On small gaps between primes and almost prime powers

János Pintz*

1. In two subsequent works, joint with D. Goldston and C. Y. Yıldırım [GPY1, GPY2] we showed that for the sequence p_n of primes

(1.1)
$$\liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n} = 0,$$

and even

(1.2)
$$\liminf_{n \to \infty} \frac{p_{n+1} - p_n}{(\log p_n)^{1/2} (\log \log p_n)^2} < \infty.$$

A crucial ingredient of the proof was the celebrated Bombieri–Vinogradov theorem, which asserts that $\vartheta=1/2$ is an admissible level of distribution of primes, that is,

(1.3)
$$\sum_{\substack{q \le N^{\vartheta}/\log^{C}N \ (a,q)=1}} \max_{\substack{p \equiv a \ (\text{mod } q) \\ p \le N}} 1 - \frac{li \ N}{\varphi(q)} \right| \ll_{A} \frac{N}{\log^{A}N}$$

holds with $\vartheta = 1/2$ for any A > 0, C > C(A). The method also yielded [GPY1] that if $\vartheta > 1/2$ is an admissible level of distribution of primes then for any admissible k-element set $\mathcal{H} = \{h_i\}_{i=1}^k$ (that is, if \mathcal{H} does not occupy all residue classes mod p for any prime p) the set $n + \mathcal{H} := \{n + h_i\}_{i=1}^k$ contains at least two primes for infinitely many values of n if $k \geq k_0(\vartheta)$. Consequently we have infinitely many bounded gaps between primes, more precisely

(1.4)
$$\liminf_{n \to \infty} (p_{n+1} - p_n) \le C(\vartheta).$$

The strongest possible hypothesis on the uniform distribution of primes in arithmetic progressions, the Elliott–Halberstam [EH] conjecture stating the

^{*}Supported by OTKA Grants K72731, K67676 and ERC-AdG.228005.

admissibility of the level $\vartheta=1$ (with $N/\log^C N$ replaced by $N^{1-\varepsilon}$ for any $\varepsilon>0$), or slightly weaker, even the assumption $\vartheta\geq 0.971$ implies gaps of size at most 16 infinitely often, in fact,

(1.5)
$$k_0(0.971) = 6, C(0.971) = 16.$$

If $\vartheta = 1/2 + \delta$ is near to 1/2, that is, δ is a small positive number, one can take for $\delta \to 0^+$

$$(1.6) k_0\left(\frac{1}{2} + \delta\right) = \left(2\left\lceil\frac{1}{2\delta}\right\rceil + 1\right)^2, C\left(\frac{1}{2} + \delta\right) \sim 2\delta^{-2}\log\frac{1}{\delta}.$$

This situation suggests that one might take some prime-like set \mathcal{P}' just slightly more dense than the set \mathcal{P} of primes, that is, for any $\varepsilon > 0$ a set $\mathcal{P}_{\varepsilon}$ such that

$$(1.7) \quad \mathcal{P} \subset \mathcal{P}'_{\varepsilon} := \{b_n\}_{n=1}^{\infty}, \quad \pi'_{\varepsilon}(N) := \#\{n \leq N, \ n \in \mathcal{P}'\} < \pi(n)(1+\varepsilon)$$

which has bounded gaps infinitely often, that is,

$$\liminf_{n \to \infty} (b_{n+1} - b_n) < \infty.$$

Of course adding p+1 to the set \mathcal{P} for infinitely many primes would trivially satisfy the requirements but we are looking for some arithmetically interesting set $\mathcal{P}'_{\varepsilon}$ with some similarity to primes or prime powers. (Adding just prime powers to \mathcal{P} raises the number of elements just with a quantity $\sim 2N^{1/2}/\log N$ which is negligible compared to $\pi(N)$.) One possibility is to add some numbers which are similar to prime powers. To avoid confusion with almost primes we will introduce the following

Definition. For any $\varepsilon \geq 0$ a natural number n is called ε -balanced if for any prime divisors p, q of n we have

(1.9)
$$\min(p,q) \ge (\max(p,q))^{1-\varepsilon}.$$

Remark. With this definition 0-balanced numbers larger than 1 are exactly the primes and prime powers.

Let us denote the set of ε -balanced numbers by $\mathcal{P}_{\varepsilon}$, the total number of prime divisors of n by $\Omega(n)$ and let

(1.10)
$$\mathcal{P}_{\varepsilon,r} := \{ n \in \mathcal{P}_{\varepsilon}, \ \Omega(n) = r \}, \quad \mathcal{P}_{\varepsilon} := \bigcup_{n=1}^{\infty} \mathcal{P}_{\varepsilon,r}.$$

(In this way we can talk about almost prime-squares (r=2), almost primecubes (r=3) etc.)

To have an idea about the quantity

(1.11)
$$\pi_{\varepsilon,r}(N) := \#\{N \le n < 2N; \ n \in \pi_{\varepsilon,r}(N)\}$$

we remark that denoting by $P^-(n)$ and $P^+(n)$ the least, resp., the greatest prime factor of n we have obviously

$$(1.12) n \in \pi_{\varepsilon,r}(N) \Longrightarrow N^{(1-\varepsilon)/r} \le P^{-}(n) \le P^{+}(n) \le (2N)^{1/(r(1-\varepsilon))}.$$

Reversed, we have also clearly for $n \in [N, 2N), \Omega(n) = r$ by $(1+\varepsilon/2)(1-\varepsilon) \le 1 - \varepsilon/2$

$$(1.13) N^{(1-\varepsilon/2)/r} \le P^{-}(n) \le P^{+}(n) \le N^{(1+\varepsilon/2)/r} \Longrightarrow n \in \pi_{\varepsilon,r}(N).$$

In order to simplify the calculation of the density of the ε -balanced numbers we will work with the smaller subsets of $\mathcal{P}_{\varepsilon,r}$, defined by

(1.14)
$$\mathcal{P}_{r,\varepsilon}^{*}(N) := \left\{ N \le n < 2N, \ \Omega(n) = r, \\ N^{(1-\varepsilon/2)/r} \le P^{-}(n) \le P^{+}(n) \le N^{(1+\varepsilon/2)/r} \right\}.$$

The prime number theorem implies with easy calculations that by

$$a_1 := (1 - \varepsilon/2)/r, \qquad a_2 := (1 + \varepsilon/2)/r,$$

 $I := \lceil N^{a_1}, N^{a_2} \rceil, \qquad J(\mathbf{u}) := (N/u_1 \dots u_{r-1}, 2N/u_1 \dots u_{r-1})$

(1.15)

$$\pi_{r,\varepsilon}^*(N) := \# \left\{ n \in \mathcal{P}_{r,\varepsilon}^*(N) \right\} = \sum_{\substack{N \leq p_1 \dots p_r < 2N \\ p_i \in I}} 1 \sim$$

$$\sim \int_I \dots \int_I \prod_{i=1}^{r=1} \frac{1}{\log u_i} \int_{I \cap J(\mathbf{u})} \frac{1}{\log t} du_1 \dots du_{r-1} dt \sim$$

$$\sim \frac{N}{\log N} \int_{a_1 \dots a_{r-1}}^{a_2} \dots \int_{a_1 \dots a_{r-1}(1-\alpha_1-\dots-\alpha_{r-1})}^{a_2} =: \frac{C_0(r,\varepsilon)N}{\log N}.$$

Here we have obviously for $\varepsilon \to 0$

(1.16)
$$C_0(r,\varepsilon) \le \left(\frac{\varepsilon}{r}\right)^{r-1} \frac{r^r}{(1-\varepsilon/2)^r} = \frac{r\varepsilon^{r-1}}{(1-\varepsilon/2)^r}.$$

Since for $\varepsilon < \varepsilon_0$ we have $\mathcal{P}_{r,\varepsilon}(N) \subset \mathcal{P}_{r,3\varepsilon}^*(N)$ the above assertion shows that the number of ε -balanced composite numbers (the counting function of $\mathcal{P}'_{\varepsilon} \setminus \mathcal{P}$) is negligible compared to that of the primes, since even in total

(1.17)
$$\sum_{r=2}^{\infty} C_0(r,\varepsilon) < 3\varepsilon \text{ if } \varepsilon < c_0.$$

After this preparation we can formulate our result.

Theorem 1. Let r=2 or 3, $\varepsilon>0$. Then the set of ε -balanced numbers with either one or r prime factors contains infinitely many bounded gaps, but has $(1+O(\varepsilon))\pi(N)$ elements below N.

2. We will actually prove a stronger result.

Theorem 2. Let r = 2 or 3, $\varepsilon > 0$ and let \mathcal{H} be an arbitrary k-element admissible set of non-negative integers, $k > k_0(\varepsilon)$. Then the k-tuple $n + \mathcal{H}$ contains at least two ε -balanced numbers with either one or r prime factors for infinitely many values of n.

Proof. Similarly to the role of the Bombieri–Vinogradov theorem (1.3) in the proof of (1.1)–(1.2) we need the analogous assertion for the ε -balanced numbers in $\mathcal{P}_{r,\varepsilon}^*(N)$ defined in (1.14).

Theorem 3. We have for any A > 0 with C > C(A)

(2.1)
$$\sum_{\substack{q \le \sqrt{N}/\log^C N \ (a,q)=1}} \max_{\substack{a = a(q) \\ n \in \mathcal{P}_{r,\varepsilon}^*(N)}} \left| \sum_{\substack{n \equiv a(q) \\ n \in \mathcal{P}_{r,\varepsilon}^*(N)}} 1 - \frac{C_0(r,\varepsilon)li \ N}{\varphi(q)} \right| \ll_{A,r} \frac{N}{\log^A N}.$$

The proof runs analogously to the proof of Vaughan [Vau] of the Bombieri–Vinogradov theorem or one may apply some form of generalized Bombieri–Vinogradov type theorems, as that of Y. Motohashi [Mot] or Pan Cheng Dong [Pan]. The latter asserts that for any $\alpha>0$, $\varepsilon>0$ and any $f(m)\ll 1$ we have

(2.2)

$$\sum_{q \le \sqrt{N}/\log^{C_{N}}(a,q)=1} \left| \sum_{m \le N^{1-\alpha}} f(m) \left(\sum_{\substack{mp \le N \\ mp \equiv a \pmod{q}}} 1 - \frac{li \frac{N}{m}}{\varphi(q)} \right) \right| \ll_{\alpha,A} \frac{N}{\log^{A} N}.$$

The work [GPY1] was based on two main lemmas describing properties of the crucial weight function $\left(\mathcal{H} = \{h_i\}_{i=1}^k\right)$ (2.3)

$$\Lambda_R(n; \mathcal{H}, l) = \frac{1}{(k+l)!} \sum_{d \mid P_{\mathcal{H}}(n), d \le R} \mu(d) \log^{k+l} \frac{R}{d}, \quad P_{\mathcal{H}}(n) := \prod_{i=1}^k (n+h_i).$$

The formulation of the main lemmas need the singular series

(2.4)
$$\mathfrak{S}(\mathcal{H}) = \prod \left(1 - \frac{\nu_p(\mathcal{H})}{p}\right) \left(1 - \frac{1}{p}\right)^{-k},$$

where $\nu_p(\mathcal{H})$ denotes the number of residue classes occupied by $\mathcal{H} \mod p$, for any prime p. The admissible property of \mathcal{H} means $\nu_p(\mathcal{H}) < p$ for any p, or equivalently $\mathfrak{S}(\mathcal{H}) \neq 0$. The two main lemmas below are special cases of Propositions 1 and 2 of [GPY1].

In the following let $\eta > 0$, k, l bounded, but arbitrarily large integers, $n \sim N$ substitutes $n \in [N, 2N)$

(2.5)
$$\max_{h_i \in \mathcal{H}} h_i \ll \log N, \quad R > N^{c_0}, \quad \chi_{\mathcal{P}}(n) = \begin{cases} 1 & \text{if } n \in \mathcal{P}, \\ 0 & \text{if } n \notin \mathcal{P}. \end{cases}$$

Lemma 1. For $R \leq \sqrt{N}/(\log N)^C$, $N \to \infty$, we have

(2.6)
$$\sum_{n \sim N} \Lambda_R(n; \mathcal{H}, k+l)^2 = {2l \choose l} \frac{N(\log R)^{k+2l} (\mathfrak{S}(\mathcal{H}) + o(1))}{(k+2l)!}.$$

Lemma 2. For $h \in \mathcal{H}$, $R \leq N^{1/4}/(\log N)^C$, C > C(A), $N \to \infty$, we have (2.7)

$$\sum_{n \sim N} \Lambda_R(n; \mathcal{H}, k+l)^2 \chi_{\mathcal{P}}(n+h) = \binom{2l+2}{l+1} \frac{N(\log R)^{k+2l+1} (\mathfrak{S}(\mathcal{H}) + o(1))}{(k+2l+1)! \log N}.$$

In the proof of Lemma 2 actually just two properties of the primes are used:

- (i) their distribution in residue classes is on average regular as described by the Bombieri–Vinogradov theorem;
- (ii) if $n + h_0 \in \mathcal{P}$, $n \sim N$, then $\mathcal{P}_{\mathcal{H}}(n)$ and $\mathcal{P}_{\mathcal{H}\setminus\{h\}}(n)$ have the same divisors below R, that is, $n + h_0$ has no prime divisor below R.

The first property is shared by the elements of $\mathcal{P}_{r,\varepsilon}^*(N)$ as shown by (2.1), the only change being the factor $C_0(r,\varepsilon)$. In the cases r=2 and r=3 they obviously share property (ii) as well.

In such a way with the notation

(2.8)
$$\mathcal{P}(N) = [N, 2N) \cap \mathcal{P}, \quad \widetilde{\mathcal{P}}_{r,\varepsilon}(N) = \mathcal{P}(N) \cup \mathcal{P}_{r,\varepsilon}^*(N)$$

we obtain in exactly the same way as Lemma 2, for the characteristic function $\chi_{\widetilde{\mathcal{P}}}$ of the set $\widetilde{\mathcal{P}}$ the following

Lemma 3. For $R \leq N^{1/4}/(\log N)^C$, $C > C(A, r, \varepsilon)$, r = 2 or S, $S \to \infty$, we have

(2.9)
$$\sum_{n \sim N} \Lambda_R(n; \mathcal{H}, l)^2 \chi_{\widetilde{\mathcal{P}}}(n + h_0) =$$

$$= \binom{2l+2}{l+1} \frac{N(\log R)^{k+2l+1} \mathfrak{S}(\mathcal{H})(1 + C_0(r, \varepsilon) + o(1))}{(k+2l+1)! \log N}.$$

In this case we have, similarly to (3.3) of [GPY1],

(2.10)

$$S := \sum_{n \sim N} \left(\sum_{i=1}^{k} \chi_{\widetilde{\mathcal{P}}}(n+h_i) - 1 \right) \Lambda_R(n; \mathcal{H}, l)^2 \sim$$

$$\sim \binom{2l}{l} \frac{N(\log R)^{k+2l} \mathfrak{S}(\mathcal{H})}{(k+2l)!} \left(\frac{k}{k+2l+1} \cdot \frac{2l+1}{2l+2} (1 + C_0(r, \varepsilon)) - 1 \right) > 0$$

if we choose $l = \lfloor \sqrt{k}/2 \rfloor$, $k > k_0(r, \varepsilon)$, which proves Theorem 2, consequently also Theorem 1 for r = 2, 3.

References

- [EH] P. D. T. A. Elliott, H. Halberstam, A conjecture in prime number theory, Symposia Mathematica 4 INDAM, Rome, 59–72, Academic Press, London, 1968/69.
- [GPY1] D. A. Goldston, J. Pintz, C. Y. Yıldırım, Primes in tuples I, *Ann. of Math.* (2) **170** (2009), no. 2, 819–862.
- [GPY2] D. A. Goldston, J. Pintz, C. Y. Yıldırım, Primes in Tuples II, Acta Math. 204 (2010), 1–47.
- [Mot] Y. Motohashi, An induction principle for the generalization of Bombieri's prime number theorem, *Proc. Japan Acad.* **52** (1976), 273–275.

- [Pan] Cheng-Dong Pan, A New Mean Value Theorem and Its Applications, Recent progress in analytic number theory, Vol. 1 (Durham, 1979), 275–287, Academic Press, London–New York, 1981.
- [Pin] J. Pintz, Are there arbitrarily long arithmetic progressions in the sequence of twin primes?, preprint, arXiv:1002.2899
- [Vau] R. C. Vaughan, An Elementary Method in Prime Number Theory, Recent progress in analytic number theory, Vol. 1 (Durham, 1979), 341– 348, Academic Press, London–New York, 1981.

János PINTZ Rényi Mathematical Institute of the Hungarian Academy of Sciences Budapest Reáltanoda u. 13–15 H-1053 Hungary E-mail: pintz@renyi.hu