
PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering 
Stanford University, Stanford, California, January 28-30, 2008 
SGP-TR-185 
 

 
 

LIMITS OF HEAT EXTRACTION FROM DRY HOLE 
 

Aniko Toth and Elemer Bobok 
 

University of Miskolc 
Miskolc-Egyetemváros, 3515 Hungary 

e-mail: toth.aniko@uni-miskolc.hu 
 

ABSTRACT 

Deep borehole heat exchangers are an 
environmentally favorable way for geothermal 
energy production. The weakness of this proposed 
production technology is the moderate temperature 
of the outflowing water and the relatively low 
thermal power. The impact of the bottom-hole depth 
and the heat conductivity of the surrounding rock 
are also considered.  
The primary limit of the extractable thermal power 
is the restricted heat replenishment by conduction 
towards the well. In order to the temperature 
difference is negligible, between the tubing and the 
annulus heat insulation is necessary. During the 
initial period of the operation the temperature and 
the power has a higher value, but they tend a lower 
equilibrium value. This is the sustainable production 
of the system. Semi-numerical simulation is used to 
determine this limit. Electricity production from dry 
holes cannot be an economic way.  
But the direct heat utilization would be possible in 
confirmation with a heat pump. 

INTRODUCTION 

The present practice of geothermal energy 
production in Hungary is hot water production 
mainly from the so-called Upper Pannonian 
sedimentary aquifer. Most geothermal wells operate 
by the elastic expansion of this system without any 
artificial lift method. The mineralized hot water 
represents a major problem for geothermal energy 
utilizers. An obvious solution is to reinject the 
utilized thermal water into the aquifer where it is 
originated, which likewise allows the reservoir 
pressure to be maintained, assures the continuous 
supply of water and limits the surface subsidence. 
Furthermore, water reinjected at a lower 
temperature than the aquifer’s allows higher 
recovery of the energy contained in the reservoir 
rocks by cooling the aquifer. In spite of these 
benefits, an adverse phenomenon occurs: the 
increasing reinjection pressure because of the 
decreasing permeability of the aquifer around the 
reinjection well. 

To avoid this problem some useful ideas 
were suggested by HORNE (1980), ARMSTEAD 
(1983), MORITA, et. al. (1985, 2005). Their 
recommendations to circulate water is in a closed 
casing well. The water flows downward through the 
annulus between the casing and the tubing while it 
warms up, and it returns at the bottomhole and 
flows upward through the tubing. The upward 
flowing water cools to a certain extent because of 
the heat transfer across the tubing wall. 

Such an experimental production unit has 
been installed in 1989 in Szolnok, central Hungary. 
The results, as expected, were rather modest 
because the insufficient heat transfer area around the 
well, and the low heat conductivity of the 
surrounding rocks. The circumstances were 
analyzed by BOBOK et. al. (1991) and BOBOK and 
TÓTH (2002). In the following we shall introduce a 
more sophisticated mathematical model to describe 
the heat transfer mechanics of such a system, to 
predict its thermal behavior in order to avoid further 
inefficient and expensive experiments, and to show 
the range of the dry hole geothermal utilization. Our 
attention is focused to the annular heat transfer 
phenomenon. 

THE MATHEMATICAL MODEL 

The simplified model of a closed geothermal 
well is shown in the following. The casing is closed 
at the bottom without any perforations. The water 
flows downward through the annulus between the 
coaxial casing and tubing. Since the adjacent rock is 
warmer than the circulating water, the water 
temperature increases in the direction of the flow. 
An axisymmetric thermal inhomogeneity is 
developed around the well together with radial heat 
conduction toward the well. This is the heat supply 
of the system. The warmed up water flows upward 
through the tubing while its temperature slightly 
decreases, depending mainly on the heat conduction 
coefficient of the tubing. The system is analogous to 
a countercurrent heat exchanger. The main 
difference is the increasing adjacent rock 



temperature distribution with the depth. Thus the 
familiar methods for design of heat exchangers are 
not sufficient for this case. 

 

Figure. 1. Schematic drawing of control volume. 

Let’s consider the schematic drawing of the 
system in Figure 1. The geometric parameters are 
defined as shown in the figure. It is convenient to 
separate the system into two subsystems. One of 
them is the flowing fluid, in which the convective 
heat transfer is dominant. The other is the adjacent 
rock mass around the well, with a radial conductive 
heat flux. Thus the internal energy balance can be 
written for the two subsystems in a simplified form. 
Cylindrical coordinates are chosen. The radial 
coordinate r is measured from the axis of the coaxial 
cylinders, while z lies along the axis directed 
downward. The steady, axisymmetric turbulent flow 
is taken to be uniform at a cross-section, the 
velocity v and temperature T are cross-sectional 
average values. The t, c, and a indices refer to the 
tubing the casing and the annulus. Thus the balance 
equation of the internal energy for the flow across 
the tubing is: 

( )dz TTUR2dTcvR attititt
2
ti −π=πρ  (1)  (1) 

in which ρ is the density, c is the heat capacity of 
the fluid, Uti is the overall heat transfer coefficient 
referring the inner radius of the tubing. For the 
annular flow we get: 
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where Tb is the temperature at the borehole radius 
Rb, Uci is the overall heat transfer coefficient 
referring to the radius Rci. 

The unsteady axisymmetric heat flux around 
the well is equal to the heat flux through the casing. 
It can be expressed as: 

( ) ( )a0cici
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R TTUR2
tf

TT
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in which Q&  is the heat flux over the unit length 
cylinder, kR the heat conductivity of the rock. The 
undisturbed natural rock temperature is T∞, its 
distribution linear with depth 

T∞ = Ts + γz (4) 

where Ts the annual mean temperature at the surface 
γ is the geothermal gradient. The parameter f(t) is 
the transient heat conduction time function 
(RAMEY, 1962). 

SOLUTION 

Text  To solve the differential equation 
system it is necessary to know the overall heat 
transfer coefficients Uti and Uai. The determination 
of U1B and Uci needs the knowledge of the heat 
transfer coefficients hto and hci referring to the inner 
and outer surface of the annulus. 

The downflowing fluid in the annulus of the 
closed-loop geothermal system is heated from two 
directions independently: across the tubing and 
across the casing. These heat fluxes can be varied 
independently. It is obvious, that two independent 
heat transfer coefficients and two different Nusselt 
numbers are obtained on the inner and the outer wall 
of the annulus. To determine this heat transfer 
mechanism is more difficult than in a simple 
circular tube. 

LUNDBERG, et. al. (1963) have shown that 
it is possible to reduce the problem to four 
fundamental solutions in accordance to the different 
boundary conditions. These can be combined using 
superposition techniques to yield a solution for any 
desired boundary conditions. The present case can 
be interpreted as the superposition of two 
fundamental solutions. One of them is perfectly 
insulated. Another particular solution is obtained 
interchanging the two surfaces. The two particular 
solutions can be superimposed providing solution 
for the two-sided heating. 

Following the familiar semi-analytical 
treatment, we will employ the subscript t1 to 
designate conditions on the tubing surface when this 
surface alone is heated. The subscript c1 designates 
conditions on the casing surface when this surface 
alone is heated. The opposite surface in either case 
is insulated. The single subscript t or c refers to the 
conditions on the tubing or casing surfaces 
respectively under any conditions of simultaneous 
heating at both surfaces. 



For the case of constant heat rate per unit 
tube length it is possible to express NuT and Nuc for 
any heat flux ratio on the two surfaces in terms of 
Nut1 and Nuc1. Similarly can be derived two 

influence coefficients *
tθ  and *

cθ . Finally the 

following expressions are obtained: 
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KAYS and LEUNG (1963) carried out 
experiments in annuli using air for various values of 
radius ratio with constant heat rate per unit tube 
length but with various heat flux ratios at the inner 
and outer surfaces including the two limited cases of 
only one side is heated. They then obtained a 
solution in tabulated form for constant heat rate 
under fully developed turbulent flow based upon 
empirical data. The results are presented in the form 

Nut1 and Nuc1 and the two influence coefficients *
tθ  

and *
cθ . These are given in tables for a wide range 

of Reynolds and Prandtl numbers and for radius 
ratios. These results are then directly applicable to 
Eqs. (5) and (6). Data is widened by some of our 
experimental results obtaining with water for 4 ½” 
and 7” tubing and casing diameters. The heat flux 
qc1 can be obtained from the temperature 
distribution of an injection well. As it is known 
(Ramey, 1962) the bottomhole temperature of the 
injected water is 
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The overall heat flow into the downflowing 
water is 

( )ibh TTcmQ −= &&  (8) 

Thus the integral main of the heat flux per 
unit length of casing 
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In the second case the casing is perfectly 
insulated, the annular flow is heated across the 
tubing only. The mass flow rates in the tubing and 

in the annulus are the same. Equations (1) and (2) 
lead to the relation 
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Derivating Eq.(1) by z, we obtain 
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comparing Eqs. (1) and (2) it is obtained 
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Thus the general solutions of Eqs. (12a and 12b) 

Tt = K1z + K2 (13) 

Ta = K1z + K3 (14) 

The boundary conditions are the following: 

if z =0 Ta=Ti,  

if z =H Tt=Ta and 

( )attiti1 TTUR2K −π=  

Solving the obtained equation system, finally the 
heat flux across the tubing wall 
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The expressions (9) and (15) can be 
substituted can be substituted into (5) and (6). Based 
on experimental data the particular Nusselt numbers 
can be calculated by the following formulas: 

5,08,0
1t PrRe016,0Nu ⋅=

5,08,0
1c PrRe018,0Nu ⋅⋅=  (16) 

58,0078,0*
T PrRe410,0 −− ⋅⋅=θ  

58,0078,0*
T PrRe325,0 −− ⋅⋅=θ  (17) 

Determining the Nusselt numbers on both 
surfaces the heat transfer coefficients on the walls of 
the annulus are 



0t

t
t R2

Nuk
h

⋅=  and 
ci

c
c R2

kNu
h =  (18) 

Knowing the ht0 and hci values, the overall 
heat transfer coefficients Uti and Uci can be 
determined as 
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Combining the equations (1), (2) and (3) we obtain 
two simple differential equations are obtained:  
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Combining the equations (21) and (23), a second-
order inhomogeneous differential equation is 
obtained. 
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In a similar way we can obtain for the flow 
through the tubing: 
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These equations can be solved easily in the 
form 
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where x1 and x2 are the roots of the characteristic 
equations of (38) and (39), i.e. 
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The constants of integration in (40) and (41) 
can be determined satisfying the following 
boundary conditions 

1. At z =0, Ta = Ti, where Ti is the 
temperature of the cooled injected water 

2. At z = H, Ta = Tt, the bottomhole 
temperatures in the annulus and in the 
tubing are the same. 

3. At z = H, 0
dz

dTt = , the depth derivative 

of the tubing temperature at the 
bottomhole is zero. It is the consequence 
of the equation (23). 

4. The energy increase of the circulating 
fluid is equal to the integral of the heat 
flux across the borehole wall between 
the bottom and the surface: 

( ) ( )dz zqTTcm
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where Tout is the temperature of the outflowing 
water at the wellhead. 

The obtained equations from the boundary 
conditions are 
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After solving the equation system for the 
constants C1, C2, K2, K2, the temperature 
distributions in the annulus and in the tubing can be 
determined by the equations (40) and (41). 

The thermal power can be calculated using 
the equation 

( )iwh TTcmP −⋅= &  (35) 

where Twh is the temperature of the outflowing 
water. 

RESULTS  

The temperature distribution at the annulus and the 
tubing flow is determined by Eq.(27) and (28). The 
equations show that many variables influence the 
temperature distributions and the attainable exit 
temperature at the wellhead. The solution makes 
possible to take into consideration the variable 
influencing the temperature distribution, the exit 
temperature and the thermal power of the 
system. The variables significantly impact 
temperature distribution are: the depth of the well, 
mass flow rate, time of operation, inlet temperature, 
the geometry of the well completion, thermal 
insulation of the tubing, the overall heat transfer 
coefficient, thermal conductivities of the 
surrounding rocks, and the geothermal gradient. It is 
obvious as deep the well, as high the bottomhole 
temperature. 
It can be recognized, that the bottomhole 
temperature depends strongly on the mass flow rate. 
Our first example is the temperature distribution of 
a closed-loop well having the main data: 
The depth of the well is 2000m, the casing is 7”, the 
tubing is 4 ½”. The tubing is a steel pipe with 
polypropylene heat insulation by 0,2 W/moC. The 
heat conductivity of the rock is 850 J/kgoC. The 
inlet water temperature is 20 oC. The surface earth 
temperature is 10,5oC. Geothermal gradient is 
0,05oC/m. The math flow rates are 5, 10 and 15 
kg/s. The average heat conductivity of the rock is 
2,5 W/moC. 
Temperature distributions obtained different mass 
flow rates is shown Figure 2. Temperature 
difference between the upflowing and the 
downflowing water is decreasing as the mass flow 
rate is increasing. 
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Figure.2. Temperature distributions. 
 
The quality of the heat insulation of the tubing has a 
very important role. Applying a vacuum-insulated 
tubing (VIT) with an extreme low heat conductivity 
(k=0,006W/moC) the upflowing water temperature 
is almost constant. In this case the casing diameter 
is 9 5/8”, the inner tube diameter is 4 ½”, the outer 
is 5 ½”. Effect of insulation is shown in Figure 3. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15 20 25 30 35 40T[oC]

H[m]

Tc,  5 kg/s

Tt,  10 kg/s

Tc,  15 kg/s

 
Figure.3. Temperature distributions at Vacuum 

Insulated Tubing kVIT=0,006 W/moC. 
 
The temperature distribution both in the annulus and 
in the tubing depends strongly on operation time of 
the system. As the rate of heat transfer between the 
wellbore and the surrounding rock diminishes with 
increasing operation time, tamcrature profiles both 
in the annulus and the tubing tend to an equilibrium-
distribution.  
One very interesting aspect considering the exit 
temperatures at the wellhead depending on the 
operation time , while mass flow rate is the 



parameter of the different curves. There is of a short 
initial period of important temperature decrease. 
Later the rate of change will be smaller. Finally 
each outflowing water temperatures tend to an 
equilibrium steady walue, as it is shown in Figure 4. 
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Figure. 4. Outflowing water temperature devrease 

vs. time 
 
Consider two uniform borehole heat exchangers. 
The only difference between them is in their 
different tubing material. One of them is made of 
polypropylene, while the other is a vacuum 
insulated tube (VIT). Commonly the downflowing 
fluid in the annulus is heated both across the casing 
and the tubing wall. The heat loss of the upflowing 
fluid in the tubing appears as a heat source for the 
annular flow. The almost perfectly insulated VIT 
terminates the heat transfer across the tubing wall. 
In this case the annular flow gains heat across the 
casing only. Thus the bottomhole temperature is 
lower than that is obtained using polypropylene 
tubing. In the other hand the outflowing water 
temperature at the upper end of the VIT is higher 
than the wellhead temperature of the polypropylene 
tubing (PPT). The thermal power is slightly greater 
applying VIT, because the annular temperature is 
lower than PPT. The temperature difference 
between the undisturbed rock and the annulus is 
greater using VIT. The greater temperature 
difference induces a greater heat flux toward the 
well, hence the produced thermal power also 
increases. It is shown in Figure 5. It seems 
unnecessary to apply the expensive VIT. 
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Figure. 5. Comparison of temperature distributions 
 

The influence of the mass flow rate and the 
operation time on the thermal power of the system 
can be seen in Figure 6. The thermal power is 
plotted against the production time. The mass flow 
rate is the parameter of the family of the curves. For 
small mass flow rates the effect of the time is very 
small. For higher flow rates the change with time is 
important. While the growth of the mass flow rate 
has a substantial influence on the thermal power in 
the initial stage of production, as the operation time 
increases the differences of the power curves caused 
by the different mass flow rates decrease. The 
curves converge, especially for higher flow rates as 
they tend to an equilibrium state. It can be 
recognized that there exist an upper limit of the flow 
rate over which the equilibrium thermal power is 
not increasable. This thermal power determines the 
sustainability of the system. It is shown in Figure 6. 
Heat conduction toward the well cannot carry more 
heat than this upper limit. Heat conductivity of the 
adjacent rock mass restricts the exploitable thermal 
power by a single closed-loop geothermal well. The 
sustainable power production of such a system can 
be determined knowing the depth and the 
completion of the well, the way of heat insulation of 
the tubing, the local geothermal gradient, and the 
material properties of the rocks around the well.  
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Figure. 6. Thermal power decrease vs. time 
 
It can be seen that the temperature and the thermal 
power of such a closed-loop system is rather 
moderate. The cause of this is, the small heat 
transfer area and the low heat conductivity of the 
rocks. It seems only small-scale utilizations can be 
based on this clean technology, even applying heat 
pumps as well. 
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