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Abstract 

The theories and expressions of electrochemistry have usually been derived by assuming some 

simple electrode geometry ensuring homogeneous current distribution along the surface. This is 

often not the case for practical electrodes: surface roughness, porosity and non-uniform surface 

activity cause current density inhomogeneities which in turn make the overall electrochemical 

behaviour complicated. One possible way of taking geometrical irregularities into account is to 

model the surfaces by fractals, whose most obvious feature is their blow-up symmetry. A number of 

theories exist for various electrochemical situations involving electrodes of irregular, fractal, 

geometries; two groups of are important as archetypes. The subject of the first is the frequency 

dependence of the impedance of a system comprised of a capacitive electrode of fractal geometry 

and a resistive electrolyte. The second is the time-dependence of the diffusional flux to an electrode 

of fractal geometry following an electrode potential jump making the electrode initially inactive to 

become reactive. The resulting equations, respectively for the frequency- and time-functions, are of 

power-law functions.  
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Introduction 

Electrodes – just as other objects of Nature – are often of irregular geometry; which cannot be 

modelled by some simple shapes like a square or a sphere etc. The shape of these objects can often 

be approximated as fractals [1]. Fractals are geometrical objects whose most obvious feature is their 

blow-up symmetry: when zooming in, smaller and smaller features show up; and the details are 

similar to the whole: scale invariance or self-similarity is observed at least in some sense. Fractal 

geometry has provided an efficient tool to treat problems arising from irregular geometry, as shown 

by many examples in a number of branches of science, including two subjects of electrochemistry: 

(i) Electrodes of time-invariant, irregular geometry like ones with rough or partially active surfaces, 

porous bodies behave differently than those with uniform planar or spherical surfaces; (ii) Metal 

deposition and metal dissolution often changes surface geometry yielding branched-needles like 

dendritic structures rather than smooth layers, and creating caves, pits of irregular geometry, 

respectively [2]. These latter effects are much more complicated than the former ones, the published 

results are much more scattered hence these are beyond our present scope. 

 

Fractals 

Consider the classical concepts of geometry: the point, line segment, square and cube. Their DE 

Euclidean dimension is 0,1,2, and 3, respectively. When they are magnified by a factor of β, their 

extent is magnified by 1, β
1
, β

2
, and β

3
, respectively. In general, the extent – named as Hausdorff 

measure, MH, of a classical object scales with 𝛽𝐷𝐸.  

Consider an archetype-shape of fractal geometry, the von-Koch curve (Fig.1). This is a line of 

infinite length; and as of a line, its area is zero. Upon magnification by a factor of β=1/k, (with 

1/4<k<1/2) its length increases by a factor of 4; that is, by applying the above-mentioned scaling 

law of MH, β
d
=4. Hence the exponent d=log(4) / log(1/k) is a non-integer number between 1 and 2. 
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In general, also for other objects of fractal geometry, the exponent d, might be in the full range of 0 

to 3. Depending on the context, d is called as Hausdorff, metric, similarity or fractal dimension; in 

what follows it will be denoted as Df.  

For some DE - dimensional classical shape, the extent (volume, area or length) can be determined 

by covering or filling the object with spheres of diameter ε; their number is N(ε). The  

 𝑀 =  𝑁(ε) ∗ 𝜀𝑑 (1)  

product, provided that d has appropriately been chosen, for sufficiently small ε has a finite, nonzero 

value. Then, MH=M. Were d chosen other than DE (e.g. we wanted to determine area by using 

length or volume standards that is one or three dimensional spheres) then infinite or zero M value 

would be got.  

Fractals are the objects for which Eq. 1 prevails with a 0<d<DE exponent (rather than d=DE). 

Carrying out the measurement procedure described above, analogously, MH has finite positive value 

only if a certain, appropriate (usually non-integer) d has been chosen; smaller or larger d yields 

infinite and zero MH, respectively. The metric or Hausdorff dimension is defined by this 

measurement procedure and we can identify it as the exponent d of Eq.1. As noted earlier, the 

metric or  Hausdorff dimension of fractals is often called as fractal dimension, Df.  

From the present point of view the very important consequence of the above definition of fractals is 

the following: Lets measure the surface of a fractal object of 1< Df < DE by covering it with N 

spheres of DE dimension of diameter ε. ε represents the resolution of the measurement resolution, 

hence it is often called as “yardstick length”. The area and the Hausdorff measure respectively are  

𝐴(ε) = 𝑁(ε) ε2 and 𝑀H = 𝑁(ε) ε𝐷f , hence the yardstick-length dependence of the measured area is  

 

 𝐴(ε) =  𝑀H ε2−𝐷f (2a) 

or  

 𝑙og[𝐴(ε)] =  const – (2 −  𝐷f) ∙ log(ε).  (2b)  

 

 
Fig.1: (a). Steps of construction of a von-Koch-curve. In the first step a line is divided to three parts 

of length k, 1-2k, and k; the middle part is removed and two lines of lengths k are drawn instead, in 

a triangular form. In the next and subsequent steps the procedure is repeated for the successively 

smaller line portions. Note that after n steps the total length of the curve is (4k)
n
 times of that of the 

original; after infinite steps the total length is infinite. (b) Koch curves of varied Df (k=0.257, 0.333, 

and 0.396 in increasing order of Df.) Note that apart their full sizes, no characteristic length of the 

structures can be identified - this is associated with that the size-distribution of the features of the 

curves is a power-law function. 
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Many fractal structures and their properties are discussed in details in Ref. [1]. Here only a few 

aspects need to be mentioned: Fractality is in close connection with self-similarity or scale-

invariance, that is, details being similar to large parts show up upon magnification. This type of 

symmetry might appear in certain or in all directions, accordingly the fractal is self-affine or self-

similar. The repetition of the similar units might follow a random or a regular pattern, as in Fig.1; in 

the former case we have a random fractal, for which the blow-up-symmetry prevails in an average 

sense. Finally, certain shapes might be fractal in a finite size range only, bordered by the so-called 

cut-offs.  

Object, whose geometry can be readily approximated by fractals – at least in a certain size range - 

are fairly frequent in Nature.  

 

Electrochemical processes on irregular surfaces 

There exist a number of phenomena in the area of electrode kinetics which are overcomplicated due 

to the effect that the points of the surface are not equally accessible for the participants of the 

processes. Even if the interfacial properties are the same at each surface points, the irregular 

electrode geometries often yield non-uniformity of the potential distributions and/or mass transport 

fluxes along the interfaces. These two effects can be understood through the analyses of simple, 

fundamental, related cases of (a) what is the impedance of an electrode in the complete absence of 

Faradaic reactions and (b) what is the time-dependence of a charge transfer reaction following an 

electrode potential jump. The answers are well-known for the cases of electrodes of planar or other 

simple geometries; however they are not simple if the electrode surface is rough, porous or irregular 

otherwise. These types of surfaces can be modelled by fractals. 

 

a. Impedance of a capacitive electrode of fractal geometry 

In general, if there is no Faradaic-reaction proceeding on an electrode, then the electric behaviour is 

governed jointly by that of the electrode/electrolyte interface and the electrolyte bulk. The former is 

capacitive due to the electrochemical double layer, the latter is resistive because of ions’ 

conductance. Hence, in the simplest case, in a cell with parallelly placed planar electrodes, the 

current density is uniform along the interface; the parts of the electrodes are equally accessible to 

the current; the overall electrode impedance is a simple sum of the impedances of the capacitive 

interface and of the resistive electrolyte. This case is an exception rather than a rule. Usually, due to 

geometry reasons the electrode surfaces are not equally accessible for the current; the effective 

solution resistance differs along the electrode surface; the overall impedance will be a complicated 

complex function of the cell geometry parameters. This function can be analytically calculated for 

simple geometries like a disk embedded in an insulating plane. There exist cases when the electrode 

models’ symmetry gives us a clue to predict that the cell impedance is a power-law function of 

frequency (a “constant phase element”). According to the theories this is the case when the 

electrode is uniformly porous (whose structure exhibits a translational symmetry) or fractal (i.e. has 

a blow-up symmetry). We note, however, that this constant phase element behaviour is usually 

completely masked by other effects of different, physico-chemical origin (which often exhibit also 

power-law frequency dependences [3]). 

 

b. Time dependence of the diffusion-limited current towards a fractal interface 

Consider a so-called Cottrell-experiment: an electrode is immersed in a homogeneous, unstirred 

solution: a highly conducting electrolyte containing some redox species. For the sake of simplicity 

let this species the oxidizable R of cb bulk concetration. Initially the electrode is inert, no oxidation 

proceeds on it, hence no current flows. From the t=0 moment onward, the potential is set more 

positive at which R is oxidized with high rate, due to which a current starts to flow. The high 

oxidation rate causes that all oxidizable R molecules at the close vicinity of the electrode vanish 

(the surface concentration cs=0), and the concentration is lessened in a usually successively 

broadening zone called “depletion zone” or “diffusion layer”. The current density at any point of the 

electrode is determined by the local diffusional flux of R, governed by Fick’s first law,  
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∅ = −𝐷grad(𝑐), where D is the diffusion coefficient of the R species. The thickness of the 

depletion zone, δ, can be defined through the concentration gradient grad(𝑐) = (𝑐𝑏 − 𝑐𝑏) 𝛿⁄ =
(−𝑐𝑏) 𝛿⁄ . 

To calculate analytically the time dependence of the current, I(t), we have to solve the diffusion 

equation with the actual initial and boundary conditions. Such a calculation yields the temporal 

change of the concentration map; from this, I(t) can be calculated. I(t), in general, depends on the 

electrode geometry. In a simplest case, when the electrode is planar, and there are no convections 

are in the solution, 𝛿 = √𝜋𝑡 𝐷⁄ ; I(t) is given by Cottrell’s equation,  

 𝐼 = −𝑛𝐹𝐴𝐷grad(𝑐) = 𝑛𝐹𝐴𝑐𝑏√𝐷 (𝜋𝑡)⁄  (3)  

where nF is the charge change when of one mole of R is oxidized, A is the electrode area. The 

concentration map, i.e. equi-concentration surfaces are planes parallel to the electrode. 

Lets consider now electrodes whose microscopic and macroscopic area are different. These are 

rough and partially active surfaces. For these cases the concentration maps are more complex than 

for the planar case. As it is illustrated in Figs. 2a and d, the area of the equi-concentration surfaces 

are equal to the microscopic and the macroscopic area, (Amicr and Amacr) respectively. According to 

this, as is illustrated in Figs 2b and 2e, the time dependence of the current obeys Eq.3 at short times 

and long times, however, one has to use Amicr and Amacr for A. In this sense, A is the area of the 

surface referring to, say, to c=cb/2 and thus I is a measure of A(t).  

A transformation of the plots of Figs 2b and 2e seems to be useful: The diffusion layer width,  

𝛿 = √𝜋𝑡 𝐷⁄  can be regarded as a yardstick length, ε, which in turn, determines the area of the 

equiconcentration surfaces. Thus, one can plot 𝐴(𝜀) ≈ 𝐼√𝜋𝑡 𝐷⁄ /(𝑛𝐹𝐴𝑐𝑏) vs  𝜀 ≈ √𝜋𝑡 𝐷⁄ . Such 

transformed plots are seen in Figs. 2c and 2f. Three time ranges can be separated. At short and long 

times the ordinate values are equal to the microscopic and macroscopic areas, repectively. In the 

intermediate time range, the area changes with yardstick length. Let us use the simple 

approximation that this dependence is linear. Note that a linear log[A(ε)] vs log(ε) corresponds to a 

fractal (cf.Eq.1b) and the fractal dimension can be readily calculated by using Eq.1b. In a similar 

vein, if we approximate the log(I) vs log(t) function in the intermediate time range by a straight line 

then it is equivalent to that we model the surface by some fractal. The slope of the log(I) vs log(t) 

function in the intermediate time range can be calculated by the following line of thoughts: The 

diffusional current is expressed by the Cottrell equation equipped with yardstick length dependent 

area. In logarithmic form:  

 log(𝐼) = log[𝐴(ε)] + log(𝑛𝐹𝐴𝑐𝑏√𝐷 𝜋⁄ ) − 1/2log(𝑡) (4)  

The area of a fractal surface depends on the yardstick length according to Eq.2. Since the yardstick 

length is 𝜀 ≈ √𝜋𝑡 𝐷⁄  thus log (𝜀) ≈ log (𝜋𝑡 𝐷⁄ )/2, Eq.4 combined with Eq 2 yields:  

 log(𝐼) = const −  (𝐷f − 1)/2 ∙ log(𝑡) (5)  

Eq. 5 expresses that in the intermediate time range the current is a power-law function of time, and 

the fractal dimension is included in the exponent, α = (𝐷f − 1)/2. 

The following notes are due here: 

1. Eq. 5 can be employed to the experimental determination of Df of certain surfaces to be 

approximated by self-similar fractals. In the actual measurements, there is a number of other 

factors (effects of solution resistance, of double layer capacitance, slow charge transfer, 

spontaneous convections of the electrolyte) which may cause distorted I(t) transients. 

However, the absence of the distortions can - and must - be proven by demonstrating that 

with the given experimental conditions on a flat electrode the I(t) curve is very similar to 

that of Eq.3. [4]. 

2. The factor (Df-1)/2 found in Cottrell-experiment results appears also in the expressions of 

other types of measurements with the same electrochemical system, e.g. in the expressions 

of cyclic voltammetry and Warburg impedance [5].  

3. The transition section of the log(I) vs log(t) or the log(A) vs log(ε) curve, in principle, is not 

linear. The above approach, that is, replacing that section by a straight line is probably the 

simplest approximation. There exist much more exact theories for “realistic fractal 
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electrodes” [6,7], leading to complicated equations with more-than-one parameters whose 

use might be difficult for analyzing the given electrochemical phenomena on rough 

electrodes. 

 

  

 
  

 
  

Fig.2. Concentration profiles (a) as a function of time in the vicinity of a rough electrode. (b) 

Diffusion controlled current as a function of time (c) The A(ε)  vs ε plot. Figs (d), (e), and (f) are 

the same as (a) to (c), but for a partially active electrode.  

 

 

Concluding comments: 

1. Textbook expressions of the electrochemical phenomena have usually been derived 

assuming simple geometries, like planar interfaces. There exist a number of reasons why 

real electrodes exhibit properties different from those predicted by the ideal expressions – 

irregular geometry is one possible reason. Real surfaces are seldom planar, just as seldom as 

ideal self-similar fractal surfaces. We stress that there is no one-to-one correspondence 

between power-law response functions (impedance and current transients) and fractal 

geometry.  

2. The above, simple models simply demonstrate that for electrodes without characteristic 

sizes, the response functions exhibit no characteristic time or frequency.  
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