.). Note that the map
a~lpa € SL,(Z). Hence, by the SL,(R) contravariance of Z,

a 2T, = pa~tZT,.

Since this holds for all p € Sym(7.), it follows that o = cen(a™ZT,) =
cen(ZT,). Since p € Sym(7.) permutes the normal vectors of T}, it permutes
a~lw, atey, ..., a”le, and we obtain ay = --- = a, in (23). Taking into
account (Bl), we conclude that ZT,, = ¢o I1 T}, for ¢y > 0.

To determine ¢y, we deduce from (23] that

n!

[—c, " + Z c[=pij, pij] = o Z ¢; ' TIT,.

dim(SiﬂSj):n—l =1

The SL,,(Z) contravariant and translation invariant Minkowski valuation ¢II
also satisfies (23]). Hence ¢y = ¢. Thus Theorem [Tl follows from Corollary [I8

4.6 Proof of Theorem

First, let n = 2. Propositions [[7 and 28 imply that 6¢,(P) € Z?* for all
P € P(Z*). Hence, for integers a,b > 0 with b — a € 6Z, the operator Z
defined by

P a'pﬂ/2(P - gl(P)) + bpﬂ/2(_P+€1(P))
maps P(Z?) to P(Z?). For the reverse direction, let Z : P(Z?*) — P(Z?) be
an SLy(Z) contravariant and translation invariant Minkowski valuation. By
Theorem [I1], we know that there are a,b > 0 such that

ZP =apg (P —l(P)) +bprja(—P + 1(P))
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for every P € P(Z?). Since Z P € P(Z?) for all P € P(Z?), setting P =T}
shows that a + b € 27 and setting P = T, shows that 2a + b,a + 2b € 37Z.
Thus a,b € Z and b — a € 6 Z.

Next, let n > 3. By ([B)) and (), the projection body of P € P(Z™) with
facet normals uq, ..., u,, and corresponding facets Fi,..., F,, is

> IFlo,ui].
i=1

Since every facet can be triangulated and the (n — 1)-dimensional volume of
an (n — 1)-dimensional lattice simplex is an integer multiple of 1/(n—1)!, we
have P +— cII P with ¢ € (n—1)!Z is an operator that maps P(Z") to P(Z").
For the reverse direction, let Z : P(Z™) — P(Z") be an SL,(Z) contravariant
and translation invariant Minkowski valuation. By Theorem [II we know
that there is ¢ > 0 such that ZP = ¢ Il P for every P € P(Z"). Since
7,1 =1/(n—1)![—en,e,], we conclude that ¢ € (n — 1)! Z.

5 Equivariant valuations
For a,b > 0, define Z,; : P(Z™) — K(R™) by
Zap P =a(P —l1(P)) +b(—P + {1(P)). (26)

Note that Z,; is an SL,(Z) equivariant and translation invariant Minkowski
valuation on P(Z"). In this section, we prove Theorem [, that is, we prove
that for every SL,(Z) equivariant and translation invariant Minkowski valu-
ation Z on P(Z"™), there are a,b > 0 such that Z = Z,.

We deduce from Theorem [I1]in the planar case and from Lemma [36] the
planar case of Theorem Ml

Proposition 39. If Z : P(Z*) — K(R?) is an SLy(Z) equivariant and
translation invariant Minkowski valuation, then there exist a,b > 0 such that
Z="Zap.

As in the contravariant case, the following lemma is a simple consequence
of the symmetry properties of 7}, and the equivariance of Z.

Lemma 40. Let Z : P(Z") — K(R") be an SL,(Z) equivariant and trans-
lation invariant Minkowski valuation. If 7T, # {o}, then o € int(ZT,).
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The proof of the following result is analogous to the proof of Lemma [33]
in the contravariant case.

Lemma 41. Let Z : P(Z") — K(R") be an SL,(Z) equivariant and trans-
lation invariant valuation. If Z is simple, then Z[0,1]" = {o}.

5.1 Lower dimensional polytopes

In this section, we derive results on the image under a Minkowski valuation
of lower dimensional lattice polytopes. The next lemma was proved in [19,[30]
for SL,,(R) equivariant (and homogeneous) valuations on P(R"). Let n > 2.

Lemma 42. If 7Z: P(Z") — K(R") is an SL,(Z) equivariant and translation
wnvariant Minkowski valuation, then Z P is contained in the subspace parallel
to aff P.

Proof. By translation invariance and SL,(Z) equivariance, we may assume
that span P = span{ey, ..., eq}, where d = dim(P) <n — 1.

Forje Zand k € {d+1,...,n}, we define ¢ € SL,,(Z) by ¢jre; = ¢; for
i # k and ¢jrer = e+ jer. It follows that ¢ P = P. Ilf v =37  tie; € Z P,
then

Pjpr = (t1 + jti)er + Ztiei- (27)

=2
Since ¢;i, Z P = Z P, the convex body Z P is bounded, and k € {d+1,...,n}
and j € Z are arbitrary in (27]), we conclude that t4.; =--- =1t, =0. O

5.2 The cube

Proposition is the main result of this section. Let n > 2.

Proposition 43. If Z : P(Z") — K(R") is an SL,(Z) equivariant and
translation invariant Minkowsk: valuation, then there exists ¢ > 0 such that

Z[0,1]™ = [—c, ™
form=20,... n.
The critical step to prove Proposition [43]is the following statement where

[a,b]° = {o} for a < b.
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Lemma 44. If 7 : P(Z") — K(R") is an SL,(Z) equivariant and translation
invariant Minkowski valuation and there exists ¢ > 0 such that Z[0,1]™ =
[—c, c]™ for every m < n —1, then

Z(k[0,1]") + k" [—c, " = kK" Z][0,1]" + k [—c, ]"

for k € N.
Proof. For k > 1, we subdivide k[0, 1]" into a cell decomposition with k™
unit cubes. We observe that form=1,...,n —1,

> Sbeeal= (A7)

1<) < <im<n j=1

and for m = 0,...,n — 1, there exist k™ (k — 1)"~™ translates of [0, 1] that
are faces of the cell decomposition intersecting the interior of k[0, 1]". Since
2]0,1]™ = [—c¢,¢]™ for m < n — 1, we have Z{o} = {0}, and we deduce from
Corollary [[5] that for v € R"

h(Z(K[0,1]"),v) =
= k"h(Z ) + Z

= K"R(Z[0, 1), v) + k (” - 1) k(1 — k)" h([—c, )", v)

<n — 1)k;m(k: — D)™™ h([—c,d", v)

=
= Ek"h(Z[0,1]",0) + k((k+ 1 — k)" — k"1 h([—c, ", v)
= k"h(Z[0,1]",v) — k"h(|—c, c]",v) + k h([—c, c]", v).

Thus the lemma is proved. O

Proof of Proposition 43l We prove the statement by induction on n > 2.
The case n = 2 follows from Proposition B9 and the fact that ¢,([0,1]™) is
the centroid of [0, 1™ by Proposition

Let n > 3 and assume that Proposition 3] holds for m < n — 1. We con-
sider the SL,(Z) equivariant and translation invariant Minkowski valuation
Z, defined in Lemma Since Z, is homogeneous of degree n, we deduce
from Lemma [4] applied to Z, that Z,[0,1]™ = {0} for m < n — 1. Hence Z,
is simple and we obtain by Lemma [41] that

Z,[0,1]" = lim w

k—00 kn

= {o}.
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Next, we apply Lemma (4] to Z. Dividing both sides by k", and letting
k — oo shows that Z[0,1]" = [—c¢, c]™. O

5.3 The prism

Let Z : P(Z") — K(R™) be an SL,(Z) equivariant and translation invariant
Minkowski valuation. Let n > 3.

Lemma 45. If S € P(Z""') is a basic simplex and k € N, then
cen(Z(S + [o, key))) = o.

Proof. We may assume that S =T, for some m =0,...,n—1. If m=0,1,
then ¢(T,, + [0, ke,]) is a translate of T, + [0, ke,] where ¢ € SL,(Z) is
defined by ¢e; = —eq, ¢e,, = —e, and ¢e; = ¢; for j =2,...,n—1. Since we
have Z(T,, + [0, ke,]) C span{ey, e,} by Lemma 2], we deduce the statement
of the lemma for m =0, 1.

If m > 2, then Z(T,, + [0, ke,]) C span{ey,...,en,e,} by Lemma A2
Hence we may assume that m =n — 1. Let o/ € GL,(R) be the transforma-
tion that leaves e,, fixed and acts on R" ! as « defined in Section 2.8 Then
o' Z(T,—1 +[o, key]) is invariant under the maps p that leave e, fixed and are
orientation preserving isometries of the regular simplex [v, ..., v, 1] C R*7!
defined in Section 2.8 Thus the first (n — 1) coordinates of the centroid of
o' Z(T,—1 + [0, keyp)) vanish. In addition, Z(T,,—1 + [o, ke,]) is invariant un-
der the map ¢ € SL,(Z) defined by e, = —e,, e; = ey, ey = €1, and
Ye; = ej for 2 < j < n. This completes the proof of the lemma. O

Recall that fn_l =T,1+[0,e,].

Lemma 46. Assume that Theorem []] holds true in dimension (n — 1) and
hence that there exist a,b > 0 such that Z P = Z,, P for every lower dimen-
sional P € P(Z"). Then

Z Tn—l = Za,b j;n—l-
Proof. We define the convex body Z' P C R*™! for P € P(Z" ') by

Z'P=m. Z(P+|o,e,)).
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Then Z' : P(Z"') — K(R"') is an SL,_1(Z) equivariant and translation
invariant Minkowski valuation. Since Theorem [l holds in dimension (n — 1),
there exist a’, b’ > 0 such that

7' P = Za’,b’ P for P e P(Zn_l) (28)
By Proposition 43, we have
[—c, )"t =7[0,1]"' = Z[0,1]"! = Zw [0, 1]" .

Combined with the assumption that Z P = Z,;, P for every lower dimensional
P € P(Z") and Proposition 2§ this gives

a+b =2c=a+b. (29)

For m = (n—1)!, we consider the triangulation S, ..., S/ of [0,1]""! into
(n — 1)-dimensional basic simplices with S} = T,,_; provided by Lemma [I6
For i = 1,...,m, set S| = S/ + [0,e,]. Note that the prisms S|, ..., 5"
form a cell decomposition of [0,1]". Let F denote the family of faces of
the cell decomposition intersecting the interior of [0, 1]™. It follows from the
inclusion-exclusion principle that

Zo "+ > ZF= Y ZF (30)

FeF FeF
n—dim(F) odd n—dim(F') even

We relate Z to Z,p. Note that Z,, in place of Z also satisfies ([B0). Since
Z]0,1]" = Z4[0,1]™ by Proposition A3l and ([29), and Z F' = Z,; F* for lower
dimensional lattice polytopes F' € P(Z"), we deduce that

Y78 = 7uy S (31)
i=1 i=1
Fori=1,...,m, we have
Zaw Sl = a(S! — cen(S!)) + b(—S! + cen(S!)) + ¢ [—en, ]

by the Minkowski linearity of ¢;, Proposition 28 and (29). Hence the right
hand side of ([BI)) is of the form @ + c¢m[—e,,e,] for a suitable (n — 1)-
dimensional polytope @ C R"L. Tt follows from (3] that ZT, 1 = Zgi is
an n-dimensional polytope that is a summand of Q + ¢m|—e,,e,]. Hence,
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because of (2)), the facet outer normals of Z T n_1 are either parallel or ortho-
gonal to e,. Hence, by Lemma [45] there exists ¢y > 0 such that

Z Tn—l =7 Tn—l + CO[_ena en]-
By (28) and Proposition 28, we therefore get
7T, | = a(Th—1 —cen(Ty_1)) + V' (—Tp—1 + cen(T,,_1)) + co[—en, €n].

Using the SL,(Z) equivariance and translation invariance of Z, we deduce
that )
7S, =d (5] —cen(S))) + b'(—S; + cen(S})) + co[—e€n, €]

fori=1,....m. As Y ", Z:S;{ = @ + cm|—e,, e,], we conclude that ¢y = c.
Thus ([29) implies

7Ty = d' (Tp_y — cen(T,_1)) 4 b (=Tp_y + cen(T,_1)). (32)

To prove that a = a’ and b = U/, we first assume that b > ¥'. Define the
vector v = ey + -+ + e,_1 and set hg = h(T,,_1 — cen(T},,_1),v) > 0. Note
that

h(=T,-1 +cen(T,,_1),v) = (n — 1)hy

and

h—=T,—1 +cen(T},—1),v) = (n — 1)hy and h(T,—; — cen(T},—1),v) = hy.

We consider the translation invariant real valued valuation P — h(Z P, v) on
P(Z™) and for k > 2, the cell decomposition of T,,_1+[o, ke,,| into k translates
of T,,_1. The cell decomposition has (k — 1) faces intersecting the interior of
T,-1 + [0, key], each a translate of T,,_;. Since cen(Z(7T,-1 + [0, ke,])) = o
by Lemma @5, we have h(Z(T,,—1 + [0, ke,]),v) > 0. By first applying the
inclusion-exclusion principle (Corollary [I5]), second that Z T,y = Zgp 11
and (B32), and third that ' —a = b — ¥/, which follows from (29)), we deduce
that

0 < A(Z(Th-1 + [0, ken)),v)
= khZTp 1,v) — (k—1)AZT,_1,v)
= (kd' +k(n—1)0' — (k- 1)a— (k — 1)(n — 1)b) h
(a/ + (n— 1) — (k—1)(n—2)(b—1b"))ho.
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As b > U/ and the last expression is non-negative for any large k, we conclude
that b =¥ In turn, a = o’ follows from (29)).

If b <V, and hence a > da’, we use essentially the same argument, only
the valuation P — h(Z P, —v) replaces P +— h(Z P,v), and we exchange the
role of a and b. O

We deduce from Lemma [46] the following result.

Corollary 47. Let Z and the constants a,b be as in Lemmal[46. If Sy,...,S,
with Sy =T, are basic simplices triangulating T,,—1 + [0, e,,], then

izmb SZ - iZSZ
i=1 1=1

5.4 The faces of ZT,

Let n > 3. Let Z : P(Z") — K(R™) be an SL,,(Z) equivariant and translation
invariant Minkowski valuation and assume that Theorem M holds in R*~!.
Hence, there exist a,b > 0 such that

ZP=12.,P (33)

for every lower dimensional P € P(Z"™). Note that Proposition A3 implies
that 2c = a +b.

If a+ b =0, then Z is simple. Hence, Lemma (1] implies that Z P = {o}
for P € P(Z™). Thus the proof of Theorem [l is complete in this case.

Lemma 48. Ifa+ b > 0, then ZT, is an n-dimensional polytope with the
property that any of its facet normals is also a facet normal of T, — T,.

Proof. We use the triangulation Sy, ..., Sy of [0, 1] into basic simplices given
by Lemma [I6 with S; = T,,. Write F’ for the faces of the cell decomposition
that intersect the interior of [0,1]” and have dimension at most n — 1. We
deduce from the inclusion-exclusion principle that

n!

Zo A"+ Y ZF=Y 7S+ Y ZF (34)

FeF! i=1 FeF!
n—dim(F) odd n—dim(F) even
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Note that (B4]) also holds for Z,;, in place of Z. Here Z,, F = Z F for
F € F by (33)). Therefore (34) combined with a + b = 2¢ gives

N 7,5 =Y 78, (35)

We deduce from a + b > 0 that the left hand side of (B5) is n-dimensional.
Since we have S; = ¢; T,, with ¢; € SL,(Z) and Z S; = ¢; Z T, it follows that
7T, # {o}. We deduce from Lemma [0l that Z T, is n-dimensional.

We look at the decomposition of the unit cube [0,1]" into 7, and the
remaining part, R,,. Note that T, N R,, = [e1, ..., e,]. Using Proposition [43]
[B3), and the valuation property of Z, we get

ZT, isasummand of Q= [—c,c|" +aler,...,e,) —0bler,...,e,]. (36)

We deduce right away that Z T, is a polytope.

Moreover, (2) and (B6) imply that any facet normal of ZT, is a facet
normal of (). Since T,,—T,, is o-symmetric, (2)) implies that it is now sufficient
to show that the affine hull of any facet F of [—1,1]"+[e1, ..., e,]—[e1,. .., €]
is parallel to a facet of T,, — T},. Now F' = Fy+ F; — F, where Fj is a face of
[—1,1]", and F}, F, are faces of [eq, ..., e,]. In particular,

d0+d1+d22n—1

where d; = dim(F;). If dy = 0, then aff ' is a translate of affley, ..., e,)
and hence aff F' is parallel to a facet of T,, — T},. Therefore we may assume
that dy > 0, and, without loss of generality, that aff Fy is a translate of
span{ey, ..., eq }. Let V; C {e1,...,e,} be the set of vertices of F; fori = 1, 2.
Since

do + card(Vy) + card(Vo) =do+ di + da +2 > n+ 1,

we have {eq, ..., eq, }N(V1UVL) # 0, where card stands for cardinality. Hence
we may assume that e; € Vi and {ey,...,eq} UV) = {e1,...,en}, where
m < dg+ dy. It follows from e; € V; that aff Iy + aff F} is a translate of

span{e; : i =1,...,do} +span{e; —e; 1 e; € V1} =span{e; :i =1,...,m}.

Therefore aff F' is a translate of the affine hull of the facet [0, €1, ..., e,] — F»
of T,, — T,. [
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5.5 More on 77T,

As in Section 2.8 set T = T, and o = T,. Define Q, = aZT. It follows
from Lemma M8 that @), is a polytope and that any of its facet normals is
a positive multiple of ., v; for a proper subset I of {0,...,n}. Since Z
is SL,,(Z) equivariant and translation invariant, @, is invariant under maps
from Sym(7,). In particular, the orbits of the facet normals of @, of this
action are characterized by the cardinality of I.

Lemma 49. For m = 1,...,n — 2, there exist constants a,,,b,, > 0 and
Sy > 0 such that

F(Q*a wm) = amF(T*a wm) + bmF(_T*> wm) + S W
Proof. By Proposition 43 and (33]), the decomposition (@) implies that

n

Q. is a summand of (a+b) Z[o, vi—vo]ta vy, ..., vn]=blvr,. .. v). (37)
i=1
Let m € {1,...,n —2}. Since

n n m

F(> [o,vi = vol, wm) = > F([o,v; — vol, wm) =Y _[0,v; — g,

i=1 i=1 i=1

and
F(Z[Ov V; — UO]v _wm) == ZF([O7 V; — U0]7 _wm) = Z [07 Vi — UO]?
i=1 i=1 i=m+1
we deduce from ([[2)) and B7) that F(Qx, wy,) is a summand of

(a+b)Z[07Ui _UO] +a[’U1, s '7Um] - b[vm—l-h s '7UTL]
=1

and that F(Q,, —w,,) is a summand of

n

(a+0) Y [o,v;i —vo] + afvmsr, - va] = bvr, ..., ).

i=m-+1
Lemma [[3] combined with (III) implies that
F(Qu, W) = Ly, — by F (T, —wpy,) (38)
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where 0 < b,, < b and L,, is a convex polytope contained in a translate of
aff(vo, ..., v,) and that

F(Q., —wy) = a), F (T, —wy) + L}, (39)

where 0 < a) < a and L], is a convex polytope contained in a translate
of aff(vy,...,vr). For p € Sym(T,) suitable and & = n — m — 1, we have
pQ. = Q. and p(—wy) = w,,. Hence [BY) implies

F(Qsywm) = a1 F(Tywin) + Ly (40)
where pL! | is contained in a translate of aff(v,41,...,v,). Combin-

ing (B8) and ({A0) with Lemma I3 shows that F(Q.,w,,) is a translate of
an F (T, wp,) + by F (=T, wy,) with a,, = a!

n—m—1°

Thus there are ¢, ...,c, € R with " ;¢; = 1 such that
F(Q.,wm) = am[ve, -, Um) — bin[Vms1s - oy U] + Zci ;. (41)
i=0

If p € Sym(7.) corresponds to an even permutation of (vo,...,v,) and
(U1, - -+ n), then pQ, = Q, and pw,, = w,,. Hence (A1) implies that

n n
E CipU; = E C; U;.
=0 i=0

This implies that ¢ = -+ = ¢, and ¢,01 = -+ = ¢,. Thus Z?:o Civ; =
(co — ¢n) Wy, and

F(Q*vwm> = CLmF(T*,UJm) - bmF(T*a _wm) + SmWn,
with s, = ¢o — ¢. If ap, by, > 0, then a,, F(Ty, wy) — by F(Ty, —wy,) is a

facet of a,,T — b, Ty. Thus (I3) implies that s,, > 0. If a,, = 0 or b,, =0,
then also s, > 0. O

Form =0,...,n—1, weset G,,, = F (Q«, wy,). Then, form =1,...,n—2,
we have
G = am[Vo, -+, U] — b [Ums1, -+, Un] + St

If @y, by > 0, then F(Q.,wy,) is a facet of Q.. Using (I0), we obtain for its
(n — 2)-faces,

F(Gmywm-1) = amlvo, ..., Um-1] = bm[Vms1s - Un) + SmWim,
F(Gmywmy1) = amlVo, .- Um] — b [Umaz, -« o, On] + S,

We need the following result.
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Lemma 50. If a,,,b, > 0 form € {1,...,n — 2}, then G,_1 and G
are facets of Q. and

F(Gm’wm—l) = F(Q*’wm) mF(Q*awm—l)a
F(Gmawm-l-l) = F(Q*awm) mF(Q*awm+l)~

Proof. We only consider the case of F(G,,, Wpi1). Since F (G, wp,11) is an
(n — 2)-face of @, we have

F(Gy wini1) = F(Qu, w) N F(Qs, v)

where v = ). v; for a proper subset I C {0,...,n}.
On the other hand, v is orthogonal to the affine hull of F(G,,, wmi1).
Therefore

v:swm+twm+1:s(vo+-~-+vm)_t(vm+2+...+vn)

for s,t € R. We deduce that v € {£wy,, w11, £vme1}. Readily v # wy,.
Since @, is n-dimensional, and F(G,,, w,+1) C F(Q.,wy,), we have v #
—Wy,. Next, v # —vy,41 because a;,v0 — by Uma2 + S € F(Gp, wipe1) and
Vo — by Vmi1 + SmWy € Gy, but (I0) implies that

h’(Q*a _'Um-l—l) Z —Um+1 (a'mUO - bmvm—i-l + Smwm)

> =Vt - (@m0 — bpUmaa + Smwp,).

Next, v # v,,11 because for w = w,, — Uy, + Vpy1 = Zie ; Vi corresponding
tol ={0,...,m—1,m+ 1}, we have a,, V11 — byUmao + Snw € F(Q., w),
and s, > 0 gives

h(Q*> 'Um-‘rl) 2 Um+1 - (a'm'Um-‘,—l - bmvm+2 + Sm(wm — Um + Um—i—l))

> Ut (@m0 — by Umaa + Spmwp,).

Finally, G,, = F(Qx, wy,) is (n—1)-dimensional and F(G,,, Wp41) is (n —2)-
dimensional. Thus

h(Q*a _wn"ri-l) > h(Gma _wm-i-l) > h(F(Gm>wm+1)> _wm+l)>

and hence v # —w,, 1. Thus v = w,11. O
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Proposition 51. For n = 3, there exist ag,by,co > 0 with the following
properties. If S is a basic three-dimensional simplex and u,v € R3\{o} are
such that E = F(S,v) and E' = F(S,—v) are edges and F = F(S,u) is a
facet, then

F(ZS,u) is a translate of ag F + co(—F),
F(ZS,—u) s a translate of bo(—F) + co F,
F(ZS,v) s a translate of agE + by E'.

In addition, co = 0 if and only if .S = Zgyp, S.

Proof. We may assume that S = T3 and write 7" = T5. If ZT = {o}, then
we have ag = by = ¢g = 0. Otherwise, Lemma E0 implies that Z T is three-
dimensional. Note that by Lemma (4§ the facet normals of @), are a subset
of {£v;:i=0,1,2,3}U{v;+v; i # j}.

We claim that if z is a vertex of @), then

z € F(Q.,v; + v;) for some i # j. (42)

To prove ([@2), we first assume that a;,b; > 0. Then F(Q.,w;) is two-
dimensional. If the vertex z lies in F(Q.,v;) N F(Q.,v;) for i # j, then

F(Q.,v; +v;) C aff F(Q.,v;) Naff F(Q.,v;).

This is not possible since ay,b; > 0. Similarly, we see that for ¢ # j the
vertex z & F(Q., —v;) N F(Q.,—v;). Since z is contained in at least three
two-dimensional faces of Q,, z € F(Q.,v; + v;) for some i # j.

Therefore we assume that either a; = 0 or by = 0, that is, we have
dim F(Q,w;) < 1. In this case, we deduce from Lemma (8 that any ex-
terior normal to a two-dimensional face of (), is an exterior normal to a
two-dimensional face of either 7, or —7,.. Hence

Q. =sT.N(=tT,) fors,t>0.

If z is a vertex of (), then it is not the midpoint of a segment contained in
Q.. Thus z is contained in an edge of either sT, or —tT,. Thus z is a vertex
of F(Q.,v; + v;) for some i # j, concluding the proof of (42).

Recall that s; > 0 if a; + b; > 0. In addition s; > 0 if a4 = b; = 0 as
0 € int Q.. We deduce from Lemma A9 and ([@2]), that

Q* = [alvi - bl'Uj + 81(1}1' + Uk) : {i,j, k‘} C {O, 1, 2, 3}] (43)
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Thus it follows by a short calculation from (I0) and (43]) that

F(Q+, —vo) = a1[vo, vy, V2] — s1[v0, v, V2] + (b1 + s1)(vo + v1 + v2),
F(Q.,v0) = —bi[v1, va, v3] + s1[v1, v2, v3] + (a1 + s1)vo,
F(Q,wy1) = ay[vg, v1] — by [ve, v3] + s1(ve + v1).

Therefore we may choose ag = ay, by = by and ¢y = s1. Since F(T,, —vy) is a
two-dimensional face and F'(T., +w;) are edges, this concludes the proof. [

5.6 Proof of Theorem (4 for n = 3
By Proposition B9] there exist a,b > 0 such that
LP =124, P

for lower dimensional P € P(Z3). Let Si, Sy, S3 with S; = Ty be the basic
simplices triangulating the prism Ty = Ty+ [0, e3] defined in (7). Corollary (41l
yields

Za,b Sl + Za,b Sg -+ Za,b Sg =7 Sl + 7 Sg + 7 Sg. (44)
We observe that F(Si,—e3) = [o,e1,es], that F(Sy, —e3) = [e1, ez, that
F(Ss, e3) is a translate of [0, e;] and that F'(S55, e3) is a translate of [0, ey, es].
Set G = F(Zle Zap Si,—€3). Since [o,e1] is a translate of [0, —e;], we
deduce that

G is a translate of afo, ey, ea] + blo, —e1, —ea| + aleq, ea] + blo, e1].  (45)

By (#4), we also have G = F (Z?:1 7.S;, —63). Hence Proposition G implies
that G is a translate of

(a0 + co)lo, e, €2] + (bo + co)[o, —e1, —ea] + ao[ex, 2] + bolo, eq]. (46)

Hence F(G, —e;) is a translate of afo, e5] by ([45]) and F'(G, —e;) is a translate
of (ap + ¢o)lo,e2] by (@6). Thus a = ag + ¢p. From (@3) and ([E6) we also
obtain that F'(G,e;) is a translate of blo, —es] and F'(G,e) is a translate of
(by + co)[o, —ea], respectively. Hence b = by + ¢o. Finally, we obtain that
F(G, —ey) is a translate of (a + b)[o, e1] on the one hand, and is a translate
of (ag + by + ¢o)[o, €1] on the other hand. Hence

ag+ by +co=a+b=ag+ by + 2¢.
Therefore cg = 0, a = ap and b = by. Thus ZT3 = Z,; T3 follows from
Proposition [511
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5.7 7T, forn>4

Let Z be an SL,(Z) equivariant and translation invariant Minkowski valua-
tion on P(Z™). Let n > 4.

Proposition 52. If Theorem [ holds in R"™!, then there exist ag,by > 0
such that
2S ="Zqayp, S

for every basic n-simplez S.

Proof. Since Z is SL,(Z) equivariant and translation invariant, it suffices to
show there are ag, by > 0 such that

2T =Zgypy T

where T' = T,,. By Lemma [A8], we may assume that Z T is an n-dimensional
polytope. As before we set T, = o1 and @), = aZT". Thus we have to show
that that there are ag, by > 0 such that

Q* = Cl()T* — bQT* (47)

First, let dim(F(Qx, wp)) <n—2form=1,...,n—2.
Since Lemma (48] implies that @, is a polytope whose facet normals are facet
normals of T, — T, and since @, is invariant under the action of Sym(7T}), we
deduce that there are s,t > 0 such that

Q. =sT.N(=tT,). (48)
We claim that either
s> ntort>ns, (49)

or in other words, either —t7T, C sT, or sT, C —tT,. Suppose that (49)
does not hold, that is,

S
—<t<ns.
n

First, assume that s > t. Then F(—tT,,vo+v1) = [~tva,..., —tv,] satisfies

Yo + U1 ctintT, C sintT,.

cen(F(—=tT,,vg+v1)) =t

Thus (48)) implies that
F(Q.,vo+v1) =sT. N F(—tT,, vy + v1) has dimension n — 2. (50)
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We have a; = 0 and b; > 0, and
F(Qx,vo +v1) is a translate of by[—vg, ..., —v,]. (51)

However, as s < nt, the vertices —tvy, ..., —tv, of F(—tT,, vy + v1) are cut
off by the facets F/(sT., —v;) of sT for i = 2,...,n. Therefore (B0) implies
that F'(Q«,vo+v1) has some (n — 3)-dimensional faces with exterior normals
—uv; for ¢ = 2,... n. This contradicts (5I), and in turn proves ([49) if s > t.
Finally, the case s <t of ([@9) can be proved using the same argument for

F(Q«, —vg —v1) = F(sTy, —vg —v1) N (=t T%).

It follows from (9] that either Q, = sTi, or Q, = —tT,. Thus (7)) holds in
this case.

Second, let F'(Q4, w,,) be (n — 1)-dimensional for some m =1,...,n— 2.
It follows from Lemma B0l that dim(F(Q., wy)) =n—1for k=0,...,n— 1.
It also follows from Lemma B0l that if m =1,...,n — 2, then

F(Q*> wm—l) N F(Q*> wm) (52)
= Am[V0s - s Um—1] — D[Vt - -+ s Un) + SmnWin,
F(Qu, wp) N F(Qy, Wint1) (53)
= Am[V0s - -+ s Um] — b [Uma2, -« o, Un] + S,
If m > 2, then (B3]) applied to F(Q., wm_1) N F(Qx, wy,) shows that
F(Q*>wm—l) N F(Q*> wm) (54)
= am—l[v(]v st 7Um—1] - bm—l[vm—i-la R Un] + Sm—1Wm—1.

Comparing (52)) and (54]) implies a,,—1 = @, b1 = by, and s, = S = 0.
Similar arguments based on (53) prove that if m < n — 3, then a,,,1 =
Gy bna1 = by, and s,,.1 = 0. Continuing step by step, we conclude that
ay = -+ = Qp—-1, bl :"':bn—l and S1 :"':Sn_lzo.
Set ag = a; and by = by. Since s, = 0 for k = 1,...,n — 1, we obtain
from Lemma [49] that

F(Q*, wk) = F(CL()T* — bOT*, wk)
for k=1,...,n— 2. It follows from Lemma [50] that
h(Q*, wk) = h(CL(]T* — boT*, wk)

for k =0 and k = n — 1 as well. By symmetry, the support functions of Q).
and agT, — byT, agree for any possible facet normal of either polytope. Thus
we conclude that (47) holds. O
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5.8 Proof of Theorem (4 for n > 4

Let Z : P(Z") — K(R"™) be an SL,(Z) equivariant and translation invariant
Minkowski valuation. We prove Theorem @ by induction on the dimension
n > 3. The case n = 3 is settled in Section Therefore we assume that
n > 4 and that Theorem [ holds in dimension (n — 1). In particular, there
exist a,b > 0 such that

ZP=7.,,P

for lower dimensional P € P(Z") (where Z,, is defined in (20])). In addition,
a = b = 0 implies that Z P = {o} for P € P(Z"), and a + b > 0 implies that
7T, is an n-dimensional polytope.

We may assume that a + b > 0, and hence Proposition implies the
existence of ag,by > 0 with ag + by > 0 such that if S is a basic n-simplex,
then

2S ="Zayp, S (55)

We compare Z and Zgp.
_ Let Sy,..., S, with S; = T, be the basic simplices triangulating the prism
Tn—1="T,-1+[0,e,] in (). Corollary AT implies that

i Ty S; = i 7.S;. (56)
=1 =1

Let1>7r3>--->r,_1>0and

n—1

W= —e, +e +e+ E Ti€;.
=3

It follows that F'(S;, —w) = {e,} fori = 1,...,n and that F/(S;,w) = [e1, €3],
F(S2,w) = [ey, €], and F(S;,w) = {e;—1} for i = 3,...,n. We deduce from
the definition of Z,; and (55) that

F( Z Zap Si, w) is a translate of 2a [e;, es],

i=1

F( Z 7 S;, w) is a translate of 2ag [e1, €3],

i=1
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and hence a = q follows from (B6). Similarly

F( Z Zap Si —w) is a translate of 2b [ey, es],

i=1

F( Z 7 S;, —w) is a translate of 2b [e1, e2],
i=1
and hence b = by. Therefore Corollary [I8 implies that Z = Z,; on P(Z").

5.9 Proof of Theorem

Set m,, = LCM(2,...,n+1). Proposition 28 implies that m,, ¢;(P) € Z" for
P € P(Z"). Hence, for integers a,b > 0 with b — a € m,, Z, the operator Z
defined by

maps P(Z") to P(Z"). For the reverse direction, let Z : P(Z") — P(Z")
be an SL,,(Z) equivariant and translation invariant Minkowski valuation. By
Theorem [I1], we know that there are a,b > 0 such that

for every P € P(Z"™). Since Z P € P(Z"™) for all P € P(Z"), setting P = T},
and using Proposition 28 shows that

er+---+eg ert+---+eg
ST TR (e T R

k41 ) +0(=Ti+ k41
Hence a+c¢/(k+1),—(a+c¢)+c¢/(k+1) € Zfor k=1,...,n with c =b—a.
Thus c=b—a € m,Z and a,b € Z.

CL(Tk — ) c P(Zn)
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