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Freeze-out parameters: lattice meets experiment
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We present our results for ratios of higher order fluctuations of electric charge as functions of the
temperature. These results are obtained in a system of 2+1 quark flavors at physical quark masses
and continuum extrapolated. We compare them to preliminary data on higher order moments of
the net electric charge distribution from the STAR collaboration. This allows us to determine
the freeze-out temperature and chemical potential from first principles. We also show continuum-
extrapolated results for ratios of higher order fluctuations of baryon number. These will allow to
test the consistency of the approach, by comparing them to the corresponding experimental data
(once they become available) and thus extracting the freeze-out parameters in an independent way.

The QCD transition from a hadronic, confined system
to a partonic one at zero baryo-chemical potential is an
analytic cross-over, as was unambiguously shown by lat-
tice QCD simulations [1]. This feature extends to small
chemical potentials covered by the high energy runs at
RHIC. The possibility that the transition becomes first
order at large chemical potentials has triggered the low
energy runs at RHIC, soon to be followed by the CBM
experiment at the GSI, in search for the elusive criti-
cal point. In order to successfully spot its position, one
needs to define observables which are sensitive to the
change in the order of the phase transition. Event-by-
event higher order fluctuations of conserved charges are
expected to diverge in the presence of a first order phase
transition, and have therefore been proposed long ago to
this purpose [2–4]. As a consequence, experimental re-
sults for these observables are becoming available at sev-
eral collision energies, covering different regions of the
QCD phase diagram [5, 6]. Recently, further interest to-
wards fluctuations of conserved charges and their ratios
has been stimulated even at µ = 0, following the idea
that the freeze-out parameters can be extracted by com-
paring their experimental value to lattice QCD results
[7, 8]. This comparison allows to extract the temper-
ature and baryon-chemical potential at freeze-out from
first principles, without the need of relying on a phe-
nomenological model such as the Hadron Resonance Gas
(HRG). This also allows to test the assumption that the
equilibrium system simulated on the lattice is suitable
to describe the experimentally measured fluctuations,
since in principle non-equilibrium effects and final-state
interactions in the hadronic phase might become rele-
vant. The present level of precision reached by lattice

QCD simulations, performed at physical quark masses
and continuum-extrapolated, is very timely and allows
this kind of comparison between experimental data and
lattice QCD results for the first time.

In this paper we show the first continuum-extrapolated
results for higher order fluctuations of electric charge and
extract the freeze-out conditions by comparing our re-
sults to preliminary data by the STAR collaboration at
RHIC [5, 6]. This follows our previous work on second-
order fluctuations of conserved charges [9]. We also
present results for baryon number fluctuations, which
can be compared to the experimental data, once they be-
come available (so far, only proton fluctuations have been
measured in experiments [10], and the issue whether one
can extract baryon number fluctuations from them is still
open [11, 12]). Our simulations are performed in a sys-
tem of 2+1 quark flavors at the physical point, i.e. with
physical MK/fK and Mπ/fK ratios at each lattice spac-
ing, which are realized at the strange- over light-quark
mass ratio ms/mu,d ≃ 28.

The continuum extrapolation is mainly performed
on the basis of five lattice spacings, corresponding to
temporal lattice extents of Nt = 6, 8, 10, 12, 16
(around Tc these extents result in lattice spacings of
a = 0.22, 0.16, 0.13, 0.11 and 0.08 fm, respectively). At
every lattice spacing and temperature we analyzed every
10th configuration in the rational hybrid Monte Carlo
streams with 128. . . 256 quartets of random sources. The
statistics for each point is shown in Fig. 1. We fol-
low the extrapolation strategy that we have discussed
in Ref. [9], and perform several possible continuum fits
(with and without a beyond-a2 term, keeping or dropping
the coarsest lattice, using tree-level improvement [13] or
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FIG. 1. Number of analyzed configurations for each temper-
ature and each lattice spacing. The configurations have been
saved with a separation of 10 trajectories. Each configuration
was analyzed by (128 . . . 256) × 4 random sources.

not, fitting the observable or the reciprocal of the ob-
servable, choosing between two possible interpolations).
Weighting these continuum results by the goodness of the
fit a histogram is formed, the width of which defines the
systematic error (for details see Ref. [14]). In this paper
we show the combined systematic and statistical errors
on the continuum data.
Similarly to previous works, we choose a tree-level

Symanzik improved gauge, and a stout-improved stag-
gered fermionic action (see Ref. [15] for details). The
stout-smearing [16] reduces taste violation (this kind of
smearing has one of the smallest taste violations among
the ones used in the literature for large scale thermody-
namic simulations, together with the HISQ action [17, 18]
used by the hotQCD collaboration). This lattice artifact
needs to be kept under control when studying higher
order fluctuations of electric charge, which are pion-
dominated at small temperatures, and thus particularly
sensitive to this issue.
The observables under study are defined as:

χBSQ
lmn

T l+m+n
=

∂ l+m+n(p/T 4)

∂(µB/T )l∂(µS/T )m∂(µQ/T )n
. (1)

and they are related to the moments of the distributions
of the corresponding conserved charges by

mean : M = χ1 variance : σ2 = χ2

skewness : S = χ3/χ
3/2
2 kurtosis : κ = χ4/χ

2
2 . (2)

With these moments we can express the volume indepen-
dent ratios

Sσ = χ3/χ2 ; κσ2 = χ4/χ2

M/σ2 = χ1/χ2 ; Sσ3/M = χ3/χ1 . (3)

The experimental conditions are such, that the three
chemical potentials µB, µQ and µS are not independent
of each other: the finite baryon density in the system is
generated by the nucleon stopping in the collision region,
and is therefore due to light quarks only. Strangeness
conservation then implies that the strangeness density
〈nS〉 = 0. Similarly, the initial isospin asymmetry of the
colliding nuclei yields a relationship between the electric

charge and baryon-number densities: 〈nQ〉 = Z/A〈nB〉.
For Au-Au and Pb-Pb collisions, a good approximation
is to assume Z/A = 0.4.
Therefore, the dependence of µQ and µS on µB needs

to be defined so that these conditions are satisfied. We
take care of this by Taylor-expanding the densities with
respect to the three chemical potentials up to order µ3

B

[8]:

µQ(T, µB) = q1(T )µB + q3(T )µ
3
B + ...

µS(T, µB) = s1(T )µB + s3(T )µ
3
B + ... (4)

These equations define q1, q3 and s1 and s3, respec-
tively. Our continuum extrapolated data for the func-
tions q1(T ), q3(T ), s1(T ), s3(T ) are shown in Fig. 2.
Our data are compared to the BNL-Bielefeld group’s re-
sult, where q1 and s1 was continuum extrapolated. They
obtained q3 and s3 from Nt = 8 lattices using the HISQ
action [8].
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FIG. 2. Upper panels: leading order contribution in µB for
the strangeness (upper figure) and the electric charge (lower
figure) chemical potentials. The lower panels show the cor-
responding NLO contributions. In all panels, the black dots
correspond to the continuum extrapolated results. The BNL-
Bielefeld results are shown as blue pentagons.
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FIG. 3. RQ
31: the colored symbols correspond to lattice

QCD simulations at finite-Nt. Black points correspond to
the continuum extrapolation; blue pentagons are the Nt = 8
results from the BNL-Bielefeld collaboration [8]. The yellow
band is the preliminary STAR measurement of SQσ3

Q/MQ

[6]: it has been obtained by averaging the two most central
measurements from STAR over three collision energies:

√
s =

27, 39, 62.4 GeV.

The quantities that we look at, in order to extract the
freeze-out temperature and baryon chemical potential,
are the ratios χQ

3 /χ
Q
1 and χQ

1 /χ
Q
2 at some (µB , µQ, µS)

point, which is defined by the pyhsical conditions dis-
cussed in the previous paragraph and given by Eq. (4).
We look at ratios because they are volume-independent,
and also because they are directly related to the mo-
ments of charge distribution by Eqs. (3). The first terms
of their Taylor expansion around µB = 0 read:

RQ
31(T, µB) =

χQ
3 (T, µB)

χQ
1 (T, µB)

= (5)

χQB
31 (T, 0) + χQ

4 (T, 0)q1(T ) + χQS
31 (T, 0)s1(T )

χQB
11 (T, 0) + χQ

2 (T, 0)q1(T ) + χQS
11 (T, 0)s1(T )

+O(µ2
B)

RQ
12(T, µB) =

χQ
1 (T, µB)

χQ
2 (T, µB)

=

χQB
11 (T, 0) + χQ

2 (T, 0)q1(T ) + χQS
11 (T, 0)s1(T )

χQ
2 (T, 0)

µB

T
+O(µ3

B).

The leading order in χQ
3 /χ

Q
1 is independent of µB , which

allows us to use RQ
31 to extract the freeze-out tempera-

ture. Once Tf has been obtained with this method, the

ratio RQ
12 can then be used to determine µB. Notice that

in Eq. (5) we write the expansion of RQ
12, but in the plots

we will show our results up to NLO.
In Fig. 3 we show the ratio RQ

31 as a function of the
temperature. The continuum extrapolation, shown in
the figure as black dots, is performed on the basis of five
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FIG. 4. RQ
12 as a function of µB : the different colors cor-

respond to the continuum extrapolated lattice QCD results,
calculated at different temperatures. The three points cor-
respond to preliminary STAR data for MQ/σ

2
Q at different

collision energies:
√
s = 27, 39, 62.4, from Ref. [6].

lattice spacings. Results from the BNL-Bielefeld collab-
oration corresponding to Nt = 8 (from Ref. [8]) are also
shown for comparison. The yellow band indicates the
experimental value for RQ

31 from the STAR collaboration
[6]. It has been obtained by averaging the two most cen-
tral measurements from STAR over three collision en-
ergies:

√
s = 27, 39, 62.4 GeV. We assume that this

average safely allows to determine the freeze-out temper-
ature, since the curvature of the phase diagram is very
small around µB = 0 [19]; therefore, we expect a small
variation of Tf over the chemical potential range corre-
sponding to these three energies. Due to the big error-bar
in the experimental measurement, and to the uncertainty
in the lattice data at small temperatures, we can only get
an upper limit for the freeze-out temperature: so far it
appears that the freeze-out takes place at a temperature
Tf

<∼ 157 MeV. (Allowing for a two-sigma deviation both
for the lattice simulation as well as the experimental data
the highest possible freeze-out temperature is 161 MeV.)

In Fig. 4 we show our results for RQ
12 as a function

of the baryon chemical potential: the different curves
correspond to different temperatures, in the range of Tf

determined from RQ
31. The three STAR measurements,

from Ref. [6], correspond to the collision energies
√
s =

27, 39, 62.4. Taking into account the limit on Tf that

we obtained through RQ
31, the three values of µB that

we extract from this observable are listed in Table I. The
experimental evidence for the freeze-out temperature was
just an upper bound (cf. Fig. 3), thus using the data in
Fig. 4 can only provide for the µB prediction a lower
bound. In Table I we assume that Tf > 145 MeV. The
uncertainty in the freeze-out temperature is the dominant
source of error.
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√
s[GeV ] µf

B [MeV]

62.4 44(3)(1)(2)

39 75(5)(1)(2)

27 95(6)(1)(5)

()δT()lat()exp

TABLE I. Freeze-out baryon chemical potentials vs. the cor-
responding collision energy of the three STAR measurements
from Ref. [6]. The errors come from the uncertainty of the
freeze-out temperature, the lattice statistics and the experi-
mental error, respectively. Notice that from Fig. 3 we were
only able to obtain an upper limit on Tf . The values of µB

and the error-bars in this table assume that Tf is between 145
and 160 MeV, this uncertainty dominates the overall errors.
(Doubling the experimental as well as lattice errors would
increase full error only by a factor of 1.5.)

Note that these chemical potentials differ from the re-
sults of the statistical hadronization model [20, 21]. Also
the typical freeze-out temperatures from the statistical
fits lie above the upper bound found in this work.

In Fig. 5 we show our results for RB
31 as a function

of the temperature, while in Fig. 6 we show RB
12 for

different temperatures, as a function of µB. Their Taylor
expansions around µB = 0 read:

RB
31(T, µB) =

χB
3 (T, µB)

χB
1 (T, µB)

=

χB
4 (T, 0) + χBQ

31 (T, 0)q1(T ) + χBS
31 (T, 0)s1(T )

χB
2 (T, 0) + χBQ

11 (T, 0)q1(T ) + χBS
11 (T, 0)s1(T )

+O(µ2
B)

RB
12(T, µB) =

χB
1 (T, µB)

χB
2 (T, µB)

=

χB
2 (T, 0) + χBQ

11 (T, 0)q1(T ) + χBS
11 (T, 0)s1(T )

χB
2 (T, 0)

µB

T
+O(µ3

B).
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FIG. 5. RB
31: the colored symbols correspond to lattice QCD

simulations at finite-Nt. The black points correspond to the
continuum extrapolation.
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FIG. 6. RB
12: the colored symbols show the continuum extrap-

olated data at various temperatures. This quantity might also
be used for µB measurement in the future.
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FIG. 7. RB
42 as a function of the temperature. The black sym-

bols correspond to the continuum extrapolation, the colored
ones to the finite-Nt simulations.

Therefore, similarly to the electric charge fluctuations,
RB

31 allows to extract Tf and from RB
12 we can then ob-

tain µB. This will allow to independently extract the
freeze-out temperature and chemical potential by com-
paring them to the corresponding experimental values,
once they become available. Notice that the ordering of
the temperatures in Fig. 4 and Fig. 6 is opposite. RB

12

might in future be used to set an upper bound for µB.
This cross-check is of fundamental importance: an in-
consistency between the two sets of freeze-out parame-
ters obtained from the electric charge and baryon num-
ber fluctuations might signal that it is not possible to
treat the experimental system in terms of lattice QCD
simulations in thermal equilibrium.
In Fig. 7 we show the ratio RB

42 =
χB
4 (T, µB)/χ

B
2 (T, µB) as a function of the temper-
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ature. This observable corresponds to κσ2 of the
baryon number distribution. It will allow to further
independently extract Tf . Notice that, in the case of
baryon number, the observables are essentially flat in
the hadronic phase: if the experimental value should lie
in the transition region (T >∼ 150 MeV) we will be able
to accurately determine Tf , if it lies in the hadronic
phase we will only be able to provide an upper limit for
the freeze-out temperature.
In conclusion, we have presented our continuum-

extrapolated results for ratios of higher-order fluctuations
of electric charge and baryon number and compared them
to recently measured moments of electric charge distri-
bution from the STAR collaboration. This procedure has
allowed us to extract, for the first time, the values for the
freeze-out parameters Tf and µf

B from first principles. So
far it is only possible to extract an upper limit for Tf ,
due to both experimental and lattice QCD uncertainties.
The value that we obtain, Tf

<∼ 157 MeV, is well within
the transition range predicted from lattice QCD simula-
tions [22]. This is compatible with the expectation that
freeze-out occurs just below the transition [23].
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