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The correlation theory of the 
chemical bond
Szilárd Szalay1, Gergely Barcza1, Tibor Szilvási2,3, Libor Veis4 & Örs Legeza1

The quantum mechanical description of the chemical bond is generally given in terms of delocalized 
bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, 
in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, 
although the structure of multiorbital correlations is far richer; and, in the case of bonds established by 
more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the 
first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling 
the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the 
formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that. 
These make it possible to characterise quantitatively, how well a bonding picture describes the chemical 
system. As proof of concept, we apply the theory for the investigation of the bond structures of several 
molecules. We show that the non-existence of well-defined multiorbital correlation clustering provides 
a reason for debated bonding picture.

Since quantum theory is a probabilistic theory, it is not surprising that using concepts of quantum information 
theory1, 2 turns out to be fruitful in several fields of research in which quantum theory is involved. Maybe the most 
important notion in a probabilistic theory is correlation3, and, in quantum systems, also entanglement4, 5. Taking 
their investigation as a guiding principle has already led to important achievements in several fields of research3, 6–8,  
recently also in quantum chemistry6–20.

The notion of chemical bond21 is a very useful concept in chemistry. It originated at the beginning of chem-
istry, it is expressive for the classically thinking mind, and the errors arising from the approximative nature of 
the concept can often be ignored. In the first half of the twentieth century, however, we learned that the proper 
description of the microworld is given by quantum mechanics. Quantum mechanics gives more accurate results 
for chemical systems than any preceding model, however, it is very inexpressive for the classically thinking mind. 
One of the most used quantum mechanical concepts of the chemical bond is the valence bond theory22, among 
others23, 24, forming the bonds between atoms by overlap of the atomic orbitals. The valence bond theory com-
plements the molecular orbital theory25, distributing pairs of electrons in bonding molecular orbitals delocalized 
over the system. In this work, in the spirit of the valence bond theory, we study correlations among the orbitals 
localised on individual atoms.

Indeed, studying the two-orbital correlation pattern in molecular systems in equilibrium gives us the hint that 
the correlations must be related to the chemical bonds: strong two-orbital correlations can be observed between 
the orbitals which are involved in the given bond8, 10, 12–20, 26. Simple covalent bonds formed by two atomic orbitals 
fit well into this two-orbital correlation picture. However, there are more complicated bonding scenarios with 
electrons shared by multiple atoms, in this case some true multiorbital correlation picture should be used27. (So far, 
multiorbital correlations were investigated by the use of the notion of two-orbital correlation only7, 8, 10, 12–20, 26, 28). 
The reason for this is twofold. On the one hand, such bonds, e.g., a delocalized ring in a benzene molecule, cannot 
be considered as a “sum” of two-orbital bonds, but a true multiorbital bond. On the other hand, in multiorbital 
systems, hidden correlations may occur, that is, there may be strong multiorbital correlation among the orbitals in 
a cluster even if the two-orbital correlations are weak.
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In this work we provide the true multiorbital correlation theory, consisting of a framework for handling the 
structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the definition 
together with an algorithm for the multiorbital correlation clustering. The presented theory significantly outgrows 
the multipartite entanglement theory27, on which it is based, namely, in the last three items mentioned just above. 
(The detailed construction is presented in the Supplementary). We adopt the principle that bonds are where the 
electrons can freely move among atoms, and this is reflected in the correlations of occupations of localised orbit-
als. Then we show illustrative results by investigating the multipartite correlations in several molecules showing 
multiorbital bonds. We give quantitative characterisation how well a bonding picture describes the chemical 
systems. We also illustrate that in the debated case of the dicarbon molecule, there is no well-defined multiorbital 
correlation clustering, which provides a reason for the ambiguous bonding picture29–33. This is not only the first 
true multiorbital correlation based study of the chemical bond, but also the first application of true multipartite 
correlation based techniques in physics.

We emphasise that the notions of correlations are basis dependent. We employed two basis sets in this study, 
standard STO-3G and STO-6G with optimised exponents, which latter provided HF energy close to HF/cc-pVTZ 
level of theory (see Methods section), together with the localisation procedure of Pipek and Mezey34 to produce 
atomic-like orbitals. All results discussed about the correlation structure of localised orbitals are understood with 
respect to this localisation. For the prototypical molecules which were considered for illustrating our theory, we 
have found that employing the minimal unchanged STO-3G basis set is sufficient for the description of bonding, 
and using a basis set closer to the Complete Basis Set limit have not changed the bonding picture. The results 
using optimised STO-6G basis set are presented in the main text, while the results using unchanged STO-3G basis 
set are also presented in the Supplementary for comparison.

We note that our work is not connected to previous works of de Giambiagi, Giambiagi and Jorge35 regarding 
generalised bond indices based on density-density correlation functions.

Multiorbital correlations
For the quantum mechanical description of the molecule, we use the second quantized picture, that is, the Hilbert 
space of the electronic system is built up by the one-orbital Hilbert spaces, describing the occupation of the 
orbitals36. An orbital can be unoccupied, occupied with one electron of spin up or down, or doubly occupied by 
two electrons of spin up and down, resulting in four-dimensional one-orbital Hilbert spaces. In the Hilbert space 
formalism of quantum mechanics, any linear combination of orbitals is an orbital, however, the interpretation, or 
physical properties single out some of them. Correlations among orbitals are not invariant under such nonlocal 
(among-orbital) operations. In order that the correlations express some connection among local objects (atoms), 
it is necessary that the orbitals are localised on the atoms.

So, for the description of (the electronic system of) the molecule, we consider m localised, atomic-like orbitals. 
Let M, stands for “molecule”, denote the set of (the labels of) these orbitals. We aim at describing the correlations 
in an L ⊆ M set of orbitals (cluster). (If L = M then the correlations in the whole molecule is considered). In gen-
eral, the state of the full electronic system of the cluster L can be described by the density operator1, 37, 38 ρL. The 
reduced state of a (sub)cluster X ⊆ L can be described by the reduced density operator1, 37, 38 ρX. If the cluster of 
orbitals L can be described by a state vector |ψL〉 (for example, when a given eigenstate of the whole molecule is 
considered), then its density operator is of rank one, ρL = |ψL〉〈ψL|, called a pure state. Its reduced density operator 
is mixed (not of rank one) in general, which is the manifestation of the entanglement4 of (sub)cluster X and the 
rest of the cluster L\X.

The correlation can be defined with respect to a split of the M set of the orbitals27, 39. Let ξ denote such a split, 
that is, a partition40 ξ = {X1, X2, …, X|ξ|} ≡ X1|X2|…|X|ξ|, where the clusters X ∈ ξ, called parts, are disjoint subsets 
of the cluster L, and their union is the full cluster L. A natural comparison of partitions is the “refinement”: we say 
that partition υ is finer than partition ξ, if the parts of υ are contained in the parts of ξ. The set of the partitions of 
L is denoted with Π(L). (For illustrations, see Supplementary Fig. S1). The measure of correlation with respect to 
this split is the ξ-correlation27,

∑ρ ρ ρ= − .ξ
ξ∈

C S S( ): ( ) ( )
(1)

L
X

X L

Here S(ρ) = −tr ρ ln ρ is the von Neumann entropy1, 37. As a special case, the i|j-correlation

ρ ρ ρ ρ ρ= + − =( ) ( ) ( ) ( ) ( )C S S S I , (2)i j i j i j j i j i j i j{ , } { , } { } { , } { , }

being the well-known (two-orbital) mutual information1, 37, 41, has already been used7, 8, 10, 12–20, 26, 28. The 
ξ-correlation is zero if the state is uncorrelated with respect to ξ (it can be written in a product form of reduced 
states of clusters X ∈ ξ); and nonzero otherwise, characterising the strength of the correlation among the parts 
X ∈ ξ. This comes from the information-geometrical meaning of this quantity: it characterises how “far” the state 
is from the states uncorrelated with respect to ξ. (For more details of the construction, see the Supplementary). 
Note that Cξ is larger for finer partitions, (this is called multipartite monotonicity27), it is zero for the trivial split 
ξ = = L{ } , and it takes its maximum, C⊥, for the finest split ξ = ⊥ = {{i} | i ∈ L}. The latter quantity is also called 
total correlation42–46,
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(Note that if cluster L is described by a pure state, e.g., if L = M, then S(ρL) = 0, and the correlation is entirely 
quantum entanglement4, 5, 27). It is easy to check the following sum rule46, valid for any partition ξ,

∑ ρ ρ ρ+ =
ξ

ξ
∈

⊥ ⊥C C C( ) ( ) ( ),
(4)X

X X L L,

that is, the total correlation is the sum of the total correlations inside the parts plus the correlation with respect 
to the partition.

We would also like to characterise the correlations in an overall sense, that is, without respect to a given 
partition. There are several ways of this27, here we consider two of them. Let us introduce the k-partitionability 
correlation and the k-producibility correlation, respectively,

ρ ρ ρ ρ= =
ξ ξ

ξ
ξ ξ

ξ−
| |≥

−
∀ ∈ | |≤
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(5)k L k L k L X X k Lpart
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for 1 ≤ k ≤ |L|. These characterise two different (one-parameter-) notions of multiorbital correlations. The 
k-partitionability correlation is zero if the cluster can be split into at least k parts which are uncorrelated with one 
another, and the correlations are restricted only inside those parts; and nonzero otherwise, characterising the 
strength of this kind of correlation. In general, Ck-part increases with k, and it jumps after the number k of parts 
into which L can approximately be split. The k-producibility correlation is zero if the cluster L contains correlated 
(sub)clusters of size not larger than k; and nonzero otherwise, characterising the strength of this kind of correla-
tion. In general, Ck-prod decreases with k, and it jumps at the size k of the largest part in the partition into which L 
can approximately be split. As special cases, C|L|-part = C1-prod = C⊥ grabs all the correlations, it is zero if there is no 
correlation at all in the cluster L, that is, its state is a product of the states of orbitals; and nonzero otherwise. On 
the other hand, C2-part = C(|L| − 1)-prod is sensitive only for the strongest correlations, it is nonzero if the cluster L is 
globally correlated, that is, its state is not a product of states of two (or more) clusters; and zero otherwise. 
(C1-part = C|L|-prod =  C  = 0. For other values of k there are no such coincidences among the partitionability and 
producibility correlations, however, the relation Ck-part ≥ C(|L|−k+1)-prod holds. Also, the bounds Ck-part ≤ 2(k − 1) 
(ln4), Ck-prod ≤ 2(|L| − k) (ln4) hold. For more details, see the Supplementary).

The tools (1) and (5), despite being so simple, are proven very useful in a wide range of applications for the 
characterisation of multiorbital correlations in the electronic system of molecules. In the sequel, we show four 
of these applications. Illustrating these, we present numerical results for several prototypical molecules, namely 
benzene, pyrrole, borole, cyclobutadiene, furan, thiophene, and the sequence C2H2x for x = 1, 2, 3 and C2.

Applications
Application 1: Molecule, formed by bonds.  Our fundamental principle is that, in the equilibrium, the 
bonds are almost uncorrelated with one another, and the orbitals involved in a bond are strongly (multiorbital) 
correlated. Using the tools introduced above, we formulate this principle, and we demonstrate it for the aforemen-
tioned molecules.

An ansatz for the bond structure is given by a partition β = B1|B2|…|B|β| ∈ Π(M) (bond split), representing the 
molecule as a set of bonds (represented by B ⊆ M sets of orbitals), together with some nonbonding orbitals (e.g., 
core orbitals or lone pairs, for those, |B| = 1). Then the β-correlation Cβ(ρM), given in (1), characterising the cor-
relation with respect to the ansatz β, expresses how well this ansatz describes the physical situation: the lower the 
Cβ the better the ansatz from a purely information-theoretical point of view. The aim of this application is to find 
the bond split β (if exists) from ab initio data, without taking into account anything which can a priory be known 
about the bond structure in quantum chemistry. We call this multiorbital correlation clustering.

Since in a real electronic system one cannot expect such a simple ansatz to be exactly valid (Cβ = 0), we actu-
ally pose the question, which ansatz β is the best choice for the description of the bonds from a physical chemical 
point of view. Being the best, however, is a delicate question. Note that, on the one hand, C  = 0, for the trivial split 

β = , which takes the whole molecule to be one big bond. On the other hand, Cβ grows with respect to the 
refinement of β, and takes its maximal value C⊥, the total correlation (3), for the finest split β = ⊥, which excludes 
nontrivial bonds. These extremal cases, obviously, do not give proper descriptions of the bond structure of a mol-
ecule, since, on the one hand, there can be clusters weakly correlated but not uncorrelated with the remaining part 
of the molecule, on the other hand, it is not allowed to neglect strong correlations. Instead of these, we have to be 
able to split the molecule into weakly correlated clusters consisting of strongly correlated orbitals. In order to grasp 
the meaning of the multipartite correlation clustering, we have to be able to decide about a given ξ, if it is a good 
ansatz, or it is worth considering a ξ′, which is “a bit” finer than ξ. That is, we have to investigate the difference 
Cξ′ − Cξ, where ξ′ is finer than ξ, and there is no other partition between them. We seek β, for which, while ξ is 
coarser than β, this difference is small if ξ′ is coarser than β, but large, if ξ′ is not coarser than β. If there exists such 
a β, then it is meaningful to consider the electronic system to be weakly correlated bonds consisting of strongly 
correlated orbitals, and this is described by β. (For the whole construction, see the Supplementary).

Here we face the problem that verifying that this definition holds for a given partition (calculating S(ρX) for 
all clusters X ⊆ M, needed for the calculation of Cξ for all partitions ξ) is numerically prohibitive. We can decrease 
the demands by successive refinement of the partitioning (bipartitioning of one cluster in each step) following the 
smallest increase in Cξ. One can show that if there exists a β satisfying the definition above, then the successive 
refinement goes through β, Cξ increases slowly until β, and rapidly after β. (For the whole construction, see the 
Supplementary).

We can also have a hint for the path of the successive bipartitioning. Consider the γ = G1|G2|…|G|γ| cluster-
ing based on the “connectivity” with respect to the two-orbital correlations (2). That is, the parts G ∈ γ are the 
sets of orbitals being the vertices of the connected components of the two-orbital correlation graph8, 28. (This is 
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the graph with vertices being the orbitals i ∈ M and with edges of weights Ci|j(ρ{i,j}) above a threshold Tb. We call 
this two-orbital correlation clustering). It is proven to be a good strategy to do the successive bipartitioning with 
respect to γ, that is, not to split apart the parts of γ. Following this strategy, one reaches γ; Cξ increases rapidly 
after γ, but it is not sure that Cξ increases slowly before γ. This is because of the possibility of the existence of hid-
den correlations, which is an interesting feature of the multiorbital setting. For example, there exist states in which 
all two-orbital correlations (2) are zero, but the states are correlated as a whole, that is, they cannot be written in 
a nontrivial product form (see the Supplementary). This means that if we follow the above strategy, then Cξ may 
change rapidly before we reach γ. In this case, β does not equal to γ, but coarser than γ.

We have investigated the two-orbital and the multiorbital correlation clustering for the aforementioned 
molecules.

The two-orbital correlations are drawn by different shades of grey lines in subfigures (a) of Figs 1, 2 and 3. The 
two-orbital correlation clusterings γ are based on the appropriate threshold values Tb. The distributions of 
two-orbital correlations, and the possible two-orbital correlation thresholds Tb leading to the known bond struc-
ture in the given cases are shown in subfigures (b). For C2H2, there is a much wider range for ′Tb, leading to triple 
bond in γ′, than for Tb, leading to double bond in γ, and for C2, there is a much wider range for ′Tb, leading to 
quadruple bond in γ′, than for Tb, leading to triple bond in γ. A drawback of the two-orbital correlation clustering 
method is that, although the two-orbital correlation (2) is bounded by 0 ≤ Ci|j ≤ 2(ln4) uniformly, a uniform 
threshold covering all the cases is contained in a quite narrow range 0.269(ln4) < Tb ≤ 0.307(ln4). The reason for 
this is that an orbital seems to be forced to share its (two-orbital-)correlations among the ones strongly correlated 
with it, which may be a manifestation of the monogamy of entanglement47 in correlations. (Different thresholds for 
the different cases may be obtained based on the separation of the correlation scales, however, this leads to a 
bond-interpretation rather arbitrary).

The multiorbital correlation clustering β, determined by the use of the method described above, is drawn 
by solid red lines in subfigures (a) of Figs 1, 2 and 3. The values of Cξ during the successive bipartitioning are 
shown in subfigures (c). In the cases of the cyclic molecules (Figs 1 and 2) we could find a well-defined β bond 
split, after which the value of Cξ jumps about at least twice as large as the maximal step before that. Note that in 
certain positions, some humps are observed in the tendencies Cξ (designated with red rectangles). These are the 
effects of correlated clusters of size more than two: When the successive bipartitioning reaches such a cluster, 
following the first large step, smaller steps become possible, leading to this concave behaviour. Such humps are 
coming from two origins. The more characteristic one is the cluster of the inner bonding 2pz orbitals (denoted 
with Xin in the figures). In the cases of borole and cyclobutadiene, these humps can be found directly before β, they 
are not steep enough to keep these orbitals together during the successive bipartitioning, contrary to those in the 
cases of benzene, pyrrole, furan and thiophene, when these humps can be found after β. In this way we can distin-
guish between aromaticity and antiaromaticity. On the other hand, in the cases of furan and thiophene (Fig. 2), 
there is an additional weaker multiorbital correlated structure in each case besides the aromatic rings, due to the 
hyperconjugative interaction of the lone pair with the adjacent σ-bonds19 (denoted with Xhc in the figures). The 
correlations in them are not strong enough to keep these orbitals together during the successive bipartitioning. 
(The almost uniform increase after β comes from the bipartitioning of the two-orbital clusters). In the cases of the 
C2H2x sequence (Fig. 3), it can be seen how the correlation picture becomes more and more fuzzy. Interestingly, 
for the case of C2H2, investigating the tendency Cξ during the successive bipartitioning in subfigure (c), one can 
see that it changes significantly at the partition leading to a double bond β (=γ), and there is a much less signif-
icant change at the partition leading to a triple bond β′ (=γ′). For bipartite correlation clustering, γ′ were more 
plausible than γ, however, here β seems to be more plausible than β′. This is indeed a very interesting observation, 
which might be to some extent an indication of hidden correlation (β is coarser than γ′). Note however, that 
despite not being divided in two in our multiorbital correlation point of view, the four-orbital bond does not con-
tradict the classical picture of triple-bonded C2H2, as it contains four electrons. For the case of C2, investigating 
the tendencies Cξ during the successive bipartitioning in subfigure (c), one cannot give a well-defined bond split 
β besides the 1 + 8 + 1-orbital partition, because of the high multiorbital correlation of the eight orbitals. (The 
splits γ and γ′, given by the two-orbital correlation clustering, are drawn by solid orange lines in subfigure (a). In 
subfigure (c), we show two different paths of the successive refinement in the partitioning of the eight bonding 
orbitals, the upper one shows a more significant hump, while the lower one leads through the triple bond γ). That 
is, according to our observations, there exists no well-defined multiorbital correlation clustering. The bonding 
situation in the multireference C2 is well known as a long-standing puzzle, and several bond orders have been 
suggested, including the extensively debated quadruple bond29–33. In spite of the fact that four strong two-orbital 
correlations have been found, from the reason mentioned above, we cannot give a decisive multiorbital correla-
tion answer on the bond order of C2.

Application 2: Bonds, formed by orbitals.  The bonds, that is, the highly correlated clusters, given by the 
parts B ∈ β, are identified in the previous point. Now, we can investigate the correlations inside the bonds B ∈ β. 
For this purpose, we use the k-partitionability and k-producibility correlation Ck-part,B and Ck-prod,B, respectively, 
(see (5)), both of them are considered with respect to the splits Π(B).

The results are again summarised in Figs 1, 2 and 3. For the two-orbital bonds B = {i, j} ∈ β, the important 
quantities boil down to the two-orbital correlation (2), C2-part,{i,j} = C1-prod,{i,j} = Ci|j. Its magnitude can be read off 
from subfigures (b). More interesting is the case of bonds consisting of more than two orbitals. The 2pz orbitals 
(contained in Xin ⊂ M) in the cases of benzene, pyrrole, furan and thiophene form aromatic bond, and in the cases 
of borole and cyclobutadiene do not. This can be seen in the full increasing and decreasing tendencies −Ck Xpart, in

 
and −Ck Xprod, in

, shown in subfigures (d): on the one hand, −C X2 part, in
 =  − −C X X( 1) prod,in in

 is high in the four aro-
matic cases, that is, the orbitals in Xin cannot be split even into two parts, and, accordingly, the greatest part is of 
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size |Xin|; on the other hand, −C X2 prod, in
 and −C X2 part, in

, respectively, −C X3 part, in
 are low in the two antiaromatic 

cases, that is, the orbitals in Xin can be split into parts of size at most 2, their number are 2, respectively 3. So we 
can distinguish between aromaticity and antiaromaticity also in this way. The orbitals participated in the hyper-
conjugative interaction in furan and thiophene (contained in Xhc ⊂ M) show weaker correlation than the ones in 
the aromatic ring. In the cases of the C2H2x sequence, the orbitals participating in the bonds between the carbon 
atoms (contained in Xin) are getting more and more multiorbital-correlated. For C2H4, −C X2 part, in

 and −C X2 prod, in
 

are near zero, that is, the two two-orbital bonds can be considered independent. For C2H2, −C X2 part, in
 and 

−C X4 prod, in
 are negligibly low, while −C X3 part, in

 is significant, leading again to a double-bond, containing a 
four-orbital one. For C2, −C X2 part, in

, although being relatively low, does not seem to be completely negligible. In the 
latter two cases, we can see now from a local point of view, which was proposed in the previous Section from a 
global point of view, that Xin is not divided completely into independent bonds.

Application 3: Molecule, formed by atoms.  An atom is now represented by an A ⊆ M set of orbitals, 
where the orbitals i ∈ A are the ones localised on the given atom. The molecule can be considered as a set of atoms, 

Figure 1.  Partitioning and multipartite correlations for the benzene, pyrrole, borole and cyclobutadiene 
molecules. (a) Schematic view of the molecules: the dots represent atomic orbitals, the ones localised on an 
atom are encircled in dashed blue lines, this is the atomic split α, the ones strongly correlated with each other 
are encircled in solid red lines, this is the bond split β. Strength of edges represent two-orbital correlations 
(shaded by a logarithmic scale). The correlations Cα and Cβ are also shown. (b) The distributions of the two-
orbital correlations. The possible ranges of two-orbital correlation thresholds Tb are also shown. (c) The Cξ 
tendencies of the successive bipartitioning. The humps arising from the bipartitioning of multiorbital correlated 
clusters are indicated with red frames. The maximal step before β and the minimal step following β are also 
shown. (d) The correlations −Ck Xpart, in

, −Ck Xprod, in
 for the inner bonding (2pz) orbitals, contained in Xin. (e) The 

correlations Ck-prod,A, Ck-part,A for selected atoms A. (The numerical values of the correlation measures are given 
in units of ln4).
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Figure 2.  Partitioning and multipartite correlations for the furan and thiophene molecules. The same types of 
data are shown as in Fig. 1. (d) The correlations for the orbitals participated in the hyperconjugative interaction, 
contained in Xhc are also shown. (e) For the thiophene, the correlations among the valence orbitals, contained in 

′AS are shown.
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this can be represented by the split α = A1|A2|…|A|α| ∈ Π(M) (atomic split) of the molecule. Here an important 
quantity is the α-correlation Cα(ρM), and the α-coarsened k-partitionability and k-producibility correlations 
Ck-part,α (ρM), Ck-prod,α (ρM). These characterise the different aspects of the correlations with respect to the atomic 
split α.

The atomic split α for the aforementioned molecules are drawn by dashed blue lines in subfigures (a) of Figs 1, 
2 and 3. The values of Cα are also shown. Calculating Ck-part,α (ρM) and Ck-prod,α (ρM) is infeasible, due to the large 
density matrices of high entropy, however, note that we already have the largest members of these hierarchies, 
since C|α|-prod,α (ρM) = C1-prod,α (ρM) = Cα (ρM). The value of this is near C⊥(ρM), that is, as can be expected, the 
atoms are strongly correlated with one another in the molecules.

Application 4: Atoms, formed by orbitals.  The orbitals localised on given atoms are collected in the 
parts A ∈ α in the previous point. Now, we can investigate the correlations in the atoms A ∈ α. For this purpose, 
we use the k-partitionability and k-producibility correlation Ck-part,A and Ck-prod,A, respectively, (see (5)), both of 
them are considered with respect to the splits Π(A).

We have investigated the nontrivial (non-H) atoms in the aforementioned molecules. Although not all the 
positions of the C atoms are equivalent in the molecules, the correlation measures take roughly the same values 
for those. The full increasing and decreasing tendencies Ck-part,A (ρA) and Ck-prod,A (ρA) are shown in subfigures (e). 
Note that the values of these are usually smaller than the correlations in the bonds, by about two orders of mag-
nitude. In the sequence C2H4, C2H2 and C2 we can also see, how the increase of the multiorbital correlations leads 
to more and more strong correlations among the orbitals localised on the same C atom. The hyperconjugative 
interaction leads to the same results on the O and S atoms in furan and thiophene.

Figure 3.  Partitioning and multipartite correlations for the C2H2x molecules. The same types of data are shown 
as in Fig. 1.
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Remarks on the applications.  Having the results of all the four applications in hand, we can now observe 
how the sum rule (4) works. In the first two applications, when we considered the β bond split, ∑B∈β C⊥,B (ρB) 
was large and Cβ (ρM) small; while in the second two applications, when we considered the α atomic split, 
∑A∈α C⊥,A (ρA) was small and Cα (ρM) large, and these are connected by the sum rule (4) as

∑ ∑ρ ρ ρ ρ ρ= + = + .
α

α
β

β⊥
∈

⊥
∈

⊥C C C C C( ) ( ) ( ) ( ) ( )
(6)M

A
A A M

B
B B M, ,

Based on these, we can consider the molecule as the weakly correlated set of strongly correlated bonds, or the 
strongly correlated set of weakly correlated atoms. Note that this holds for the equilibrium structure, which is 
the only one considered here. If the internuclear distances are altered, which is a method for the investigation of 
bond-formation12, 14–16, 20, we expect that the above picture is altered accordingly, however, the sum rule (6) holds 
with altered numerical values.

On the other hand, we may give a definition of the molecule from a correlation point of view: the orbitals M 
form a molecule, if there exists no nontrivial partition which is coarser than α, describing the atoms, and β, 
describing the bonds, that is, α β∨ = . (In these cases, intermolecular bonds do not appear in β).

Conclusions and outlook
We have presented a novel theory of the chemical bond which is inspired by quantum information theory and 
based on multiorbital correlations. Contrary to the literature, where only two-orbital notions were considered, 
we have invented and used true multiorbital notions. Illustrating the use of this theoretical toolbox, we have 
investigated several small prototypical molecules and showed how in a black-box manner the bonding picture of 
a molecule naturally comes out from the multiorbital correlations of occupations of localised atomic-like orbitals. 
We have identified the bonds with the strongly correlated clusters, and characterised quantitatively how well a 
given bonding picture describes these molecules. Our tools are, e.g., able to distinguish between aromaticity and 
antiaromaticity in cyclic conjugated systems. On the example of the sequence C2H2, C2H4, and C2H6, we have seen 
that the increase of wide-range multiorbital correlations results in the decrease of the well-posedness of multior-
bital correlation clustering. In the extreme case of C2, this leads to the nonexistence of a well-defined multiorbital 
correlation clustering, which provides a reason for the debated bonding picture.

We would like to emphasise again that the treatment in terms of true multiorbital correlations seems to be a 
very natural point of view in the investigation of bonding among more than two atoms. The multiorbital correla-
tion based quantities have their statistical meaning on their own right, and we have already seen several of their 
applications. However, it would be interesting to relate them to other standard quantities in quantum chemistry, 
quantifying, e.g., bond strength or aromaticity. Besides aromaticity, this treatment may find applications also in 
multicenter transition metal cluster chemistry.

We have seen how the multiorbital correlations characterise the chemical bonds, if the orbitals are localised. 
We note, however, that the theory can also be applied to any (orthonormalized) sets of orbitals, then it character-
ises the correlations among those orbitals. These, of course, do not have to be related to the chemical bonds, but 
may be related to other chemical properties.

From the point of view of theoretical power and beauty, the multiorbital correlation theory provides a much 
more natural and flexible treatment for multiorbital situations than using only two-orbital correlations, done in 
preceding works. An example supporting this is given by the (6) application of the sum rule (4). Contrary to this, 
a treatment based only on two-orbital correlations is theoretically hard to grasp, due to monogamy-like issues of 
correlations in quantum systems. This is why the notion of hidden correlations is not well-defined, and to formu-
late a clear-cut (quantitative and/or operative) definition is an open question.

Methods
For the numerical results shown in this paper we have performed calculations using the quantum chemistry ver-
sion of the density matrix renormalization group (QC-DMRG) algorithm36, 48–56. We have controlled the numer-
ical accuracy using the dynamic block state selection (DBSS) approach36, 44, 57 and the maximum number of block 
states varied in the range of 500–4000 for an a priory set quantum information loss threshold value χ = 10−6. 
The ordering of molecular orbitals along the one-dimensional topology of the DMRG was optimised using the 
Fiedler approach10, 15 and the active space was extended dynamically based on the dynamically extended active 
space (DEAS) procedure6, 36. We have used DMRG to obtain the optimised MPS wavefunction, which was then 
used to construct the reduced density matrices, from which the correlation measures (1) and (5) were calculated.

Geometries have been optimised at HF/cc-pVTZ level of theory which yielded sufficient geometries in 
accordance with higher level methods. To obtain the localised atomic orbitals for the DMRG procedure, we first 
optimised the exponents of the STO-6G basis set using the MRCC program58–60 which approach resulted in sim-
ilar HF energy to the cc-pVTZ basis set result within 10−2 Hartree. Then we used the Pipek-Mezey procedure34 
implemented in MOLPRO61 Version 2010.1, with tight threshold 10−12, and minimised the number of atomic 
orbitals contributed to each localised orbitals. All localised orbitals have been used in the DMRG procedure thus, 
as a result, we have carried out calculations at the FCI limit for all molecules. Then the results close to the FCI 
limit have been analysed in the paper19. We note that we also calculated all results using HF/STO-3G geometry 
and localised STO-3G orbitals, with literature value exponents, and found neglectable difference compared to the 
results presented in the manuscript. (These results are presented in the Supplementary for comparison). This sug-
gests that our analysis is very robust in general. We note that this robustness is not entirely surprising. Mayer has 
shown62–64 that extracting chemical information from molecular wavefunctions such as bond orders and valence 
indices could also be obtained using only STO-3G basis set.

The datasets generated during and/or analysed during the current study are available from Sz.Sz. on reason-
able request.
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