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Abstract: Let t be a positive real number. A graph is called ¢-tough, if the removal of any
cutset S leaves at most |S|/t components. The toughness of a graph is the largest ¢ for which
the graph is t-tough. A graph is minimally ¢-tough, if the toughness of the graph is ¢t and
the deletion of any edge from the graph decreases the toughness. The complexity class DP
is the set of all languages that can be expressed as the intersection of a language in NP and
a language in coNP. We prove that recognizing minimally ¢-tough graphs is DP-complete for
any positive integer ¢ and for any positive rational number ¢ < 1/2.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let w(G) denote the number of
components and «(G) denote the independence number. For a graph G and a vertex set V C V(G), let
G[V] denote the subgraph of G induced by V.

The complexity class DP was introduced by C. H. Papadimitriou and M. Yannakakis [4].

Definition 1 A language L is in the class DP if there exist two languages L1 € NP and Ly € coNP such
that L = L1 N L2.

We mention that DP = NP NcoNP, if NP # coNP. Moreover, NP UcoNP C DP. A language is called
DP-hard if all problems in DP can be reduced to it in polynomial time. A language is DP-complete if it
is in DP and it is DP-hard.
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A critical-type DP-complete problem is CRITICALCLIQUE [5], in our proofs we use an equivalent form
of it, a-CRITICAL.

CriticalClique

Instance: a graph G and a positive integer k.

Question: is it true that G has no clique of size k, but adding any missing edge e to G, the resulting
graph G + e has a clique of size k7

By taking the complement of the graph, we can obtain a-CRITICAL from CRITICALCLIQUE.

Definition 2 A graph G is called a-critical, if a(G — e) > a(G) for all e € E(G).

a-Critical
Instance: a graph G and a positive integer k.
Question: is it true that a(G) < k, but a(G — e) > k for any edge e € E(G)?

Since a graph is clique-critical if and only if its complement is «-critical, a-CRITICAL is also DP-
complete.

Corollary 3 a-CRITICAL s DP-complete.
The notion of toughness was introduced by Chvétal [2].

Definition 4 Let t be a positive real number. A graph G is called t-tough, if
S
w(G-29)< |t—|
for any cutset S of G (i.e. for any S with w(G — S) > 1). The toughness of G, denoted by 7(G), is the
largest t for which G is t-tough, taking 7(K,) = oo for all n > 1.
We say that a cutset S C V(G) is a tough set if w(G — S) = |S|/7(G).
For all positive rational number ¢t we can define a separate problem:

t-Tough
Instance: a graph G,
Question: is it true that 7(G) > ¢?

Bauer et al. proved the following.
Theorem 5 ([1]) For any positive rational number t, t--TOUGH is coNP-complete.

The critical form of this problem is minimally toughness.
Definition 6 A graph G is minimally t-tough, if 7(G) =t and 7(G — e) <t for all e € E(G).

Given ¢t we define:

Min-t-Tough
Instance: a graph G,
Question: is it true that G is minimally ¢-tough?

Our main result is the following.

Theorem 7 MIN-t-TOUGH is DP-complete for any positive integer t and for any positive rational number
t<1/2.

First we prove this theorem for ¢t = 1, then we generalize that proof for positive integers, and finally
we prove it for any positive rational number ¢ < 1/2.



2 Preliminaries
In this section we prove some useful lemmas.

Proposition 8 Let G be a connected noncomplete graph on n vertices. Then 7(G) € Q', and if 7(G) =
a/b, where a,b are positive integers and (a,b) =1, then 1 < a,b<n— 1.

PRrROOF: By definition,

— m 5]
(@) = SCV(G) w(G - 9)

cutset

for a noncomplete graph G. Since G is connected and noncomplete, 1 < |S| < n — 2 and since S is a
cutset, 2 <w(G—-S)<n-1. O

Corollary 9 Let G and H be two connected noncomplete graphs on n vertices. If 7(G) # 7(H), then
1
(@) ()] > .

Claim 10 For every positive rational number t, MIN-t-TOUGH € DP.

ProOF: For any positive rational number ¢,

MiN-t-ToucH = {G graph | 7(G) =t and 7(G —¢) <t for all e € E(G)} =
— {G graph | 7(G) = t} N1 {G graph | 7(G) < 1}
N{G graph | 7(G —e) < t for all e € E(G)}.

Let
L1 ={G graph | 7(G —¢) < t for all e € E(G)},

L1 ={G graph | 7(G) < t}

and
Ly = {G graph | 7(G) > t}.

Ly € coNP, a witness is a cutset S C V(G) whose removal leaves more than | S|/t components. L, ; € NP,
the witness is a set of cutsets: S. C V(@) for each edge e whose removal leaves more than |S.|/t
components.

Now we show that L; 2 € NP, i.e. we can express L; 5 in a form of

Lio = {G graph | 7(G) < t + ¢},

which belongs to NP. Let a,b be positive integers such that ¢ = a/b and (a,b) = 1, and let G be an
arbitrary graph on n vertices. If G is disconnected, then 7(G) = 0, and if G is complete, then 7(G) = oo,
so in both cases G is not minimally ¢-tough. By Proposition 8, if 1 < a,b < n — 1 does not hold, then G
is also not minimally ¢-tough. So we can assume that ¢t = a/b, where a,b are positive integers, (a,b) =1
and 1 < a,b <n— 1. With this assumption

Lia = (G wraph | 7(6) < 0) = {6 graph | 7(G) < ¢+

Vi)

SO L1,2 € NP.
Since L11 N Lio € NP, Ly € coNP and MIN-t-TOUGH = (L1 N L1 2) N Ly, we can conclude that
Min-t-ToucH € DP. O



Claim 11 Let t be a positive rational number and G a minimally t-tough graph. For every edge e of G,
1. the edge e is a bridge in G, or
2. there exists a vertex set S = S(e) C V(G) with

)

and w((G—e)—5) > 151

w(G-9)< T

- ‘

and the edge e is a bridge in G — S.
In the first case, we define S = S(e) = 0.

PROOF: Let e be an arbitrary edge of G, which is not a bridge. Since G is minimally ¢-tough, 7(G — e) < t.
So there exists a cutset S = S(e) C V(G —e) = V(G) in G — e satisfying w((G — e) — S) > |S|/t. On
the other hand, 7(G) = t, so w(G — S) < |S|/t. This is only possible if e connects two components of
(G—e)—S. O

Finally we cite a Lemma that our proof relies on.

Lemma 12 (Problem 14 of 8 in [3]) If we replace a vertex of an a-critical graph with a clique, and
connect every neighbor of the original vertex with every vertex in the clique, then the resulting graph is
still a-critical.

3 Recognizing minimally 1-tough graphs
To show that MIN-1-TouGH is DP-hard, we reduce a-CRITICAL to it.

Theorem 13 MIN-1-TOUGH is DP-complete.

ProOOF: In Claim 10 we have already proved that MIN-1-ToucH € DP.
Let G be an arbitrary connected graph on the vertices vy, ...,v,. Let G, be defined as follows. It
will be easy to see that it can be constructed from G in polynomial time. For all i € [n], let

‘/i = {Ui71,’l)i’2, N >Ui,a}

and place a clique on the vertices of V;. For all ¢,j € [n], if v;v; € E(G), then place a complete bipartite
graph on (V;;V;). For all ¢ € [n] and for all j € [a] add the vertex w; ; to the graph and connect it to
Vi, j- Let

and
U={u;|i€ln]jela]}.

Add the vertex set
W = {wl,...,wa}

to the graph and for all j € [o] connect w; to vy j,...,Vn ;.



Figure 1: The graph G,.

We need to prove that G is a-critical with «(G) = « if and only if G, is minimally 1-tough. First we
prove the following lemma.

Lemma 14 Let G be a graph with a(G) < a. Then G, is 1-tough.

PROOF: Let S C V(G,) be a cutset. We show that w(G, — S) < |S|.

Case 1: W C S. If a vertex of U has only one neighbor in V(G4 ) \ S, then we can assume that this
vertex is not in S. Then there are two types of components in G, — S: isolated vertices from U and
components containing at least one vertex from V. There are at most «(G) components of the second
type and (exactly) |[VN.S| = |S| — « components of the first type. Thus w(G,—S) < |S|—a+a(G) < |S|.

Case 2: W ¢ S. First, we make two convenient assumptions for S.
(1) UnS=0.

It is easy to see that if u; ; € S, then we can assume that v; ; € S. Now there are two cases.
Case 2.1: v; j is not isolated in G4 — S. Then we can consider S” = (S'\ {u;;}) U{v; ;} instead of S.
Case 2.2: v, ; is isolated in G — S. Since there are no isolated vertices in G, there exists k € [n] such
that v;ur, € E(G). Then vy ; € S, so uy; ¢ S, which means that w; is not isolated in G, — S, so we can
consider S = (S'\ {w; ;}) U {w;} instead of S.

(2) For all i € [n], either V; C S or V; NS = 0.

After the assumption (1), assume that only a proper subset of V; is contained in S. Let v be an element
of this subset. We can consider the cutset S\ {v} instead of S, since this decreases the number of
components by at most one. So we can repeat this procedure until V; NS = (.

So in G, — S there are isolated vertices from U and one more component containing the remaining
vertices of W and V. So there are less than |V N S| isolated vertices, thus

Ww(Ga —S) < VNS <IS].

So G, is 1-tough. O
We show that G is a-critical with a(G) = « if and only if G, is minimally 1-tough.



Let us assume that G is a-critical with «(G) = «. So by Lemma 14 G,, is 1-tough. Let e € E(G,)
be an arbitrary edge. If e has an endpoint in U, then this endpoint has degree 2, so 7(G, —e) < 1. If e
does not have an endpoint in U, then it connects two vertices of V. By Lemma 12 G,[V] is a-critical,
so in G,[V] — e there exists an independent vertex set I of size «(G) + 1. Let S = (V' \I) UW. Then
1S|=(VI-a(G)—1)+a=|V]-1and w((Ga —€) = S) = |V], s0 7(Ga —€) < 1.

Let us assume that G is not a-critical with a(G) = a.

Case 1: a(G@) > a. Let I be an independent vertex set of size a(G) in G, [V] and let S = (V\T)UW.
Then |S| = (V| — a(G)) + a < |V| and w(Go — S) = |V, so 7(G4) < 1, which means that G, is not
minimally 1-tough.

Case 2: a(G) < a. Since G is not a-critical there exists an edge e € E(G) such that a(G —e) < a.
By Lemma 14 (G — e), is 1-tough, but we can obtain (G — €),, from G, by edge-deletion, which means
that G is not minimally 1-tough. O

4 Further results

Theorem 15 For every positive integer t, MIN-t-TOUGH is DP-complete.

To prove this more general theorem, first we generalize the construction on Figure 1. We follow a
similar argument to show that this construction has the required properties. However, due to the more
complicated construction, the proof is harder.

The case when ¢t < 1/2 is also covered in the paper.

Theorem 16 For every positive rational number t = a/b < 1/2, MIN-t-TOUGH 1is DP-complete.

It is shown that MIN-1-TOUGH can be reduced to this problem. The construction and the proof uses
different ideas than the previous proofs.

We were not able to prove the DP-completeness for the remaining ¢ values, but we make the following
conjecture.

Conjecture 17 MIN-t-TOUGH is DP-complete for any positive rational number t.
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