Nanosegregation in Na₂C₆₀ G. Klupp*, K. Kamarás*, N. M. Nemes[†], P. Matus*, D. Quintavalle**, L. F. Kiss*, É. Kováts*, S. Pekker* and A. Jánossy** *Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary †Instituto de Ciencia de Materiales de Madrid, Cantoblanco, 28049 Madrid, Spain **Department of Experimental Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, Hungary H-1111 #### Abstract. There is continuous interest in the nature of alkali metal fullerides containing C_{60}^{4-} and C_{60}^{2-} , because these compounds are believed to be nonmagnetic Mott–Jahn–Teller insulators. This idea could be verified in the case of A_4C_{60} , but Na_2C_{60} is more controversial. By comparing the results of infrared spectroscopy and X-ray diffraction, we found that Na_2C_{60} is segregated into 3-10 nm large regions. The two main phases of the material are insulating C_{60} and metallic Na_3C_{60} . We found by neutron scattering that the diffusion of sodium ions becomes faster on heating. Above 470 K Na_2C_{60} is homogeneous and we show IR spectroscopic evidence of a Jahn–Teller distorted C_{60}^{2-} anion. ### INTRODUCTION The proposed [1] Mott–Jahn–Teller ground state of A_4C_{60} (A = K, Rb, Cs) fullerides was experimentally verified by EELS [2], NMR [3] and infrared (IR) [4] spectroscopies. Theory predicts a similar effect in fullerides with C_{60}^{2-} ions, the electron-hole inverted analogue of C_{60}^{4-} . Na₂C₆₀ is the only known alkali-metal fulleride that is believed to contain the C_{60}^{2-} dianion and there were several attempts to verify the Mott–Jahn–Teller insulating ground state in this compound as well. Experimental results were not unambiguous [3], e.g. a very weak metallic behavior was found in Na₂C₆₀, but it was concluded that K_4C_{60} and Na₂C₆₀ have essentially the same Mott–Jahn–Teller ground state. In contrast, our infrared, X-ray and neutron scattering experiments indicate that Na_2C_{60} is not a good model system to investigate the ground state of A_2C_{60} fullerides. Above 470 K Na_2C_{60} is homogeneous and at high temperatures we find indication for Jahn–Teller distorted C_{60}^{2-} ions. The IR spectroscopy and X-ray diffraction results at ambient temperatures show, however, a nanosegregation of Na_2C_{60} into two phases. # **EXPERIMENTAL** Na_2C_{60} was obtained by the reaction of stoichiometric amounts of Na and C_{60} at high temperature in a stainless steel capsule. The typical annealing sequence was first 23 days **FIGURE 1.** The IR spectra of Na₂C₆₀ at 300 K and at 485 K. At high temperature the absorption of the $T_{1u}(4)$ mode could be fitted with two Lorentzians centered at the indicated positions, corresponding to C_{60}^2 , while at 300 K lines corresponding to C_{60} and C_{60}^3 appear. at 350 $^{\circ}$ C and then 7 days at 450 $^{\circ}$ C. To homogenize the samples, we reground them about once every five days. Due to the air sensitivity of Na₂C₆₀, the reaction and the handling of the samples were carried out under inert atmosphere. The sample was characterized by X-ray diffraction, which showed the material to be single phase $Pa\bar{3}$ (simple cubic) Na₂C₆₀. This result is identical to those in the literature [5]. Infrared measurements were performed on pressed KBr pellets in a Bruker IFS 28 FTIR instrument in a cryostat under dynamic vacuum. For neutron scattering measurements $1.2~{\rm g}$ of ${\rm Na_2C_{60}}$ powder was placed in an annular aluminum sample holder. Temperature dependent elastic fixed-window scans were taken on the High Flux Backscattering Spectrometer of the NIST Center for Neutron Scattering [6]. In this measurement, the incident neutron energy was fixed at $2.08~{\rm meV}$ and scattering processes were detected near the elastic line within the $1~{\mu}{\rm eV}$ energy window of the resolution of the instrument[7]. Thus when a dynamic process became faster than the corresponding timescale of $0.8~{\rm ns}$, the measured intensity decreased. ### RESULTS AND DISCUSSION The charge state of C_{60} anions can be evaluated from the quasilinear relationship between the charge state and the line position of the $T_{1u}(4)$ IR mode [8]. We expect from this relation a line of C_{60}^{2-} at about 1380 cm $^{-1}$. Contrary to this expectation, there is no such line in the measured 300 K spectrum (Fig. 1) instead lines characteristic of neutral C_{60} and of C_{60}^{3-} appear. In contrast to the narrow line of C_{60} , that of C_{60}^{3-} is smeared into a broad line. This kind of line broadening is common for A_3C_{60} phases and is caused by metallic electrons. The metallic character of an aggregate as small as a few C_{60}^{3-} mole- **FIGURE 2.** Elastic fixed window scan intensity of Na₂C₆₀ at $Q = 1 \mathring{A}^{-1}$. cules is sufficient to broaden the IR line. Thus C_{60}^{3-} and C_{60} are not homogeneously distributed in the crystal lattice. The observation of segregated Na_3C_{60} and C_{60} regions in the material by IR spectroscopy apparently contradicts the observation of a single phase by X-ray diffraction. However, if the size of segregated regions is smaller than about 10 nm, then X-ray diffraction cannot resolve the two phases but detects their average. Thus from the comparison of IR and X-ray diffraction measurements we conclude that Na_2C_{60} is nanosegregated at ambient temperatures. The amount of neutral C_{60} in the material could be determined by its selective extraction with toluene. The concentration of the obtained C_{60} solution was measured with high-pressure liquid chromatography (HPLC). From this we could estimate the C_{60} content to be 26-33 % C_{60} in the nominally Na_2C_{60} material. Heating the material to high temperatures proves that the stoichiometry of the sample is indeed Na₂C₆₀ and that at high temperatures there is no neutral C₆₀ left. The lines of neutral C₆₀ disappear above 470 K, and a pair of lines appears at 1369 cm⁻¹ and 1394 cm⁻¹ (Fig. 1). This line pair is at about the expected frequency for the T_{1u}(4) line of C₆₀². Thus at room temperature the C₆₀ content is not material left unreacted during the high temperature synthesis, but rather the product of the reaction $3C_{60}^{2-} \longrightarrow C_{60} + 2C_{60}^{3-}$ taking place on cooling after preparation. This reaction is reversible on heating and cooling, though a total retransformation at ambient temperature following treatment at high temperature is reached only after about two weeks. high temperature is reached only after about two weeks. The line pair of C_{60}^{2-} is the lower frequency analogue of the line pair of C_{60}^{4-} [4], indicating that C_{60}^{2-} is distorted to a D_{3d} or a D_{5d} geometry due to the molecular Jahn–Teller effect [4]. The synproportion reaction on heating ought to be accompanied by diffusion of Na ions in the lattice. This could be proven by neutron scattering. Figure 2 shows the temperature dependence of the elastic line at $Q=1\mathring{A}^{-1}$. The intensity shows a Debye-Waller-type overall decrease, but has an unusual drop near 400 K. We interpret this with the increase of the jump diffusion of sodium ions between tetrahedral and off-centered octahedral sites. Above 400 K it becomes fast enough to be resolved by the instrument and the incoherent scattering contribution of the sodium ions is removed from the fixed-window intensity. The different transition temperatures found in the IR and neutron measurements may be due to the different timescales. #### CONCLUSION We propose that Na_2C_{60} is nanosegregated at room temperature. The two main phases of Na_2C_{60} are insulating C_{60} and metallic Na_3C_{60} . The size of the homogeneous regions is about 3-10 nm. The segregation disappears on heating when the jump diffusion of sodium ions becomes faster. A similar segregated phase, the "intermediate phase" is known for KC_{60} [9]. In Na_2C_{60} at high temperatures, the sodium distribution is homogeneous and a Jahn–Teller distortion of C_{60}^{2-} ions is observed. # **ACKNOWLEDGMENTS** This work was supported by OTKA grants T 034198, T 049338, T 046700 and T 043255. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0086210. We acknowledge the support of the National Institute of Standards and Technology, U. S. Department of Commerce, in providing the neutron research facilities used in this work. #### REFERENCES - 1. Fabrizio, M., and Tosatti, E., Phys. Rev. B, 55, 13465 (1997). - 2. Knupfer, M., and Fink, J., Phys. Rev. Lett., 79, 2714 (1997). - 3. Brouet, V., Alloul, H., Garaj, S., and Forró, L., Phys. Rev. B, 66, 155122 (2002). - Kamarás, K., Klupp, G., Tanner, D. B., Hebard, A. F., Nemes, N. M., and Fischer, J. E., *Phys. Rev. B*, 65, 052103 (2002). - 5. Yildirim, T., Hong, S., Harris, A. B., and Mele, E. J., Phys. Rev. B, 48, 12262 (1993). - 6. Meyer, A., Dimeo, R. M., Gehring, P. M., and Neumann, D. A., Rev. Sci. Instrum., 74, 2759 (2003). - 7. Becker, T., and Smith, J. C., Phys. Rev. E, 67, 021904 (2003). - 8. Pichler, T., Winkler, R., and Kuzmany, H., Phys. Rev. B, 49, 15879 (1994). - 9. Faigel, G., Bortel, G., Tegze, M., Gránásy, L., Pekker, S., Oszlányi, G., Chauvet, O., Baumgartner, G., Forro, L., Stephens, P. W., Mihály, G., and Jánossy, A., *Phys. Rev. B*, **52**, 3199 (1995).