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ABSTRACT 

In many industrial processes the transfer of reactants from the gas to the liquid 

phase is of essential importance. For these processes several types of mass transfer 

reactors can be found, such as tubular reactors, within those helically coiled pipes. 

The present study concentrates on mass transfer behavior in a helical coiled pipe in 

case of gas-liquid two phase flow system. Oxygen transfer from air bubbles to the 

liquid phase is experimentally investigated via an optical measurement method. The 

colored reaction used for this, is known as the ’blue bottle reaction’.  

INTRODUCTION 

Dietrich et al. [1] visualized gas-liquid mass transfer via a new colorimetric 

technique, using an oxygen sensitive dye. They used resazurin to indicate the mass 

transfer around Taylor bubbles in a straight square channel. Present investigation 

actualizes a similar optical technique in a helical coiled pipe with a different 

indicator: methylene blue. Helical coiled pipes are widely used in the industry, due 

to their large number of advantages. Comparing with straight tubular reactors the 

helical tubular reactors achieve better mixing, mass- and heat transfer properties in 

addition within compact sizes. The background behind these good features can be 

attributed to the spiral shape causing centrifugal force which causes secondary flow, 

or in another appellation Dean-vortices [2].  

First of all, to be able to describe the details of the investigation, a short 

terminology about the helical coiled pipes and two phase flows must be presented. 

Figure 1 gives a schematic illustration about the helical coiled pipe.  

Figure 1 

Schematic illustration of helical coiled pipe 

In Fig. 1 above d is the inner diameter, D is the coil diameter which is also called 

pitch circle diameter (PCD). L is the total length of the tube and l is the length of 

the spirally shaped body. H indicate the pitch of the tube, it means the distance 
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between two adjacent turns. The ratio of inner diameter to coil diameter is called 

curvature ratio (δ) which can be written as follows [3]: 

  
 

 
        (1) 

The flow conditions of this two phase flow system are determined by the 

following variables. Gas hold-up (ε) is the ratio of the flow rates of gas phase and 

the total mixture, which can be written as [4]:  

  
  

     

       (2) 

In equation (2) Qg is the flow rate of the gas phase and the Ql is that of the liquid 

phase. The superficial velocity is the velocity that the gas phase (vsg) or the liquid 

phase (vsl) can reach if both of them flow alone in the tube. So the superficial 

velocity can be calculated from the actual phase flow rate and the cross-sectional 

area of the tube, as follows [5]:  

    
 

   
                

 

   
            (3) 

The mixture passes from the inlet to the outlet during the residence time (t). If we 

assumes that the bubble velocity equal with the mixture velocity, the residence time 

can be written as: 

  
 

     

 
   

 
       (4) 

The aim of the current measurements is the following: visualize and quantify 

mass transfer from oxygen to water in a helically coiled tube in case of various flow 

conditions. During the measurements sixteen measurement points are investigated. 

As seen in Figure 2 the investigated points are embedded in the plug flow regime on 

the flow map, because in this case due to the emerging Taylor-bubbles the mass 

transfer rate is the highest [6]. 

 

 
 

Figure 2 

Flow map for the investigated measurement points  

(Flow map based on the work of Murai et al. [4]) 
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MEASUREMENT METHOD 

 

The used non-intrusive measurement technique is based on a redox indicator, 

namely methylene blue. For this experiment methylene blue (10 mg/l) is added to a 

water-based solution of glucose (40 g/l) and sodium-hydroxide (5 g/l). Glucose in 

alkaline medium can be oxidized easily and the oxidized methylene blue can be 

reduced by the glucose and becomes leucomethylene blue, consequently the blue 

solution becomes colorless. On the other hand, due to the oxidization of 

leucomethylene blue the colorless solution becomes blue. In our case this oxidation 

caused color change is utilized for the mass transfer visualization. Figure 3 shows 

the oxidized and reduced forms of methylene blue.  

 

 
 

Figure 3 

Structure of the oxidized and reduced state of methylene blue  

 

The investigated helical pipe is made by glass and it is placed in a PMMA 

decagon prism, which is filled up with glycerin. Due to same refractive indices the 

wall of the glass tube becomes nearly invisible for the camera. The parameters of 

the helical pipe are the following: d=6 mm, D=25 mm, H=15 mm, l=210 mm, 

L=1318 mm, δ=0.24. During the measurements, the liquid solution is circulated in 

the helical pipe by a speed controlled gear pump (Watson Marlow 5003U 

Micropump). The gas phase is controlled by a mass flow controller (Bronkhorst El-

flow F-201CV) and it is added to the liquid phase using a T-junction. Due to the 

backlight illumination (40W white LED lamp, type: Strakler EEK) the dissolved 

oxygen caused liquid colour change is perceived as a light intensity change by the 

camera (Lavision Imager pro HS) and in this way the mass transfer visualization 

become possible. This technique gives integrated information about the whole line 

of sight (depth). For each measurement the camera works with 100 Hz recording 

frequency and 116 μm image resolution. One measurement series can be divided 

into three parts: (i) 50 pictures about the oxygen-free solution, (ii) 3000 pictures 

about the measurement point, (iii) 50 pictures about the saturated blue solution. The 

oxygenation of the liquid (oxidation) and stripping of dissolved oxygen (reduction) 

are carried out with the mini bubble column reactor and this device ensures the 

oxygen-free liquid phase during the measurements. In case of (i) and (ii) helium is 

used to the reduction and oxygen protection, during the oxidation (iii) air is bubbled 

in the reactor. The schematic drawing of the applied measurement system can be 

seen in Figure 4. 



 
Figure 4 

Schematic illustration of the experimental setup with all mentioned subunits:  

helical pipe in side view (1), decagon prism (2), pump (3), mass flow controller (4), 

T-junction (5), LED lamp (6), HS camera (7), mini bubble column reactor (8)  

 

PROCESSING METHOD 

 

After the measurements the pictures are processed using Davis software (LaVision, 

Göttingen, 1989). The goals of the picture post-processing are the following: 

correction of the backlight inhomogeneity, elimination of shadows and reflexions, 

masking out the helix and bubbles and preparation for further processing. The steps 

of the image processing in Davis are: ‘convert to grayscale’, ‘sheet correction’, 

‘geometric mask’, ‘algorithmic mask’ and ‘average’. The results of the 

measurements are RGB pictures; nevertheless during the additional evaluations 

greyscale images are more favourable, so in the first step the RGB pictures are 

converted to grayscale. Using the ‘sheet correction’ intensity differences of the 

backlight can be corrected. For the sheet correction a so-called sheet image is 

needed, which gives information about the intensity distribution of the backlight. 

The geometric mask can be successfully used if masking of fix areas is required. 

For the investigated helical pipe, the applied geometric mask has a dual function: 

first, eliminate the outer area of the helix, and second, mask out inner parts of the 

helical pipe with reflexions, shadows and other optical aberrations which influence 

the results negatively. For algorithmic mask, using an intensity threshold the 

program can distinguish between valuable areas and unimportant areas. In our case 

this kind of masking has become necessary because of the moving bubbles. Due to 

the ‘algorithmic mask’ the bubbles are covered and only the intensity change of the 

liquid phase is visualized. After these operations the ‘average’ function makes an 

average from all images of the series for every pixel. 

After the picture processing the visualized mass transfer had to be quantified 

from the obtained intensity change over the helix. The final average pictures from 

Davis are exported in ‘.DAT’ format to a MATLAB (The MathWorks, U.S.A., 

1984) script and the following calculations are carried out using the software 

package. First of all the intensity of each coil of the helical pipe is averaged. In the 

interest of the progress of mass transfer from gas to liquid phase can be described. 

The progress variable (pv) is defined as:  



   
    
     

       (5) 

where I is the actual averaged intensity value, Ic is the intensity of the totally oxygen 

free solution and Ib is the intensity of the saturated solution. This variable is 

computed in each turn of the helical pipe. The difference between the progress 

variable values of the first and the last spiral characterizes the rate of the mass 

transfer: 

                    (6) 

The progress variable change gives information about the mass transfer rate, but 

this variable is not independent of the residence time. Because of this, a new 

variable is created in favor of the better comparison. The integral time (τ) can be 

calculated by the ratio of the progress variable change (Δpv) and the residence time 

(t), as follows: 

  
   

 
          (7) 

The progress variable and the integral time typify well the characteristic and the 

speed of mass transfer in the various flow conditions. Nevertheless, without 

calibration these parameters do not give numerical values about the amount of 

dissolved oxygen content. For the calibration we relied on the study of 

Dietrich et al. [1]. The base of the calibration is the following: methylene blue 

solutions with different concentrations (nmethylene blue) are saturated and circulated 

through the helical coiled pipe. Due to the described measurement and processing 

method in case of every concentration a progress variable (pv) value is created. 

Using stoichiometry of the reaction between oxygen and leucomethylene blue the 

number of moles of dissolved oxygen (nO2 reacted) can be deduced easily from the 

number of moles of leucomethylene blue (nleucomethylene blue). This can be written in 

the following formula [7]:  

              
               

 
 

                    

 
         (8) 

Due to this method, the connection between the dissolved oxygen concentration 

(C) and the progress variable (pv) is specified as seen in Figure 5. 

 

 
Figure 5 

Calibration curve  

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0 0,2 0,4 0,6 0,8 1 

C
 [

m
g
/l

] 

pv [-] 



RESULTS  

 

The progress variable change (pv) and the integral time (τ) in case of every 

investigated flow conditions typify the effectiveness and speed of the mass transfer. 

Since the calibration curve is linear, the characteristic of the dissolved oxygen 

concentration (C) and the dissolved oxygen concentration per unit time (    is 

proportional like the progress variable change (pv) and the integral time (τ). Due to 

this consideration in this paper just the C and    results are plotted. These plots 

determine the mass transfer characteristic as well as the pv and τ plots and 

additionally give data about the real dissolved oxygen concentrations. Figure 6 

shows the dissolved oxygen concentration (C) as a function of the gas hold-up (ε) 

and the superficial liquid velocity (vsl). 

 

Figure 6 

Dissolved oxygen concentration vs. gas hold-up and superficial liquid velocity  

 

It can be seen in Figure 6 that two types of tendencies can be observed. Firstly, 

the gas hold-up increases leads to the growth of the dissolved oxygen concentration. 

(The vsl=0.22 m/s condition is an exception where besides the gas hold-up change 

the value of the progress variable change stagnates.) Secondly, in case of ε=0.1 and 

ε=0.3 the superficial liquid velocity increase leads to higher oxygen mass transfer 

rate. On the other hand, in case of ε=0.5 and ε=0.6 the effect of superficial liquid 

velocity change are different: although the superficial liquid velocity reduction 

leads to the dissolved oxygen concentration growth but this tendency reaches the 

maximum at vsl=0.27 m/s and then decreases again. The highest dissolved oxygen 

concentration can be observed in case vsl=0.27 m/s, ε=0.6 it is 0.0952 mg/l, and the 

lowest dissolved oxygen concentration can be seen at vsl=0.4 m/s, ε=0.1, it is 

0.0148 mg/l. Smaller superficial velocity means higher residence time (t) so the 

connection time between the phases is higher as well. Thus, it follows that the 

higher oxygen dissolution is maybe just caused by the longest connection time 

between the phases and not because of the increased mass transfer efficiency.  



The residence time independent examination is realized with the help of 

dissolved oxygen concentration per unit time (   , as seen in Figure 7. 

 
Figure 7 

Dissolved oxygen concentration per unit time as a function of the gas hold-up and 

superficial liquid velocity 
 

In case of Figure 7 the gas hold-up growth leads to the mass transfer efficiency 

increases as before, but the effect of the superficial liquid velocity is changed. Clear 

trend cannot be detected, only in case of vsl=0.22 m/s condition can be seen 

significant decrease in the dissolved oxygen concentration per unit time. The 

highest dissolved oxygen concentration per unit time can be observed in case of 

vsl=0.35 m/s, ε=0.6 it is 0.071 mg/ls, and the lowest dissolved oxygen concentration 

per unit time can be seen in case of vsl=0.4 m/s, ε=0.1 it is 0.0068 mg/ls. 

 

CONCLUSIONS 

 

During this research the mass transfer behaviour is experimentally studied in a glass 

helical coiled pipe in case of gas-liquid two phase flow. An experimental method 

which is applicable in the helically coiled pipe for the non-intrusive oxygen-water 

mass transfer investigation is mounted. Using the measurement system the mass 

transfer behavior in case of different flow conditions is determined. Sixteen flow 

conditions are investigated in the plug flow range. The main idea is changing of the 

superficial liquid velocity and the gas hold-up. Based on the results, the following 

conclusions are drawn: 

 The applied optical method is suitable to the investigation of the mass 

transfer behaviour in the helical coiled pipe. 

 Within the investigated range the higher gas hold-up (ε) value causes higher 

mass transfer rate. This tendency can be observed in C as well as   . 



 The dissolved oxygen content (C) is increased when the superficial liquid 

velocity (vsl) is decreased, but this tendency caused by the higher connection 

time in lower superficial liquid velocity. Therefore, the dissolved oxygen 

content is higher but the efficiency of the mass transfer is not. Investigating 

dissolved oxygen concentration per unit time (residence time independent 

examination) clear tendencies cannot be determined between the superficial 

liquid velocity and the mass transfer efficiency. For the accurate 

determination of this relationship additional studies will be needed. 

Overall it can be said that with similar researches the mass transfer behaviors in 

helical flows can be determined. It can support the helical coiled tubular reactors 

designing and this leads optimized mass transfer processes in the industrial area. 
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