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On the ratio of consecutive gaps between

primes

János Pintz∗

Dedicated to Helmut Maier on the occasion of his 60th birthday

1 Introduction

The difference between the consecutive primes, the expression

(1.1) dn = pn+1 − pn,

where P = {pi}∞i=1 denotes the set of primes, has been investigated probably
since the time of the Greeks. The Twin Prime Conjecture asserts

(1.2) dn = 2 infinitely often.

This conjecture settles at the conjectural level the small values of dn.
Concerning the large values even the suitable conjecture is not completely
clear. However, it seems to be that Cramér’s conjecture [Cra1, Cra2]

(1.3) lim sup
n→∞

dn

log2 n
= C0 = 1

is near to the truth. Granville suggested [Gra1, Gra2], just based on the
famous matrix method of Helmut Maier that the correct value of C is instead
of 1 slightly larger

(1.4) C > 2e−γ > 1.

∗Supported by OTKA Grants NK104183, K100291 and ERC-AdG. 321104.
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However, most mathematicians agree that the correct maximal order of dn
should be (log n)2+o(1).

In the present work we give a short overview of the older and the recent
new breakthrough results of small gaps between primes, of the present state
of art of long differences. Our final result will be a common generalization
of them which deals with a problem raised first by Erdős and Turán about
small and large values of

(1.5)
dn+1

dn
.

As it will be clear from the history and from the proof of our new result
we will often refer to important and ingenious results of Helmut Maier, which
often (but not exclusively) use his famous matrix method.

Since there were more than 40 papers discussing small and large values
of dn (or their relations) we will be relatively brief and try to concentrate on
the most important developments.

Due to the prime number theorem,

(1.6)
1

N

N∑

n=1

dn =
pN+1 − 2

N
∼ logN

we have trivially

(1.7) ∆ := lim inf
n→∞

dn
log n

6 1 6 lim sup
n→∞

dn
logn

=: λ.

A) Large gaps between primes

The first non-trivial result, λ > 1, was reached in 1929, when Backlund
[Bac] proved λ > 2. One year later Brauer and Zeitz [BZ] improved this to
λ > 4. Another year later E. Westzynthius [Wes] showed already λ = ∞,
more precisely

(1.8) lim sup
n→∞

dn/ logn

log3 n/ log4 n
> 2eγ ,

where logν n denotes the ν-fold iterated logarithmic function.
Erdős [Erd1] improved this in 1935 to

(1.9) lim sup
n→∞

dn/ logn

log2 n/(log3 n)
2
> 0.
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Finally, three years later Rankin [Ran1] succeeded in showing the function
which is even currently, after more than 75 years the best result, apart from
the constant:

(1.10) lim sup
n→∞

dn/ logn

log2 n log4 n/(log3 n)
2
>

1

3
.

Since, apart from the improvements of the constant 1/3 to eγ (in works
of Ricci, Rankin and Schönhage between 1952–1963), the inequality (1.10)
remained the strongest, Erdős offered in 1979, at a conference in Durham a
prize of USD 10,000 for a proof of (1.10) with an arbitrarily large constant
C in place of 1/3; the highest prize ever offered by him for a mathematical
problem. However, this did not help either in the past 35 years. Nevertheless,
strong analytic methods introduced by Helmut Maier and Carl Pomerance,
combined with the original Erdős–Rankin sieve procedure helped to prove
[MaP] in 1990 (1.10) with C = 1.3126 . . . eγ .

Finally, the current best result, the relation (1.10) with 1/3 replaced by

(1.11) C = 2eγ

was reached by J. Pintz [Pin1]. The methods to reach it involve besides
the classical sieve methods and the large sieve used by Helmut Maier and
Carl Pomerance, a pure graph-theoretical result, which, however, is proved
in [Pin1] using a so-called semi-random method of E. Szemerédi.

B) Chains of Large Gaps Between Consecutive Primes

In 1949 Erdős [Erd4] proposed the problem whether k consecutive prime gaps
dn+1, . . . , dn+k can be simultaneously much larger than its mean value, i.e.
whether

(1.12) lim sup
n→∞

min(dn+1, . . . , dn+k)

log n
= ∞,

and succeeded in showing this for k = 2 in the same work.
30 years later Helmut Maier [Mai1] introduced his famous matrix method

and showed this conjecture even in a stronger form when logn is replaced by
the Erdős–Rankin function (cf. (1.10)). He proved for any k

(1.13) lim sup
n→∞

min(dn+1, . . . , dn+k)/ logn

log2 n log4 n/(log3 n)
2

> 0.
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C) Small Gaps Between Consecutive Primes

Unlike the quick progress in the case of large gaps an analogue of the early
result λ > 4 of Brauer–Zeitz from 1930, i.e. ∆ 6 1/4 was essentially the best
result still even 75 years later before 2005, and it was reached by Helmut
Maier [Mai2] also by his matrix method in 1985.

The first, although unpublished and conditional result was reached by
Hardy and Littlewood (see [Ran2]) in 1926 who showed that the Generalized
Riemann Hypothesis (GRH) implies ∆ 6 2/3. However, the first non-trivial
unconditional result was proved by Erdős [Erd2],

(1.14) ∆ 6 1− c1,

with an unspecified explicitly calculable constant c1 > 0.
After much work, calculating and improving c1, the next breakthrough

came by the large sieve of Bombieri [Bom] and Vinogradov [Vin] which en-
abled Bombieri and Davenport [BD] to eliminate GRH and (incorporating
also Erdős’ ideas into their work) to show unconditionally

(1.15) ∆ 6 (2 +
√
3)/8 = 0.466 . . . .

After five further improvements of Piltjai, Huxley and Fouvry–Grupp this
was reduced to 0.4342. The next big step was the mentioned result of Helmut
Maier [Mai2], the inequality

(1.16) ∆ 6 0.2486.

Twenty years later D. Goldston, J. Pintz and C. Yıldırım succeeded in
reaching the optimal value

(1.17) ∆ = 0

(see Primes in Tuples I and III in [GPY1] and [GPY2]). Further they showed
that dn can be much smaller than log n, in fact it was proved in [GPY3] that

(1.18) lim inf
dn

(logn)c
= 0 for any c > 1/2.

This was further improved by J. Pintz [Pin4] for any c > 3/7 which in
some sense was the limit of the original GPY method as proved by B. Farkas,
J. Pintz and Sz. Gy. Révész [FPR].
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On the other hand, already the first work [GPY1], describing ∆ = 0 in
details contained a conditional theorem. In order to formulate it we will
describe the notion of admissibility for a k-tuple H = {hi}ki=1 of distinct
integers.

Definition. H = {hi}ki=1 (hi 6= hj for i 6= j) is called admissible if for any
prime p the set H does not occupy all residue classes mod p.

This is equivalent with the formulation that
k∏

i=1

(n+hi) has no fixed prime

divisor.

Remark. Although we usually suppose that hi > 0 this is clearly not nec-
essary in view of the consequence which is translation invariant.

We also introduced two connected conjectures which were named after
Dickson, Hardy and Littlewood and which represent actually a weaker form
of Dickson’s prime k-tuple conjecture [Dic].

Conjecture DHL(k, k0). If Hk is admissible of size k, then the translated

sets n + Hk contain for infinitely many n values at least k0 primes if k >
C(k0).

The special case k0 = 2 had special attention because of his connection
with the

Bounded Gap Conjecture. lim inf
n→∞

dn 6 C with a suitable absolute con-

stant C.

The mentioned connection is the simple

Proposition. If Conjecture DHL(k, 2) is true for some k, then the Bounded

Gap Conjecture is true.

To formulate our conditional result we still need the following

Definition. A number ϑ is called a level of distribution of primes if for any
A, ε > 0 we have

(1.19)
∑

q6Xϑ−ε

max
a

(a,q)=1

∣∣∣∣
∑

p6X
p≡a(mod q)

log p− X

ϕ(q)

∣∣∣∣ 6
C(A, ε)X

(logX)A
.
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The result that (1.19) holds with ϑ = 1/2 is the famous Bombieri–Vino-
gradov theorem ([Bom], [Vin]), while Elliott–Halberstam [EH] conjectured
that even ϑ = 1 is a level of distribution.

We can introduce for any ϑ ∈ (1/2, 1] the

Conjecture EH(ϑ). (1.19) is true for ϑ, i.e. ϑ is a level of distribution of

the primes.

We showed in our original work

Theorem ([GPY1]). If EH(ϑ) is true for any ϑ > 1/2, then DHL(k, 2) is

true for k > C1(ϑ) and consequently, lim inf dn 6 C2(ϑ).

Soon after this, Y. Motohashi and J. Pintz [MP], (MR 2414788 (2009d:1132),
arXiv: math/0602599, Feb 27, 2006) showed in the work entitled “A Smoothed
GPY sieve” that (1.19) can be substituted with the weaker condition that
it holds for smooth moduli of q in (1.19) (by that we mean that for moduli
q having all their prime factors below qb – or even Xb – with an arbitrarily
fixed b) and the maximum taken over all residue classes a with (a, q) = 1 can

be reduced to those satisfying
k∏

i=1

(a+hi) ≡ 0 (mod q) which are trivially the

only cases appearing in the proof.
Finally, Y. T. Zhang [Zha] showed that for b = 1

292
the above condition

holds with ϑ = 1
2
+ 1

584
.

This led to the very recent result.

Theorem ([Zha]). DHL(3.5 · 106, 2) is true and consequently lim inf
n→∞

dn 6

7 · 107.

Remark. Y. Zhang attributes the result [MP] to himself (and proves it again
in his work [Zha]) despite the fact that the authors Motohashi and Pintz
called his attention in four subsequent e-mails to their work and asked him to
mention this fact in his manuscript in May–June 2013, when his manuscript
appeared first electronically on the webpage of Annals of Mathematics. He
completely ignored and left unanswered three of them and answered the
fourth one in one line, refusing to add anything on it, based on his assertion
that “when preparing my manuscript I had not read your paper.” Finally
the printed version of his work appeared without any reference to [MP] (see
[Zha]), despite the fact that he described in an interview that he got the idea
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to use a smoothed GPY sieve on July 3rd, 2012 and that was crucial to his
solution [Kla]. This was more than 6 years later than the appearance of “A
smoothed GPY sieve” on arXiv on February 27, 2006.

Some months later the joint effort of many mathematicians showed a
stronger form of Zhang’s theorem in the Polymath 8A project led by T. Tao.

Theorem (Polymath 8A). DHL(632, 2) is true and consequently lim inf
n→∞

dn 6

4680.

Another improved version, proved independently by another refinement
of the GPY method (in spirit closer to an elementary version of the method
worked out in collaboration with S. W. Graham, see [GGPY] and which was
also close to the first attempt of Goldston and Yıldırım [GY] which finally
led to ∆ 6 1/4 in their version) was reached by J. Maynard [May], which
showed the even stronger

Theorem ([May]). DHL(105, 2) is true and consequently lim inf
n→∞

dn 6 600.

T. Tao used the same approach independently and simultaneously with
Maynard and with help of his Polymath Project 8B (involving further new
theoretical ideas and a huge number of computations) they showed

Theorem (Polymath 8B). DHL(50, 2) is true and consequently lim inf
n→∞

dn 6

246.

It is interesting to note that the above methods did not need the results
or ideas of Motohashi–Pintz and Zhang, neither any weaker form of a result
of type ϑ > 1/2.

In complete contrast to this, the Maynard–Tao method shows the ex-
istence of infinitely many bounded gaps (although with weaker numerical
bounds than 600 or 246) with any fixed positive distribution level of the
primes. The first result of this type was proved by A. Rényi in 1947–48
[Ren].

D) Chains of Bounded Gaps Between Consecutive Primes

The original GPY method [GPY1] furnished only under the very strong orig-
inal Elliott–Halberstam Conjecture EH(1) the bound

(1.20) ∆2 := lim inf
n→∞

pn+2 − pn
log pn

= 0.
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Thus it failed to show on EH even DHL(k, 3) for some k. The additional
ideas of Motohashi–Pintz and Zhang helped neither.

Already Erdős mentioned [Erd4] as a conjecture

(1.21) lim inf
n→∞

min(dn, dn+1)

log n
< 1

which was proved in the mentioned work of Helmut Maier [Mai2]. In the
same work he has shown

(1.22) ∆r = lim inf
n→∞

pn+r − pn
logn

6 e−γ

(
r − 5

8
+ o(1)

)
(r → ∞).

This was improved in [GPY2] to

(1.23) ∆r 6 e−γ
(√

r − 1
)2

.

However, as mentioned already, even (1.20) was open unconditionally. In
this aspect the Maynard–Tao method was much more successful, yielding

Theorem (Maynard–Tao). lim inf
n→∞

(pn+r − pn) 6 Ce4r for any r with an

absolute constant C.

2 Consecutive values of dn. Problems of Erdős,

Turán and Pólya

The questions discussed in Section 1 referred to single or consecutive small
values of dn or to analogous problems dealing with solely large values of dn.
In 1948 Erdős and Turán [ET] showed that dn+1 − dn changes sign infinitely
often. After this, still in the same year, Erdős [Erd3] proved that

(2.1) lim inf
dn+1

dn
< 1 < lim sup

dn+1

dn
.

He mentioned 60 years ago [Erd5]: “One would of course conjecture that

(2.2) lim inf
n→∞

dn+1

dn
= 0 and lim sup

n→∞

dn+1

dn
= ∞,

but these conjectures seem very difficult to prove.” Based on a generalization
of the method of Zhang [Zha] the author proved (2.2) in [Pin2].
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In the mentioned work of Erdős and Turán [ET] they also asked for a
necessary and sufficient condition that

(2.3)
k∑

i=1

aipn+i

should change sign infinitely often as n → ∞. They observed that the
condition

(2.4)

k∑

i=1

ai = 0

is clearly necessary. Using (2.4) one can reformulate the problem and ask for
infinitely many sign changes of

(2.5)
ℓ∑

i=1

αidn+i = −
k∑

i=1

aipn+i

if we use the notation

(2.6) αj =

j∑

i=1

ai (j = 1, 2, . . . , k − 1), ℓ = k − 1.

This form shows an observation of Pólya (see [Erd6]) according to which
αj (j = 1, . . . , ℓ) cannot all have the same sign if (2.3) has infinitely many
sign changes. Erdős [Erd6] writes: “It would be reasonable to conjecture that
Pólya’s condition is necessary and sufficient for (2.5) to change sign infinitely
often. Unfortunately the proof of this is not likely to succeed at the present
state of science.”

After this Erdős showed [Erd6] that (2.3), i.e. (2.5) changes sign infinitely
often if

(2.7)

ℓ∑

i=1

αi = 0, αℓ 6= 0.

The author announced in [Pin3] the proof of the following

Theorem ([Pin3]). The sum (2.3), i.e. (2.5), changes sign infinitely often if

at least one of the following conditions holds (ℓ > 2)
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(i)

∣∣∣∣
ℓ∑

i=1

αi

∣∣∣∣ 6 c0(ℓ)

ℓ∑

i=1

|αi|,

with a sufficiently small explicitly calculable constant c0(ℓ) depending on ℓ;

(ii) if ∃j ∈ [1, ℓ] such that

(2.8)

ℓ∑

i=1,i 6=j

|αi| < |αj|, sgnαi 6= sgnαj, i ∈ [1, ℓ] \ j;

(iii) if the Hardy–Littlewood prime k-tuple conjecture is true for k = ℓ.

Now, (iii) shows that the mentioned conjecture of Erdős, namely that
Pólya’s trivial necessary condition (i.e. that all αj cannot have the same sign)
is probably really a necessary and sufficient condition for (2.5) to change sign
infinitely often.

3 Results

In the present work we will show a kind of improvement of the result (1.10),
which can be considered also as a common generalization of our result (2.2)
and Maynard–Tao’s mentioned theorem about the strongest known estimates
of chains of small gaps between consecutive primes. The result will also give
an improvement on the recent proof of the author ([Pin2]) which solved the
60-year-old problem (2.2) of Erdős and improves the result (1.12) for k = 2
due to Erdős [Erd4].

The proof will also show a simple method (already observed in [Pin2] by
the author after the proof of Zhang [Zha]) which makes the producing of
bounded gaps (or chains of bounded gaps in case of Maynard and Tao) effec-
tive, since the original versions used a Bombieri–Vinogradov type theorem
which again made use of the ineffective Siegel–Walfisz theorem.

Remark. The recent work [BFM] shows implicitly a way to make the Maynard–
Tao theorem effective.

Finally we mention that concerning the Theorem [Pin2] of Section 2 we
can further give a very simple sufficient condition for (2.3), i.e. (2.5) to change
sign infinitely often. To simplify the problem we can clearly suppose α1 6= 0,
αℓ 6= 0. In this case the sufficient condition is simply:

(3.1) sgn α1 6= sgn αℓ.
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(If we do not make the trivial supposition α1 6= 0, αℓ 6= 0 we can clearly for-
mulate it in the way that the first and last non-zero elements of the sequence
{αi}ℓi=1 should have opposite sign.)

Summarizing, we will prove the following results, using the basic notation
dn = pn+1 − pn of (1.1), logν n for the ν-fold iterated logarithmic function.

Theorem 1. Let k be an arbitrary fixed natural number, c(k), N(k) suitable
positive, explicitly calculable constants depending only on k. Then for any

N > N(k) there exists an n ∈ [N, 2N ] such that

(3.2)
dn+1

max(dn, . . . , dn−k+1)
>

c(k) logN log2N log4N

(log3N)2
.

Essentially the same proof gives the analogous result:

Theorem 1’. Under the conditions of Theorem 1 we have

(3.3)
dn−k

max(dn, . . . , dn−k+1)
>

c(k) logN log2N log4N

(log3N)2
.

Theorem 2. Let k0 be an arbitrary fixed natural number, c(k0), N(k0) suit-
able positive, explicitly calculable constants depending only on k0. Then we

have a k > k0 such that for any N > N(k0) there exists an n ∈ [N, 2N ] such
that

min(dn−k, dn+1)

max(dn, . . . , dn−k+1)
>

c(k0) logN log2 N log4N

(log3N)2
.

Theorem 3. Let ℓ > 2 be an arbitrary integer, α1, . . . , αℓ real numbers with

α1 6= 0, αℓ 6= 0. Then the expression

(3.4)
ℓ∑

i=1

αidn+i

changes sign infinitely often as n → ∞ if

(3.5) sgn α1 6= sgn αℓ.

We remark that Theorem 3 trivially follows from Theorems 1 and 1’.
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4 Proofs

The proof requires a combination of the methods of Erdős–Rankin and that
of Maynard–Tao. Since Theorem 3 follows from Theorems 1 and 1’, further
Theorem 2 implies Theorems 1 and 1’, it is sufficient to prove Theorem 2.
Concerning Theorem 2 we will show that we will have infinitely many cases
when a block of at least k0 consecutive primes in a bounded interval are
preceded and followed by two primegaps of length at least

(4.1)
c0(k0) logN log2N log4N

(log3N)2
:= c0(k0) logNf(logN)

each, where the corresponding primes p′νs satisfy ν ∈ [N, 2N ]. To be more
specific we will choose an arbitrary set of m different primes {hi}mi=1 with the
property that for any i, j, t ∈ [1, m], i 6= j:
(4.2)
m < C3(m) < h1 < h2 < · · · < hm < C4(m), m =

⌈
C5e

C6k0
⌉
, ht ∤ hi − hj

with the absolute constants C5, C6 and the constants C3(m) and C4(m) de-
pending on m to be chosen later. Denoting

(4.3) M =
∏

pi6R, pi 6=hj (j=1,...,m)

pi,

we try to determine a residue class z (mod M) with the property

(4.4) (z + hi,M) = 1 (1 6 i 6 m),

(4.5) (z ± ν,M) > 1 for all ν ∈ [0, c0(k0)Rf(R)] \ {hi}mi=1.

We remark that we will have Rf(R) ≍ logNf(logN).
To describe the procedure briefly we will look for a block of at least k0

primes among the numbers

(4.6) ℓ+ h1, . . . , ℓ+ hm, ℓ ≡ z (mod M)

by the Maynard–Tao method, using the refinements in [BFM]. This will
contain at least k0 consecutive primes in a bounded block, while the two
intervals

(4.7) [ℓ− c0(k0)Rf(R), ℓ− hm) and (ℓ+ hm, ℓ+ c0(k0)Rf(R)]
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will certainly not contain any prime due to (4.5). Since (cf. [BFM]) we can
choose M as large as a suitable small power of N , this will prove our theorem
as by the Prime Number Theorem we will have

(4.8) logN ≍ logM ∼ R, f(logN) ∼ f(R)

and consequently Rf(R) ≍ logNf(logN).
Let us use parameters 0 < v < w < R/2 to be chosen later, and let

P1 : =
∏

p6v, p 6=hj (16j6m)

p,(4.9)

P2 : =
∏

v<p6w

p,(4.10)

P3 : =
∏

w<p6R/2

p,(4.11)

P4 : =
∏

R/2<p6R

p,(4.12)

v = log3R, U = c0(k0)Rf(R), P := P (R) = P1P2P3P4,(4.13)

with a suitably small c(k0), chosen at the end. If we have a Siegel-zero,
that is, a real primitive character χ1 mod r, r 6 N , with a zero β of the
corresponding L-function L(s, χ) satisfying

(4.14) β > 1− c7
logN

,

then this character and zero are uniquely determined by the Landau–Page
theorem (see e.g. [Dav, p. 95]) if c7 is chosen as a suitably small explicitly
calculable positive absolute constant. If χ1 is real primitive mod r, then r
has to be square-free apart from the possibility that the prime 2 appears on
the second or third power in r. Let us denote the greatest prime factor of r
by q. Since we have

(4.15) 1− β ≫ log2 r√
r

(see [Dav, p. 96]) where the implied constant is explicitly calculable we have
by (4.14)

(4.16) r ≫ (logN)3/2.
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Consequently, by the Prime Number Theorem and the “almost square-free”
property of r we have

(4.17) q ≫ log r ≫ log2N → ∞ as N → ∞.

If there is no Siegel-zero, then we will let q = 1. Now we change slightly the
definition of Pi and P as to exclude from their defining product the possible
divisor q. Let

(4.18) P ∗
i = Pi/q if q | Pi (1 6 i 6 4), otherwise P ∗

i = Pi, P ∗ =

4∏

i=1

P ∗
i .

This change is not necessary for finding z with (4.4)–(4.5) but to assure
uniform distribution of primes ≡ z (mod M) in the Maynard–Tao procedure
(and to make later the whole procedure effective as well). This means also
that in contrast with the rough description at the beginning of this section
the role of M = P will be played actually by

(4.19) M∗ = P ∗ = P/q if q | P (otherwise M∗ = M = P = P ∗).

Returning with this change to our problem of choosing z mod P ∗ let

(4.20) z ≡ 0 (mod P ∗
1P

∗
3 )

while we will choose z (mod P ∗
2P

∗
4 ) suitably later. The letter p will denote

in the following an unspecified prime. The choices of v and U in (4.13)
guarantee that

(4.21) (z ± n, P ∗
1P

∗
3 ) = 1 (0 < n 6 U, n 6= 1)

if and only if either

(4.22) n = pqα
m∏

i=1

hαi

i (α > 0, αi > 0) and n > R/2

or

(4.23) n is composed only of primes p | P ∗
2 q

m∏

i=1

hi.

14



Our first (and main) goal in finding z mod P ∗ will be to find residues αp

with p | P ∗
2 so that choosing

(4.24) z ≡ αp (mod p) for p | P ∗
2

the condition (z∗ ± hi, P
∗) = 1 (cf. (4.4)) should remain true and simultane-

ously we should have for as many as possible numbers n of the form (4.22)
(z + n, P ∗) > 1. By a suitable choice of the parameter w we can make the
whole set of n’s satisfying (4.23) relatively small, due to de Bruijn’s result
[Bru] which we use in a weaker form, proved by Rankin [Ran1]. The present
form is Lemma 5 of [Mai1].

Lemma 4. Let Ψ(x, y) denote the number of positive integers n > x which

are composed only of primes p 6 y. For y 6 x and y approaching to infinity

with x, we have

(4.25) Ψ(x, y) 6 x exp

[
− log3 y

log y
log x+ log2 y +O

(
log2 y

log3 y

)]
.

Since Ψ(x, y) is clearly monotonically increasing in x we can estimate the
number of n’s in (4.23) from above by

(4.26) (logU)m+1Ψ(U,w).

Now, choosing

(4.27) w = exp
[
α(logR log3R/ log2R)

]

with a constant α to be determined later, the quantity in (4.26) is by (4.13)
clearly

≪ U exp

[
−(1 + o(1)) log3R logR

α logR log3R/ log2R
+ (1 + o(1)) log2R + (m+ 1) log2R

](4.28)

≪ U

log2 U
= o

(
R

logR

)

if we chose, e.g.,

(4.29) α =
1

m+ 5
.
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This bound will be completely satisfactory for us. So we have to concen-
trate on the numbers n in (4.22).

The simplest strategy in choosing αp (mod p) in (4.24) would be to sieve
out for the smallest p > v the largest residue class mod p among the N0

numbers of the form (4.22) and repeat this consecutively for all primes in P ∗
2 .

What makes our task more complicated, is the fact that we have to preserve
the condition (z + hi,M) = 1 in (4.4), so we have to choose for any p̃j ∈ P ∗

2

(4.30) αp̃j 6≡ −hi (mod p̃j) for i = 1, 2, . . . , m.

First we observe that an easy calculation shows that the Prime Number
Theorem implies

N0 =
∑

α,α1,...,αm>0

π




U

qα
m∏
i=1

hi
αi


− π




R

2qα
m∏
i=1

hi
αi


(4.31)

∼ U

logU

(
1 +

1

q
+

1

q2
+ . . .

) m∏

i=1

(
1 +

1

hi

+
1

h2
i

+ . . .

)

∼ U

logU

(
1− 1

q

)−1 m∏

i=1

(
1− 1

hi

)−1

6
2U

logU

if C3(m) in (4.2) was chosen sufficiently large (taking into account also
(4.17)).

We will choose the residue classes αp one by one for all primes from v to
w and consider at the ith step the arising situation. We will be left at the jth
step with Nj < N0 remaining values of n’s with (4.22). If Nj is at any stage

of size 6
R

5 logR
, then we are ready. Thus we can suppose Nj > R/(5 logR).

Otherwise, if α and all αi (1 6 i 6 m) are determined, then we have
trivially in case of

(4.32) qα
m∏

i=1

hi
αi >

√
U

at any rate altogether at most

(4.33) O
(√

U(logU)m+1
)
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numbers of the given form (4.22).
On the other hand, if (4.32) is not true, then we have by the Brun–

Titchmarsh theorem altogether at most

(4.34)
2mU

ϕ
(
p̃jqα

m∏
i=1

hi
αi

)
log

√
U

6
8Um

p̃jqα
( m∏
i=1

hi
αi

)
logU

numbers n of form (4.22) which lie in one of the m bad residue classes
{hi}mi=1 mod p̃j . Adding (4.34) up for all possible non-negative combination
of α, α1, . . . , αm we get altogether (cf. (4.31)) at most

(4.35)
16mU

p̃j logU
<

16mc0(k0)Rf(R)

p̃j logR
<

Njf(R)

p̃j
<

Nj

4 log2R

bad n values of the form (4.22) by p̃j > w and Nj > R/(5 logR). This
means that choosing from among the remaining p̃j −m residue classes that
one which sieves out the most elements from the remaining set of size Nj we
obtain for the size of the new remaining set

Nj+1 < Nj −
Nj

(
1− 1

4 log2 R

)

p̃j −m
(4.36)

< Nj

(
1−

1− 1
4 log2 R

p̃j

)

< Nj

(
1− 1

p̃j

)1−log−2 R

.

This means that by Mertens’ theorem we obtain a final residual set of cardi-
nality at most

N∗ < N0

∏

v<p<w
p 6=q

(
1− 1

p

)1−log−2 R

∼ N0

(
log v

logw

)1−log−2 R

(4.37)

= N0

(
3 log22R(1 + o(1))

α logR log3R

)1−log−2 R

6 4mN0
log22R

logR log3R
6

8mU

logU
· 1

f(R)

=
8mc0(k0)R

logU
<

8mc0(k0)R

logR
<

π(R)− π(R/2)

4
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if the value of c0(k0) in (4.1) was chosen sufficiently small.
Formulas (4.28) and (4.31) mean that after the sieving with suitably

chosen αp̃j (mod p̃j), p̃j ∈ P ∗
2 and taking into account that the set satisfying

(4.23) was at any rate small, all elements of (4.22) and (4.23) can be sieved
out by one third of the primes from P4 choosing for every remaining n∗ =

pqα
m∏
i=1

hi
αi in (4.22) and (4.23) a separate p∗ ∈ P4, p

∗ 6= p, q and z ≡ −n∗

(mod p∗), that is, αp∗ ≡ −n∗ (mod p∗). This will assure (z + n∗,M∗) > 1.
With an other third of p∗ | P4 we can similarly sieve out the remaining
negative n∗ values. The only problem is that for any p∗ ∈ P4 used above,
simultaneously with z + n∗ ≡ 0 (mod p∗) we have to assure z + hi 6≡ 0
(mod p∗). This is equivalent to that n∗ − hi ≡ 0 (mod p∗) is not allowed if
we want to sieve out z + n∗ with p∗. However, for every number |n∗| 6 U
and for every i ∈ [1, m] the number n∗ − hi has at most one prime divisor
> R/2 >

√
U . This means that for every n∗ we have at most m forbidden

primes to use to sieve out n∗. Thus, as the number of still “abundant” primes
is at every step at least one third of all primes between (R/2, R] we can for all
(positive and negative) values of n∗ consecutively choose the primes p∗ | P ∗

4

nearly freely, just avoiding at most m forbidden primes at each step, so that
we would have, step by step for each p∗ | P ∗

4 , n
∗

(4.38) z + n∗ ≡ 0 (mod p∗), z + hi 6≡ 0 (mod p∗) (i = 1, 2, . . . , m).

At the end of this procedure some p∗ | P4 will remain. We can choose for
these primes α∗

p freely with the only condition that

(4.39) α∗
p 6≡ −hi (mod p∗) (i = 1, 2, . . . , m)

should hold, in order to assure for the remaining primes p∗ | P4 also

(4.40) (z + hi, p
∗) = 1.

Finally to determine z uniquely mod M/q we choose for the primes p = hi

αp again essentially freely with the only condition

(4.41) αp 6≡ −hj (mod p) (j = 1, 2, . . . , m)

which is again possible by h1 > m. In this way we will have finally for any
i = 1, 2, . . . , m with M∗ = P ∗ = M/q = P/q

(4.42) (z + hi, P
∗) = 1
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and this means that the relations (4.4)–(4.5) will be satisfied with M∗ in
place of M .

Now, we continue with the Maynard–Tao proof which we take over from
[May] with the additional changes executed in [BFM]. We will look for primes
among the numbers

(4.43) ℓ+ h1, . . . , ℓ+ hm, ℓ ≡ z (mod W ), W = M∗ = P ∗

with the value z found in the previous procedure, satisfying with the notation
Hm = {hi}mi=1

(z + hi,W ) = 1 (i = 1, 2, . . . , m)(4.44)

(z + ν,W ) > 1 if |ν| ∈
[
0, logLf(logL)

]
\ Hm.(4.45)

We will show that for 1 > L(k0) we will find numbers

(4.46) ℓ ∈ [L, 2L], ℓ ≡ z (mod W ), #
{
ℓ+ hi ∈ P (1 6 i 6 m)

}
> k0

with (4.43)–(4.45) which will prove our Theorem 2.

Remark. If there are additional primes among ℓ− hi (1 6 i < m) this does
not change anything since hi 6 C4(m) 6 C8(k0). The introduction of the
new variables ℓ and L is only necessary since we look for primes around ℓ
instead of investigating pn and dn, so essentially ℓ ∼ n logn, L ∼ N logN ,
logL ∼ logN , so the size of gaps (4.1) remains unchanged if we substitute
N by L. We remark that (4.2) and (4.17) assure

(4.47) p

∣∣∣∣
m∏

i,j=1
i 6=j

(hi − hj) =⇒ p = Om(1), p 6= ht (1 6 t 6 m) =⇒ p ∤ W,

analogously to (4.27)–(4.31) of [BFM], which is actually the Maynard–Tao
theorem.

We need also the modified Bombieri–Vinogradov theorem, Theorem 4.1
of [BFM], which is somewhat similar to, but stronger than Theorem 6 of
[GPY3]. The greatest prime factor ofW is≪ logL, so the level of smoothness
of W is much better than that (Lε) required by the condition of Theorem 10
of [Cha]. So the whole Theorem 4.1 of [BFM] will remain true. Further,
we can leave out from the actual sieving procedure the possibly existing q

19



and its multiples. This causes just a negligible change of size

(
1− 1

q

)O(1)

=

1+O

(
1

logL

)
in the weighted number of primes and in the sum of weights.

If we choose in (4.3)

(4.48) R 6 c9(k0) logL

with a sufficiently small c9(k0) > 0, then we will have by the Prime Number
Theorem

(4.49) W 6 Lc9(k0)(1+o(1))

so the whole Maynard–Tao procedure will remain valid, as in [BFM]. (The
variable R is here completely different from that in [May] or [BFM].)

Summarizing, we will obtain at least k0 bounded prime gaps in intervals
of type

(4.50) [ℓ− hm, ℓ+ hm]

and around them two intervals of size (1+o(1))c0(k0) logL log2 L log4 L/(log
2
3 L)

containing only composite numbers (see (4.7)) which prove Theorem 2.
Finally, the fact that we left out the largest prime factor q (and its multi-

ples) of the possibly existing exceptional modulus r yields an effective modi-
fied Bombieri–Vinogradov theorem and so an effective final Theorem 2, con-
sequently Theorems 1, 1’ and 3 are effective too.

Acknowledgement: The author would like to express his sincere gratitude
to Imre Z. Ruzsa, who called his attention that a possible combination of the
methods of Erdős–Rankin and Zhang–Maynard–Tao might lead to stronger
results about the ratio of consecutive primegaps than those proved by the
author in his earlier work [Pin2].
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[Erd5] P. Erdős, Some problems on the distribution of prime numbers. Teoria
dei Numeri, Math. Congr. Varenna, 1954, 8 pp., 1955.
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