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Abstract: The present paper concludes our investigations on the QCD cross-over transi-

tion temperatures with 2+1 staggered flavours and one-link stout improvement. We extend

our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing

even finer lattices (Nt=16) and we work again with physical quark masses. The new results

on this broad cross-over are in complete agreement with our earlier ones. We compare our

findings with the published results of the hotQCD collaboration. All these results are con-

fronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation

Theory for temperatures below the transition region. Our results can be reproduced by

using the physical spectrum in these analytic calculations. The findings of the hotQCD

collaboration can be recovered by using a distorted spectrum which takes into account lat-

tice discretization artifacts and heavier than physical quark masses. This analysis provides

a simple explanation for the observed discrepancy in the transition temperatures between

our and the hotQCD collaborations.
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1. Introduction

In recent years, increasing attention has been devoted to study the properties of the QCD

phase diagram and thermodynamics. On the one hand, the heavy ion collision experiments

at CERN SPS, RHIC at Brookhaven National Laboratory and ALICE at the Large Hadron

Collider (LHC) provide the unique possibility of quantifying the properties of the decon-

fined phase of QCD. On the other hand, lattice calculations on QCD thermodynamics are

reaching unprecedented levels of accuracy, with simulations at the physical quark masses

and several values of the lattice cutoff: this allows to keep lattice artifacts under control.

The information that can be obtained from these complementary approaches will shed light

on the features of QCD matter under extreme conditions, one of the major challenges of

the physics of strong interaction.

One of the most interesting quantities that can be extracted from lattice simulations is

the transition temperature Tc at which hadronic matter is supposed to undergo a transition

to a deconfined, quark-gluon phase. This quantity has been vastly debated over the last

few years, due to the disagreement on its numerical value observed by different lattice

collaborations, which in some cases is as high as 20% of the absolute value. Indeed, the

analysis of the hotQCD collaboration (performed with two different improved staggered
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fermion actions, asqtad and p4, and with physical strange quark mass and somewhat larger

than physical u and d quark masses, ms/mu,d = 10), indicates that the transition region

lies in the range T = (185 − 195) MeV. Different observables lead to the same value

of Tc [1, 2, 3, 4, 5]. Recent simulations using the p4 action with the quark mass ratio

ms/mu = 20 yielded about 5 MeV shift (towards the smaller values) in the temperature

dependence of the studied observables [6]. On the other hand, the results obtained by

our collaboration using the staggered stout action (with physical light and strange quark

masses, thus ms/mu,d ' 28) are quite different: the value of the transition temperature lies

in the range 150-170 MeV, and it changes with the observable used to define it [7, 8]. This

is not surprising, since the transition is a cross-over [9]: in this case it is possible to speak

about a transition region, in which different observables may have their characteristic

points at different temperature values, and the temperature dependences of the various

observables play a more important role than any single Tc value. Unfortunately, the 25-30

MeV discrepancy was observed between the two collaborations for the T dependences of

the various observables, too.

A lot of effort has been invested, in order to find the origin of the discrepancy between

the results of the two collaborations.1 In Refs. [7, 8], we emphasized the role of the proper

continuum limit with physical quark masses, showing how the lack of them can distort

the result. In [12] we pointed out that the continuum limit can be approached only if

one reduces the unphysical pion splitting (the main motivation of our choice of action).

An interesting application of these observations was studied in [13]. These authors have

performed an analysis of trace anomaly, strangeness and baryon number fluctuations within

the Hadron Resonance Gas model (HRG). They show that, to reproduce the lattice results

for the asqtad and p4 actions of the hotQCD collaboration, it is necessary to distort the

resonance spectrum away from the physical one in order to take into account the larger

quark masses used in these lattice calculations, as well as finite lattice spacing effects. As

we will see, no such distortion is needed to describe our data, and the discrepancy between

the two collaborations has its roots in the above mentioned lattice artifacts. In the present

paper we perform a similar analysis for those quantities that can be calculated in the HRG

model and Chiral Perturbation Theory (χPT), namely the chiral condensate, the strange

quark susceptibility and the equation of state. From the lattice point of view, we present our

most recent results for several physical quantities: our previous calculations [7, 8] have been

extended to an even smaller lattice spacing (down to a ∼< 0.075 fm in the transition region),

corresponding to Nt = 16. We use physical light and strange quark masses: we fix them by

reproducing fK/mπ and fK/mK and by this procedure [8] we get ms/mu,d = 28.15. The

HRG model results are obtained both for the physical resonance masses, as listed in the

Particle Data Book, and for the distorted spectrum which corresponds to the quark masses

and finite lattice spacings of [5]. Our analysis indicates that the discretization effects on

hadron masses (and in particular on the nondegenerate, taste-split light pseudoscalar meson

masses which emerge as a consequence of the staggered formalism) affect more severely the

asqtad and p4 actions than the stout one, in the temperature regime below and around

1Note, that quite recently preliminary results were presented [10, 11] and the results of the hotQCD

collaboration moved closer to our results. (We include some of these data in our comparisons.)
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Tc. Indeed, the lattice results obtained with the stout action show a very good agreement

with the HRG model results with physical quark masses, while the lattice results obtained

with the asqtad and p4 actions can be reproduced within the HRG model only with the

distorted spectrum. The discrepancy in the transition temperature values obtained by the

two collaborations can be easily explained by this result.

The paper is organized as follows. In Section 2 we give a brief review of the qualitative

features of the QCD transition (those who are interested more in the qualitative features

than in the technicalities might read this section and then jump directly to subsection 5.2).

In Section 3 we give the details of our numerical simulations. In Section 4 we present the

results of our simulations for different observables. In Section 5 we present some aspects

of the Hadron Resonance Gas model and the comparison between lattice and HRG model

results. We write our Conclusions in Section 6. In Appendix A we provide some details

of the chiral condensate calculation in the HRG model + χPT. Appendix B presents the

temperature dependence of our continuum extrapolated lattice results.

2. The QCD transition

In this section we summarize the qualitative features of the T > 0 QCD transition. One

of the most important pieces of information we have is our knowledge about the nature

of the transition. Though many take it for granted, it is a higly non-trivial result, that

the transition is an analytic one and usually called a cross-over [9]. In order to show

this by means of lattice QCD, physical quark masses were taken, and a finite size scaling

analysis was carried out for the continuum extrapolated chiral susceptibilities. This analytic

behaviour has important consequences for any Tc determination in QCD.

In order to illustrate the most important differences between a real phase transition

and an analytic cross-over, we recall the water-vapor phase diagram on the temperature

versus pressure plane (c.f. [7] and Figure 1 of the present paper). We study the transition

by fixing the pressure to a given value and then varying the temperature. For smaller

pressures (p∼<22 MPa) there is a first order phase transition. The density jumps, the heat

capacity is infinite, and these singular features appear simultenously, thus exactly at the

same critical temperature. At pressure p ≈22.064 MPa and temperature T ≈647.096 K,

there is a critical point with a second order phase transition. This phase transition is also

characterized by a singular behaviour. 2

At even larger pressures (p∼>22.064 MPa) the water-vapor transition is an analytic one

(the behaviours of various observables are analytic, even in the infinite volume limit). As

a consequence, in this pressure region there is no jump in the density when we change

the temperature, only a rapid but continuous change. The inflection point of this density-

temperature function (the point with the largest, though finite, derivative) can be used

to define the pseudocritical temperature (another usual name for it is “transition temper-

ature”) related to the density. Similarly, the heat capacity is always finite, but it has a

2Note, that a real singularity, a phase transition, takes place only in infinite size systems. In our example

we have a macroscopic amount of water with O(1023) molecules. From the practical point of view, this is

an infinitely large system.
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Figure 1: The phase diagram of water around its critical point (CP). For pressures below the

critical value (pc) the transition is first order, for p > pc values there is a rapid cross-over. In

the cross-over region the critical temperatures defined from different quantities are not necessarily

equal. This can be seen for the temperature derivative of the density (dρ/dT ) and the specific heat

(cp). The bands show the non-negligible experimental uncertainties (see [14]).

pronounced peak as we increase the temperature. The position of this peak can be used

to define the pseudocritical temperature related to the heat capacity. Despite the fact

that there is no singularity, the inflection point and peak position are well defined. The

corresponding pseudocritical or transition temperature is usually denoted as Tc.

The most important message here is that the various transition temperatures (e.g.

those related to the density or heat capacity) behave differently depending on whether we

are in the singular (real phase transition) or non-singular (analytic cross-over) region. As

it is indicated on the figure, for a real phase transition these critical temperatures coincide,

whereas in the non-singular region (for pressures above 22.064 MPa) the pseudocritical

temperatures can differ considerably. The fast change (though no jump) in the density

is at a lower temperature than the peak in the heat capacity. The transition is a broad

cross-over. The pseudocritical temperatures, related to various observables, are separated,

but both of them are in the broad transition temperature region. This separation does not

mean that we have two transitions (one for the density and one for the heat capacity), it

merely reflects the broadness of the transition.

It is easy to see that different observables can give different pseudocritical temperatures.

Let us study an observable X, which characterizes the transition as a function of the

temperature X(T ). For a real phase transition its singular behaviour appears at the same

temperature even if we multiplied it by T (an infinitely high peak keeps its position). For

an analytic cross-over, we have a peak with a finite height and a finite width. Multiplying

it by T shifts the peak position to larger temperature values. The value of Tc is shifted.
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The pseudocritical temperature is well defined for any definition, but it is not unique.

Furthermore, for a broad transition the whole neighbourhood of the peak behaves similarly

as the peak, the determination of the peak’s or inflexion point’s position is difficult (this

is the experimental reason for the uncertainties on Figure 1 and this technical difficulty is

present for the even broader QCD transition). Though a Tc related to some observable is

informative, a more complete description is given by the whole temperature dependence of

X(T ).

The determination of such curves is the main goal of any study on the QCD transition

(c.f. our earlier studies [7, 8]). Since the QCD transition (at vanishing chemical potential)

is an analytic cross-over, one wants to obtain these smooth curves for several observables.

Though the characteristic points of such curves contain obviously less information than the

curves themselves, we give them, too.

Before we list the observables we study in detail, it is worth mentioning that the cross-

over nature of the QCD transition is related to the specific values of the quark masses

we have in nature. For two- or three-flavour QCD with vanishing quark masses or with

infinitely massive quarks, one is supposed to have real phase transitions. There are order

parameters (in the former case the chiral susceptibility/condensate signaling the chiral

phase transition; in the latter case the Polyakov line signaling the deconfinement phase

transition) which show a non-analytic behaviour as we change the temperature. As we

pointed out earlier, the highly non-trivial result about the analytic nature of the QCD

transition with physical quark masses implies, that no observable can be treated as an

order parameter. All of the observables show analytic temperature dependences. There is

neither a chiral nor a deconfinement phase transition. Note however, that similarly to the

density or to the heat capacity in the water-vapor cross-over transition, the observables

chiral susceptibility/condensate and the Polyakov line can develop a pronounced peak or

show a rapid change. The peak positions or the inflection points for such a cross-over

are usually expected to be at different temperatures. Again, we do not say [7, 8] that

there are two phase transitions and one of them is at a lower temperature than the other.

The separation of the pseudocritical temperatures is merely a sign of the broad analytic

transition [9].

Since the chiral susceptibility/condensate and the Polyakov loop are not order param-

eters, they are just used to signal the cross-over. In principle any other quantity showing

rapid changes or developing a peak in the transition region can be studied. The tempera-

ture dependences of these observables can be compared with the predictions of other lattice

results or model calculations. In this paper we extend our analysis to new observables and

to even finer lattices. We study the above chiral/deconfinement observables and in addi-

tion we look at the strange quark number susceptibility and at the energy density or trace

anomaly [15].

The reason for calculating the temperature dependence of these many observables

is obvious. The more observables we study, the broader picture we have on the QCD

transition. To be more specific, the chiral susceptibility/condensate and the Polyakov loop

are remnants of the real phase transition order parameters (for other mass regions of the

phase plane). In addition to our old observables we use a new definition for the chiral
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condensate, which has adventageous renormalization features and gives a result with little

noise (due to construction, the chiral susceptibility is somewhat noisy). The strange quark

number susceptibility is a particularly attractive quantity from the theoretical point of

view. It is related to a conserved current, thus no renormalization ambiguities appear,

which makes direct comparisons particularly easy. For a first order phase transition, the

energy density has a jump. In the cross-over region the remnant of this jump is an inflection

point. Furthermore, the transition temperature related to the equation of state has a direct

link to experiments, its importance is obvious.

The various obsevables (listed in the previous paragraph) lead to different transition

temperatures, they are typically between 150 and 170 MeV, thus well within the broadness

of the transition. Let us emphasize again, the difference between the pseudocritical Tc
values does not mean that one of the phase transitions happens at a lower temperature than

the other, quite the contrary: no phase transition happens at all. Our new results confirm

our earlier findings and their interpretation by all means: the transition temperatures

scatter within the broad temperature interval, characteristic of the cross-over.

3. Details of the lattice simulations

3.1 Action, algorithm and scale setting

The lattice action is the same as we used in [7, 8], namely a tree-level Symanzik improved

gauge, and a stout-improved staggered fermionic action (see Ref. [16] for details). The

stout-smearing [17] reduces the taste violation (see Section 3.2): this kind of smearing has

the smallest taste violation among the ones used so far in the literature for large scale ther-

modynamical simulations3. The supression of this artefact is important in the transition

region (see the important consequences within the hadron resonance model framework)

and that was the main motivation for this choice. For details about the algorithm we refer

the reader to [8].

In analogy with what we did in [7, 8], we set the scale at the physical point by simulating

at T = 0 with physical quark masses [8] and reproducing the kaon and pion masses and

the kaon decay constant. This gives an uncertainty of about 2% in the scale setting, which

propagates in the uncertainty in the determination of the temperature values listed.

3.2 Taste violation

Most of the large scale QCD thermodynamics studies apply the staggered formalism for the

quark fields. Working at non-vanishing lattice spacing within this framework, there is only

one single pseudo-Goldstone boson (instead of the experimentally observed three pions).

By pseudo-Goldstone we mean a particle whose mass approaches zero if we tune the mass

of the quark to zero (note, that in lattice studies usually we do not approach this zero mass

–chiral– limit, but we tune the quark masses to their physical values). In addition to this

3Only recently, first exploratory studies of the hotQCD Collaboration with the HISQ action [10, 11]

start to appear: in this case, the projected smeared links improve the taste symmetry in a similar way as

in our stout action.
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single pseudo-Goldstone boson, there is a whole tower of non-Goldstones. They are usually

much heavier, which is a non-physical lattice artifact. The typical mass gap can be as

large as several hundred MeV, which vanishes as the lattice spacing tends to zero and one

recovers the experimentally observed spectrum (since the original staggered formulation

provides four flavours –or how they are called in lattice QCD: tastes– the proper number of

degrees of freedom is reached by taking the root of the fermion determinant). On the more

formal level, this implies that every pseudoscalar meson (for example pions and kaons) is

split into 16 non-degenerate mesons, which can be grouped into the eight multiplets [18]

listed in Table 1. Their masses can be written as:

m2
i = m2

0 + (δmi)
2. (3.1)

The splittings (δmi)
2 are proportional to (αsa

2)
index ΓF multiplicity ni

0 γ5 1

1 γ0γ5 1

2 γiγ5 3

3 γiγj 3

4 γiγ0 3

5 γi 3

6 γ0 1

7 1 1

Table 1: Left column: index shown in

Fig. 2. Central column: taste matrices

ΓF . Right column: multiplicity of the

different pseudoscalar mesons.

for small lattice spacings. Only one out of the 16

pseudoscalar mesons is a true Goldstone boson in

the chiral limit. The splitting (the taste symme-

try violation) has to vanish in the continuum limit.

Once it shows an αsa
2 dependence (in practice a

quadratic dependence with a subdominant logarith-

mic correction) we are in the scaling region. This is

an important check for the validity of the staggered

framework at a given lattice spacing (for large lat-

tice spacings its behaviour can mimic an incorrect

continuum limit). In Ref. [8] we showed a contin-

uum extrapolation of the quadratic mass difference

(δmi)
2, concluding that the splitting obtained with

the stout action is consistent with zero in the continuum limit. We also showed that lattice

spacings which are larger than a ∼ 0.15 fm are not in the expected a2-scaling regime. In

Fig. 2 we show the leading order a2-behavior of the masses of the pion multiplets calcu-

lated with the asqtad (left panel) and stout (right panel) actions. It is evident that the

continuum expectation is reached faster in the stout action than in the asqtad one. In

addition, in the present paper we push our results to Nt = 16, which corresponds to even

smaller lattice spacings and mass splittings than those used in [8]. From Fig. 2, we can

obtain the lattice spacing-dependent spectrum that we will include in the HRG model, in

order to take into account lattice discretization effects.

4. Lattice results

In this Section we present our lattice results for the strange quark number susceptibility,

Polyakov loop and two different definitions of the chiral condensate. After performing a

continuum extrapolation, we extract the values of the transition temperature associated to

these observables. As we alreay emphasized the temperature dependence of an observable

contains much more information than the location of a peak or inflection point (which

are usually hard to determine precisely for such a broad transition). We perform a HRG
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Figure 2: Masses of the pion multiplet squared, as functions of the lattice spacing squared. Left

panel: asqtad action [19]. Right panel: stout action. The numbers next to the data correspond

to the taste matrices, as listed in Table 1. In both panels, the blue band indicates the relevant

range of lattice spacings for a thermodynamics study at Nt = 8 between T = 120 and 180 MeV.

The red band in the right panel corresponds to the same temperature range and Nt = 16. In both

figures, the horizontal line labelled as “0” is the pseudo-Goldstone boson, which has a mass of 220

MeV for the asqtad results, and 135 MeV for the stout ones (As we mentioned the splitting is

formally proportional to αsa
2. At present accuracies and for illustrative purposes the subdominant

logarithmic dependence can be omitted).

analysis and compare our results with those of the hotQCD Collaboration in the next

Section.

Quark number susceptibilities are defined in the following way:

χq2 =
T

V

∂2 lnZ

∂(µq)2

∣∣∣∣
µi=0

, q = u, d, s. (4.1)

These quantities rapidly increase during the transition, therefore they can be used to iden-

tify this region. However, while light quark susceptibilities are dominated by pions at small

temperatures, kaons are the lightest degrees of freedom for strange quark susceptibilities in

the hadronic phase. Therefore, these two quantities are known to behave very differently

as functions of the temperature, with the strange quark number susceptibility rising more

slowly in the transition region. Due to the presence of disconnected diagrams, the light

quark number susceptibility is known to be very noisy and was not calculated. Neverthe-

less, we will discuss its temperature dependence within the hadron resonance gas model in

the next Section.

In the left panel of Fig. 3 we show our results for the strange quark number suscep-

tibility for Nt = 10, 12, 16. The gray band is the continuum extrapolation that we have

performed using our data: the numerical values are listed in the Table of Appendix B (the
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width of this band and those for other observables indicate the statistical and systematic

uncertainties of the continuum extrapolation).

The Polyakov loop is the order parameter related to the deconfinement phase tran-

sition of QCD in the pure gauge sector. In this case, the Z3 symmetry is exact at small

temperatures, where the Polyakov loop expectation value is zero. In the deconfined phase,

this symmetry is spontaneously broken by the expectation value of the Polyakov loop,

which jumps to a finite value. When quarks are included in the system, the Z3 symmetry

is explicitly broken by their presence. In this case, the Polyakov loop is no longer a real

order parameter. Nevertheless, it is still considered as an indicator for the transition, since

it exhibits a rise in the transition region. This is evident from the right panel of Fig. 3,

where we plot the renormalized Polyakov loop as a function of the temperature. The need

to renormalize it comes from the fact that there are self-energy contributions to the static

quark free energy that need to be eliminated. To that end, we use our renormalization

procedure of [7]. In order to compare our results with those obtained by the hotQCD

collaboration [5] (which will be done in the next Section), the renormalization constant is

obtained slightly differently from the condition V (1.5r0) = Vstring(1.5r0) where V is the

zero temperature quark-antiquark potential and Vstring(r) = −π/12r+ σr. In addition, we

included the factor 1
3 in the trace definition.

The right panel of Figure 3 shows the differentNt data sets together with the continuum

extrapolated result, for which we give numerical data in the Table of Appendix B. As it is

expected from a broad cross-over the rise of the Polyakov loop is pretty slow as we increase

the temperature (c.f. [5, 7, 8]).
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Figure 3: Left: strange quark number susceptibility as a function of the temperature. Right:

renormalized Polyakov loop as a function of the temperature. In both figures, the different symbols

correspond to different Nt. The gray band is the continuum extrapolated result.

The chiral condensate is defined in the following way:

〈ψ̄ψ〉q =
T

V

∂ lnZ

∂mq
, q = u, d, s. (4.2)

In the case of a real chiral phase transition, the chiral condensate is the corresponding

order parameter. However, with physical quark masses there is no real phase transition,
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Figure 4: Left: renormalized chiral condensate 〈ψ̄ψ〉R defined in Eq. (4.3). Right: subtracted

chiral condensate ∆l,s defined in Eq. (4.4). In both figures, the different symbols correspond to

different Nt. The gray band is our continuum estimate.

just a cross-over. The chiral condensate can still be taken as an indicator for the remnant

of the chiral transition, since it rapidly changes in the transition region.

In the present paper, the following definition of the renormalized chiral condensate is

used:

〈ψ̄ψ〉R = −
[
〈ψ̄ψ〉l,T − 〈ψ̄ψ〉l,0

] ml

X4
l = u, d. (4.3)

In the above equation, X can be any quantity which has a dimension of mass. Since we

are working with non-vanishing quark masses, mπ is a reasonable choice. This quantity

is properly renormalized and the continuum limit can be safely taken [9]. The individual

results and the continuum extrapolation are shown in Figure 4.

In order to compare our results to those of the hotQCD collaboration, we also calculate

the quantity ∆l,s, which is defined as

∆l,s =
〈ψ̄ψ〉l,T − ml

ms
〈ψ̄ψ〉s,T

〈ψ̄ψ〉l,0 − ml
ms
〈ψ̄ψ〉s,0

l = u, d. (4.4)

Since the results at different lattice spacings are essentially on top of each other, we connect

them to lead the eye and use this band in later comparisons (c.f. Fig. 4).

In this section we presented our primary results, the temperature dependence of various

observables the same way as we did in our previous works [7, 8]. We found a complete

agreement. For the readers’ convenience we tabulate the results in the Table of Appendix

B. These curves contain the complete information on the observables. Nevertheless, it is

usual to determine some characteristic points of these curves (inflection points or peaks).

Since the transition is a broad cross-over, these Tc values scatter within the transition range

(c.f. Table 2, where we also review the results of our previous analyses for comparison).

For completeness we discuss the trace anomaly too (see next section) and give the

transition temperature obtained from it and from the energy density in Table 2 (the details

of the equation of state at Nt = 6, 8, 10 and 12 will be given in a subsequent publication
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χψ̄ψ/T
4 ∆l,s 〈ψ̄ψ〉R χs2/T

2 ε/T 4 (ε− 3p)/T 4

this work 147(2)(3) 157(3)(3) 155(3)(3) 165(5)(3) 157(4)(3) 154(4)(3)

our work ’09 146(2)(3) 155(2)(3) - 169(3)(3) - -

our work ’06 151(3)(3) - - 175(2)(4) - -

Table 2: The pseudocritical temperatures in MeV (defined as the inflection point or peak position

of the T dependent observables listed in Section 2) for physical quark masses in the continuum limit.

The Tc values from the equation of state (energy density and trace anomaly) are not continuum

extrapolated, they are obtained on Nt = 8 lattices. We expect a shift within the error bars in the

continuum limit. A comparison between our present and earlier results [7] and [8] is given. A change

in the experimental fK value in 2008 resulted in a ≈6 MeV reduction of our Tc predictions (lattice

results are unaltered). To compare our results with those of the hotQCD Collaboration a new

definition for the Polyakov loop was applied, thus a direct comparison with Refs. [7] and [8] is not

possible. As we emphasized, the various Tc values do not indicate separate phase transitions but the

broadness of the cross-over. Thus, it is more informative to look at the complete T dependence of

the observables (see the figures of this section) than just at the definition-dependent characteristic

points of them. The Bielefeld-Brookhaven-Columbia-Riken Collaboration [1] (independently of

the observables) obtained Tc=192(4)(7) for physical quark masses in the continuum limit. The

published results of the hotQCD Collaboration indicate a narrow transition within the 185–195 MeV

temperature range (for which they expected about 5 MeV shift to smaller T values in the continuum

limit and another 5 MeV because they used non-physical quark masses). Recent, preliminary results

of the hotQCD Collaboration move closer and closer to our curves, and the original ≈40 MeV

discrepancy in chiral variables is reduced to about 10 MeV (though the continuum extrapolated

hotQCD result is missing). For a detailed comparison of our and their results see the next section.

[15]). The uncertainties are given in parentheses. The first one refers to T > 0, the second

one to T = 0 statistical plus systematic errors.

5. Hadron Resonance Gas model

The Hadron Resonance Gas model has been widely used to study the low temperature phase

of QCD in comparison with lattice data [20, 21, 22]. In Ref. [13] an important ingredient

was included in this model, namely the pion mass- and lattice spacing-dependence of the

hadron masses. In the present paper we combine these ingredients with Chiral Perturbation

Theory (χPT) [23]. This opens the possibility to study chiral quantities, too.

5.1 The partition function of the HRG model

The low temperature phase of QCD is dominated by pions. Goldstone’s theorem implies

weak interactions between pions at low energies, which allows to study them within χPT.

As the temperature T increases, heavier states become more relevant and need to be taken

into account. The Hadron Resonance Gas model has its roots in the theorem by Dashen,

Ma and Bernstein [24], which allows to calculate the microcanonical partition function of

an interacting system, in the thermodynamic limit V → ∞, to a good approximation,

assuming that it is a gas of non-interacting free hadrons and resonances [25]. The pressure

of the Hadron Resonance Gas model can be written as the sum of independent contributions
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coming from non-interacting resonances

pHRG

T 4
=

1

V T 3

∑
i∈ mesons

lnZM (T, V, µXa ,mi) +
1

V T 3

∑
i∈ baryons

lnZB(T, V, µXa ,mi) , (5.1)

where

lnZM (T, V, µXa ,mi) = −V di
2π2

∫ ∞
0

dkk2 ln(1− zie−εi/T ),

lnZB(T, V, µXa ,mi) =
V di
2π2

∫ ∞
0

dk k2 ln(1 + zie
−εi/T ), (5.2)

with energies εi =
√
k2 +m2

i , degeneracy factors di and fugacities

zi = exp

(
(
∑
a

Xa
i µXa)/T

)
. (5.3)

In the above equation, Xa are all possible conserved charges, including the baryon number

B, electric charge Q and strangeness S. The sums in Eq. (5.1) include all known baryons

and mesons up to 2.5 GeV, as listed in the latest edition of the Particle Data Book [26].

We will compare the results obtained with the physical hadron masses to those obtained

with the distorted hadron spectrum which takes into account lattice discretization effects.

As shown in Section 3.2, each pseudoscalar meson in the staggered formulation is split into

16 mesons with different masses. The contribution of each meson to the pressure is given

by:

pπ,K

T 4
=

1

16

1

V T 3

7∑
i=0

ni lnZM (T, V, µXa ,mi) (5.4)

where mi are the taste-split pseudoscalar meson masses (for the pion they are shown in

Fig. 2) and ni are the degeneracies listed in Table 1. Similarly to Ref. [13], we will also

take into account the pion mass- and lattice spacing- dependence of all other hadrons and

resonances.

In order to calculate the chiral condensate in the HRG model, we need to know the

behavior of all baryon and meson masses as functions of ml and ms . For the quark mass-

dependence of the ground state hadrons, we use the most recent fits from χPT available in

the literature [27]. The same study is not available for all the resonances that we include.

Therefore, similarly to Ref. [13], we work under the assumption that all resonance masses

behave as their fundamental states as functions of mq. In addition, in order to have a more

precise estimate, we determine the contribution of pions to the chiral condensate obtained

in three-loop chiral perturbation theory in [28]. All other hadrons and resonances are still

treated in the ideal gas approximation. All details of this calculation are given in Appendix

A. The HRG model + χPT results for light and strange quark number susceptibilities, and

for the chiral condensate, are shown in Fig. 5.

It is instructive to look at these curves, before comparing them to the lattice results.

In the low temperature phase, χu2 is dominated by pions, while χs2 by kaons; this is the
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Figure 5: HRG + χPT results for the light and strange quark number susceptibilities and the

subtracted chiral condensate ∆l,s. For this last quantity, the error band indicates the uncertainty

on the quark mass-dependence of hadrons, see the Appendix. The results have been obtained with

physical values for the hadron and resonance masses, thus no lattice artefact has been included.

reason why the light quark susceptibility rises much faster with increasing temperature,

compared to the strange one. In the HRG model the susceptibilities keep increasing and

∆l,s keeps decreasing to a negative value with increasing temperature. In QCD, all three

quantities take values between 0 and 1. One can therefore take 0.5 as an illustration for the

definition of Tc. From Fig. 5, it is evident that one obtains similar transition temperatures

for ∆l,s and χu2 , around 150 MeV, while χs2 reaches the 0.5 value at a larger temperature,

around 170 MeV. From this figure it is also evident that it is not the mere value of Tc
which is relevant in order to describe the phase transition, but rather the full temperature

dependence of the curves, from which it is immediately clear that different observables may

produce very different values for the transition temperature.

5.2 Comparison between HRG model and lattice results

In this paper we compare two sets of lattice data:

• The first set is based on the Wuppertal-Budapest results.

• The second set is obtained by the Bielefeld-Brookhaven-Columbia-Riken Collabora-

tion, which later merged with a part of the the MILC collaboration and formed the

hotQCD collaboration.

Furthermore, we use two types of theoretical description (based on hadron resonance gas

model and chiral perturbation theory, for short: HRG+χPT):

• One of the theoretical descriptions is based on the physical spectrum from the Particle

Data Book (we call this description “physical”).
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• The other theoretical approach is based on a non-physical spectrum (this spectrum is

obtained by T = 0 simulations of the action one studies; the reason for this distortion

will be explained later); we call this description “distorted”.

As it is known, the Wuppertal-Budapest and the hotQCD results disagree. All character-

istic temperatures are higher for the hotQCD Collaboration. Note, that this discrepancy

is not related to the difficulty of determining e.g. inflection points of slowly varying func-

tions (typical for a broad cross-over). The discrepancy appears for all variables for a large

temperature interval. As we claimed earlier [8] we observed “approximately 20–35 MeV

difference in the transition regime between our results and those of the hotQCD Collabo-

ration”.

As we will see, the Wuppertal-Budapest results are in complete agreement with the

“physical” hadron resonance gas model and with the “physical” chiral perturbation theory,

whereas the hotQCD results cannot be described this way. The hotQCD results can only

be described by the “distorted” HRG+χPT.
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Figure 6: Left: light quark susceptibility as a function of the temperature. Right: strange quark

susceptibility as a function of the temperature. In both panels, the points with different symbols

correspond to results obtained with the asqtad and p4 actions [5, 11]. The solid line is the HRG

model result with physical masses. The dashed and dotted lines are the HRG model results with

distorted masses corresponding to Nt = 12 and Nt = 8, which take into account the discretization

effects and heavier quark masses, which characterizes the results of the hotQCD Collaboration.

Our continuum result for the strange susceptibility is shown by the band. Good agreement is found

with the physical HRG+χPT results. (Due to the noisy contribution of the disconnected diagrams

we have not determined the light quark susceptibility.)

In Fig. 6 we show the light and strange quark number susceptibilities, in the left and

right panels, respectively. The lattice results are compared to the HRG model predictions

for physical (solid line) and distorted (dashed line) spectrum (due to the noisy contribution

of the disconnected diagrams we don’t have results for the light quark susceptibility).

The distorted spectrum takes into account the larger quark masses used by the hotQCD

collaboration, as well as the larger lattice spacing and pseudoscalar meson splittings (see

figure 2). For all hadrons and resonances, we use the pion mass- and lattice spacing-

dependence given in Refs. [19, 29] and parametrized in Ref. [13]. As we can see, once
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we take these effects into account (which corresponds to a distorted spectrum), the HRG

curves on both figures are sensibly different from the physical ones and agree with the

corresponding lattice data of hotQCD. Our continuum results on the strange susceptibility

are compared to the other results, too. We observe a good agreement between our results

and the “physical” HRG ones4. Notice that the agreement between lattice and HRG model

results is good below the transition temperature, while for larger temperatures a deviation

is obviously expected. This is observed both in our results and the hotQCD ones, but the

temperatures at which deviations occur are obviously different.
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Figure 7: Left: (ε − 3p)/T 4 as a function of the temperature. Open symbols are our results.

Full symbols are the results for the asqtad and p4 actions at Nt = 8 [5]. Solid line: HRG model

with physical masses. Dashed lines: HRG model with distorted spectrums. As it can be seen,

the prediction of the HRG model with a spectrum distortion corresponding to the stout action at

Nt = 8 is already quite close to the physical one. The error on the recent preliminary HISQ result

[11] is larger than the difference between the stout and asqtad data, that is why we do not show

them here. Right: renormalized Polyakov loop. We compare our results with those of the hotQCD

Collaboration (asqtad and p4 data for Nt = 8 [5]).

In the left panel of Fig. 7 we show the trace anomaly divided by T 4 as a function

of the temperature. Our Nt = 8 results are taken from Ref. [15]. Notice that, for this

observable, we have a check-point at Nt = 10 too: the results are on top of each other.

Also shown are the results of the hotQCD collaboration at Nt = 8 [5] and the HRG model

predictions for physical and distorted resonance spectrums. On the one hand, our results

are in good agreement with the “physical” HRG model ones. It is important to note,

that using our mass splittings and inserting this distorted spectrum into the HRG model

gives a temperature dependence which lies essentially on the physical HRG curve (at least

within our accuracy). On the other hand, a distorted spectrum based on the asqtad and

p4 frameworks results in a shift of about 20 MeV to the right. The asqtad and p4 lattice

results can be successfully described by this distorted HRG prediction, too.

In the right panel of Fig. 7 we show the renormalized Polyakov loop (the renormaliza-

tion procedure was discussed in the previous Section). The comparison with the data of

4For completeness we included in our comparisons preliminary [11] results of the hotQCD collaboration

obtained by the HISQ and asqtad actions on Nt=8 and 12, respectively. We will discuss their impact later.
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[5] shows a good agreement at high temperatures, and deviations in the transition region.

In Fig. 8, we show results for the chiral condensate as a function of the temperature.

The left panel shows 〈ψ̄ψ〉R as defined in Eq. (4.3), while the right panel shows ∆l,s (see

Eq. (4.4)). In both panels, the solid black curve has been obtained in the HRG+χPT

model, using the equations given in Appendix A. The error bands of the theoretical lines

correspond to the uncertainty in the quark mass dependence of hadron masses [27]. Gray

bands correspond to our continuum results. They agree with the “physical” HRG+χPT

predictions. In the right panel, we also show the lattice results for the subtracted chiral

condensate obtained with the asqtad and p4 actions [5, 11]. These results are compared

to the dashed curves, which have been obtained in the HRG+χPT model with “distorted”

masses corresponding to Nt = 8 and Nt = 12. Also in this case, for all hadrons and

resonances we use the pion mass- and lattice spacing-dependence taken from Refs. [19, 29]

and parametrized in Ref. [13].

From all quantities that we have calculated, a consistent picture arises: our stout

results agree with the “physical” HRG+χPT predictions; whereas the observed shift in

transition temperatures between the results of the stout and the asqtad and p4 actions

can be easily explained within the Hadron Resonance Gas+χPT model with “distorted”

masses. Once the discretization effects, the taste violation and the heavier quark masses

used in [5, 11] are taken into account, all the HRG+χPT curves for the different physical

observables are shifted to higher temperatures and fall on the corresponding lattice results.

As a final check, we have determined the chiral condensate with larger quark masses

(ms/mu,d = 3, corresponding to a pseudo-Goldstone mass of about 414 MeV and to an

average pion mass of 587 MeV, which matches the one of Ref. [5] at a = 0.183 fm,

corresponding to the lower end of the transition region T = 135 MeV at Nt = 8). Notice

that, due to the reduced taste splitting of the stout action, we need ms/mu,d = 3 in order

to have an average pion mass compatible with the one of Ref. [5], where ms/mu,d = 10.

The results of this run are shown in Fig. 9. This procedure allows us to reproduce the

results of the hotQCD collaboration for this observable, though with an artificially large

quark mass. This example illustrates that a large pion splitting (of the asqtad action)

results in a physically distorted spectrum, which can be mimicked by a small splitting (of

the stout action) at an artificially large quark mass.

There is a proceedings contribution written by two members of the hotQCD Collab-

oration, in which the HISQ action is applied [10] and preliminary results are presented.

This action uses a highly improved smearing recipe (and similarly to our stout action it

reduces the pion splitting much more than the asqtad or p4 actions). In contrast to previ-

ous findings of the hotQCD collaboration, the results based on this new smeared improved

action are quite close to our results. Both the strange susceptibility and the chiral con-

densate curves shift to lower temperatures. The approximately 20 MeV discrepancy for

the strange susceptibility between the Wuppertal-Budapest and the hotQCD results has

essentially disappeared. The approximately 35 MeV discrepancy for the chiral condensate

curves is reduced to about 10 MeV (see Fig. 10). One expects that the results with the

HISQ action will approach the continuum results much faster than those with the previ-

ously applied asqtad or p4 actions of the hotQCD collaboration. Note, that the continuum

– 16 –



HRG physical
stout continuum

80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

T!MeV"

!
Ψ
Ψ
#
R

!

!
!
!

!
!
!

!
!

! ""
"
"
""

"

"
"
"
"
"
"

""

#
#

#

#

#

#
#
#

#
## !!

""

##

stout continuum

HRG distorted Nt!8

asqtad Nt!8
p4 Nt!8

asqtad Nt!12

HRG physical

HRG distorted Nt!12

100 120 140 160 180 200 220

0.2

0.4

0.6

0.8

1.0

T !MeV"

"
l,
s

Figure 8: Left: Renormalized chiral condensate as defined in Eq. (4.3). Right: Subtracted chiral

condensate ∆l,s as defined in eq. (4.4), as a function of the temperature. Gray bands are the

continuum results of our collaboration, obtained with the stout action. Full symbols are obtained

with the asqtad and p4 actions [5, 11]. In both panels, the solid line is the HRG model result with

physical masses. The error band corresponds to the uncertainty in the quark mass-dependence of

hadron masses. The dashed lines are the HRG+χPT model result with distorted masses, which

take into account the discretization effects and heavier quark masses used in [5, 11] for Nt = 8 and

Nt = 12.
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Figure 9: Subtracted chiral condensate ∆l,s as a function of the temperature. The empty triangles

are our results with physical quark masses as shown in Fig. 4. The empty rectangles are our results

with an average pion mass of 587 MeV at T ' 135 MeV. The red curve is the result of the hotQCD

collaboration [5]: these results are the same shown in Fig. 8: a line connects the data to lead the

eye. For all sets of data we have Nt = 8. As it can be seen, the asqtad data can be mimicked in

the stout framework by using a larger quark mass.

limit within the HISQ framework is still missing. This last important step (which needs

quite some computational resources and also care) will hopefully eliminate the remaining

minor discrepancy, too. The same two members of the hotQCD Collaboration presented
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preliminary results using the asqtad action on Nt=12 lattices [11], too. At this lattice

spacing the pion splitting is smaller than on Nt=8 lattices, and the curves move closer to

ours. Since this action and lattice spacing combination has still a larger splitting than the

HISQ result, it is further away from our continuum results than the findings within the

HISQ framework. Following these two authors (Figure 5. of Ref. [11]) we zoom in into

the transition region of ∆l,s and on Figure 10 we show various findings. The stout results

from a broad range of lattice spacings (Nt=8, 10, 12 and 16) are shown with open symbols.

They all accumulated in the vicinity of our continuum estimate, indicated by the thin gray

band. The hotQCD results were obtained by three different actions (p4, asqtad and HISQ)

and with two different pion masses (220 and 160 MeV). They cover a broad range. The

smaller the pion mass and/or pion splitting in the hotQCD results, the closer it is to ours.

These results confirm the expectations [7, 8] that the source of the discrepancy was

the lack of the proper continuum extrapolation [7] in the hotQCD result: a dominant

discretization artefact within the asqtad and p4 actions is the large pion splitting [12],

which resulted in the distorted spectrum.

As we emphasized in both our previous studies [7, 8], only continuum extrapolated

results are physical. We demonstrated [7] that using fK and r0 scale settings gives the

same continuum result. Furthermore, we showed that using other quantities (the masses of

the Ω, K∗ and Φ hadrons or the pion decay constant) the same continuum result is obtained

[8]. In this sense (thus after continuum extrapolation) one scale setting can be susbstituted

by another one, the result remains the same. The ideal situation would be to compare our

(continuum) results and the results obtained by continuum extrapolation based on HISQ

(asqtad, p4 or any other) action. Without continuum extrapolation, cutoff effects appear,

which can manifest themselves by providing different scales from different observables.

As it is now, for the chiral condensate there is about 10 MeV difference between the

continuum result of the Wuppertal-Budapest collaboration and the non-continuum Nt=8

results obtained by the HISQ action (Note, that this is much smaller than previous findings

of the hotQCD Collaboration indicated). As we mentioned, carrying out the continuum

extrapolation with the HISQ action will probably remove even this small difference.

6. Conclusions

We have presented our latest results for the QCD transition temperature. The quantities

that we have studied are the strange quark number susceptibility, the Polyakov loop, the

chiral condensate and the trace anomaly. We have given the complete temperature depen-

dence of these quantities, which provide more information that the characteristic temper-

ature values alone. Our previous results for the strange quark susceptibility, the Polyakov

loop and the chiral condensate have been pushed to an even finer lattice (Nt = 16). The

new data corresponding to Nt = 16 confirm our previous results. The trace anomaly [15]

was obtained for Nt = 8 and a check-point at Nt = 10. The transition temperature that we

obtain from this last quantity is very close to the one obtained from the chiral condensate.

In order to find the origin of the discrepancy between the results of our collaboration

and the hotQCD ones, we calculated these observables (except the Polyakov loop) in the
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Figure 10: The subtracted chiral condensate ∆l,s as a function of the temperature. We show a

comparison between stout, asqtad, p4 and HISQ [5, 11] results. Our results are shown by colored

open symbols, whereas the hotQCD results are shown by full black symbols. The gray band is our

continuum result, the thin lines for the hotQCD data are intended to lead the eye. Our stout results

were all obtained by the physical pion mass of 135 MeV. The full dots and squares correspond to

mπ = 220 MeV, the full triangles and diamonds correspond to mπ = 160 MeV of the hotQCD

collaboration.

Hadron Resonance Gas model. Besides using the physical hadron masses, we also performed

the calculation with modified masses which take into account the heavier pions and larger

lattice spacings used in [5]. We find an agreement between our data and the HRG ones with

“physical” masses, while the hotQCD collaboration results are in agreement with the HRG

model only if the spectrum is “distorted” as it was directly measured on the lattice [19, 29].

This analysis therefore provides an easy and convincing explanation of the observed shift

in transition temperatures between the two collaborations and emphasizes the role of the

proper continuum limit.

We used 2+1 flavor QCD within the staggered framework, which needs taking the root

of the fermion determinant. There is a lively discussion in the literature whether this is

a correct procedure. Though we have not seen any problem with this fermion formalism

(our results and the predictions of the hadron resonance gas model agree very nicely up

to the transition region) it is still very important to repeat the calculations with actions,

which are free of the rooting problem (e.g. Wilson fermions).
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Appendix

A. Renormalized chiral condensate

In order to calculate the subtracted chiral condensate ∆l,s as defined in Eq. (4.4), we need

to calculate 〈ψ̄ψ〉u,T and 〈ψ̄ψ〉s,T . The light quark chiral condensate is given by:

〈ψ̄ψ〉u,T = 〈ψ̄ψ〉u,0 + 〈ψ̄ψ〉π +
T

V

[ ∑
i∈mesons

∂ lnZM (T, V, µXa ,mi)

∂mi

∂mi

∂m2
π

∂m2
π

∂mu

+
∑

i∈baryons

∂ lnZB (T, V, µXa ,mi)

∂mi

∂mi

∂m2
π

∂m2
π

∂mu

 . (A-1)

In the above formula, 〈ψ̄ψ〉u,0 is the chiral condensate at vanishing temperature, 〈ψ̄ψ〉π is

the temperature-dependent pion contribution, that we take from the χPT investigation of

Ref. [28]. The sum over mesons in the square brackets obviously does not include pions.

The derivatives of the hadron masses with respect to m2
π can be written as:

∂mi

∂m2
π

=
σi

(m2
π)phys

(A-2)

where the σi are the sigma terms evaluated at the physical pion mass. We use for our

analysis the results recently obtained in [27] for the fundamental states. They agree with

the results obtained by our collaboration in [30]. We assume here that the resonances have

the same sigma terms as their fundamental states. Using the notations of Ref. [28] we

have:

〈ψ̄ψ〉u,0 =
m2
π

2mu

F 2

c
⇒ m2

π = 2
〈ψ̄ψ〉u,0cmu

F 2
⇒ ∂m2

π

∂mu
= 2
〈ψ̄ψ〉u,0c
F 2

(A-3)

In the above formulas, c is a temperature-independent constant which is equal to 1 in the

massless theory. The corrections of order mq have been calculated and give

c = 0.90± 0.05; (A-4)

F is the pion decay constant in the chiral limit:

F = 88.3± 1.1MeV. (A-5)
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Therefore, replacing the above relations in Eq. (A-1), we obtain:

〈ψ̄ψ〉u,T = 〈ψ̄ψ〉u,0

{
1 +

〈ψ̄ψ〉π
〈ψ̄ψ〉u,0

+ 2
c

F 2

T

V

[ ∑
i∈mesons

∂ lnZM (T, V, µXa ,mi)

∂mi

σi
(m2

π)phys

+
∑

i∈baryons

∂ lnZB (T, V, µXa ,mi)

∂mi

σi
(m2

π)phys

 (A-6)

We now need to calculate the strange quark condensate, 〈ψ̄ψ〉s,T . We proceed in a similar

way as for the light quark condensate:

〈ψ̄ψ〉s,T = 〈ψ̄ψ〉s,0 + 〈ψ̄ψ〉K +
T

V

[ ∑
i∈mesons

∂ lnZM (T, V, µXa ,mi)

∂mi

∂mi

∂ms

+
∑

i∈baryons

∂ lnZB (T, V, µXa ,mi)

∂mi

∂mi

∂ms

 . (A-7)

〈ψ̄ψ〉s,0 is the zero-temperature value of the strange condensate, which is related to 〈ψ̄ψ〉u,0
by QCD sum rules [31]:

〈ψ̄ψ〉s,0 = 0.8〈ψ̄ψ〉u,0 (A-8)

〈ψ̄ψ〉K is the kaon contribution to the strange condensate:

〈ψ̄ψ〉K =
∂ lnZM (T, V, µXa ,mK)

∂mK

〈ψ̄ψ〉u,0c
2mKF 2

. (A-9)

The strange mass dependence of hadrons and resonances can be written as:

∂mi

∂ms
=
σi,s
ms

= σi,s
〈ψ̄ψ〉u,0c
m2
KF

2

mu +ms

ms
; (A-10)

the sigma terms σi,s involving strange quarks are taken from Ref. [27]. The sum over

mesons in the square brackets of Eq. (A-7) does not include kaons.

The ratio (mu +ms)/ms is equal to 29.15/28.15 for our collaboration, and to 11/10 or

21/20 for the hotQCD collaboration. We therefore have:

〈ψ̄ψ〉s,T = 〈ψ̄ψ〉u,0
{

0.8 +
∂ lnZM (T, V, µXa ,mi)

∂mK

c

2mKF 2

+
T

V

c

m2
KF

2

mu +ms

ms

[ ∑
i∈mesons

∂ lnZM (T, V, µXa ,mi)

∂mi
σi,s

+
∑

i∈baryons

∂ lnZB (T, V, µXa ,mi)

∂mi
σi,s

 (A-11)
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B. Continuum results

In this paper we presented lattice data with Nt = 8, 10, 12 and 16. Our continuum extrap-

olation is based on these resolutions assuming a ∼ 1/N2
t behaviour. We used a fitted spline

interpolation on the data. We summarize the results in Table 3.

In order to determine the transition temperatures we followed Ref. [30] and applied

a combined fitting method weighting among various scenarios. The result is a robust

estimate. Note that the inflection points obtained using this method do not necesserily

agree with the inflection point of the mean values of Table 3. Clearly, in an almost straight

band (T dependent results with error bars) one can draw various curves with different

inflection points. That is the reason, why we emphasize more the complete temperature

dependence than the individual Tc values.

T [MeV] χs2/T
2 LPolyakov 〈ψ̄ψ〉R ∆l,s

125 0.08(1) 0.015(3) 0.07(1) 0.89(3)

130 0.10(2) 0.022(2) 0.08(2) 0.85(4)

135 0.12(2) 0.028(2) 0.099(5) 0.81(1)

140 0.14(2) 0.033(3) 0.118(8) 0.76(2)

145 0.18(2) 0.045(4) 0.155(8) 0.67(2)

150 0.20(2) 0.059(4) 0.188(6) 0.59(1)

155 0.24(2) 0.073(6) 0.223(9) 0.49(3)

160 0.30(2) 0.091(8) 0.276(9) 0.37(2)

165 0.35(2) 0.109(6) 0.315(6) 0.28(1)

170 0.40(2) 0.13(1) 0.350(8) 0.20(2)

175 0.44(2) 0.157(7) 0.372(7) 0.14(1)

180 0.48(2) 0.178(7) 0.386(7) 0.11(1)

185 0.51(2) 0.199(7) 0.399(4) 0.08(1)

190 0.55(2) 0.226(6) 0.408(6) 0.063(9)

195 0.59(2) 0.25(1) 0.413(5) 0.051(5)

200 0.63(2) 0.276(6) 0.419(3) 0.039(5)

205 0.65(2) 0.300(6) 0.424(5) 0.031(4)

210 0.68(2) 0.326(7) 0.428(3) 0.024(4)

215 0.70(2) 0.350(7) 0.429(4) 0.023(4)

220 0.73(2) 0.38(1) 0.433(3) 0.018(3)

Table 3: The continuum behaviour of our observables in the transition region (please note that

there is an uncertainty of about 2% in the temperature values corresponding to the systematics of

setting the scale).
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