
ar
X

iv
:1

30
5.

62
89

v1
  [

m
at

h.
N

T
] 

 2
7 

M
ay

 2
01

3 Polignac Numbers, Conjectures of Erdős on Gaps between

Primes, Arithmetic Progressions in Primes, and the Bounded

Gap Conjecture

by

János PINTZ
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Abstract

In the present work we prove a number of surprising results about gaps between consecutive

primes and arithmetic progressions in the sequence of generalized twin primes which could not

have been proven without the recent fantastic achievement of Yitang Zhang about the existence

of bounded gaps between consecutive primes. Most of these results would have belonged to

the category of science fiction a decade ago. However, the presented results are far from being

immediate consequences of Zhang’s famous theorem: they require various new ideas, other

important properties of the applied sieve function and a closer analysis of the methods of

Goldston–Pintz–Yıldırım, Green–Tao, and Zhang, respectively.

1 Introduction

1.1. Very recently Yitang Zhang, in a fantastic breakthrough solved the Bounded Gap Conjecture,
a term formulated in recent works of mine, often in collaboration with D. Goldston and C. Yıldırım.
Let pn denote the nth prime, P the set of all primes and

dn = pn+1 − pn (1.1)

the nth difference between consecutive primes.

Theorem A (Y. Zhang [28, 2013]). lim inf
n→∞

dn ≤ 7 · 107.

Earlier, in a joint work with D. Goldston and C. Yıldırım we showed [11, 2009] this under
the deep unproved condition that primes have a distribution level greater than 1/2, in other
words, under the assumption that the exponent 1/2 in the Bombieri–Vinogradov Theorem can be
improved.

Theorem B ([11, 2009]). If the primes have a distribution level ϑ > 1/2, then with a suitable
explicit constant C(ϑ) we have

lim inf
n→∞

dn ≤ C(ϑ). (1.2)

If the Elliott–Halberstam Conjecture (EH) is true, i.e. ϑ = 1 or, at least, ϑ > 0.971 then

lim inf
n→∞

dn ≤ 16. (1.3)
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We say that ϑ is a level of distribution of primes if

∑

q≤Xϑ−ε

max
a

(a,q)=1

∣

∣

∣

∣

∣

∑

p≡a(mod q)
p≤X

log p−
X

ϕ(q)

∣

∣

∣

∣

∣

≪A,ε
X

(logX)
(1.4)

for any A, ε > 0. The Bombieri–Vinogradov Theorem asserts that ϑ = 1/2 is a level of distribution
and the Elliott–Halberstam Conjecture [4, 1970] asserts that ϑ = 1 is also an admissible level.
Zhang could not prove (1.4) with a level > 1/2 but showed that

(i) it is possible to neglect in (1.4) all moduli q with a prime divisor > Xb, where b is any
constant, and

(ii) managed to show for these smooth moduli a result which is similar but weaker than the
analogue of (1.4) with ϑ = 1/2+ 1/584, which, however suits to apply our method of Theorem B.

I have to remark that the present author mentioned the phenomenon (i) in his lecture at the
conference of the American Institute of Mathematics in November 2005, Palo Alto, and worked it
out in a joint paper with Y. Motohashi [18, 2008], however, without being able to show (ii).

The present author worked out recently various consequences of a hypothetical distribution
level ϑ > 1/2 ([19, 2010] and [22, 2013]) which partly appeared with proofs [19, 2010], partly exist
at a level of announcements [22, 2013]. The purpose of the present work is to show that most of
these conditional results can be shown unconditionally using Zhang’s fantastic result [28, 2013] or
in some sense, his method, coupled with other ideas.

2 History of the problems. Formulation of the results

2.1 Approximations to the Twin Prime Conjecture

The problem of finding small gaps between primes originates from the

Twin Prime Conjecture. lim inf
n→∞

dn = 2.

Since by the Prime Number Theorem the average gap size is logn, Hardy and Littlewood
considered first already in 1926 in an unpublished manuscript (see, however [24, 1940]) the upper
estimation of

∆1 = lim inf
n→∞

dn
logn

(2.1)

and showed ∆1 ≤ 2/3 under the assumption of the Generalized Riemann Hypothesis (GRH).
Erdős [5, 1940] was the first to show unconditionally

∆1 < 1− c0, c0 > 0 (2.2)

with an unspecified but explicitly calculable positive constant c0. The full history with about
12–15 improvements concerning the value of ∆1 is contained in [11, 2009], so we list here just the
most important steps:

∆1 < 0.4666 (Bombieri, Davenport [1, 1966]), (2.3)

∆1 < 0.2485 (H. Maier [17, 1988]). (2.4)

This was the best result until 2005 when we showed in a joint work with D. Goldston and C.
Yıldırım what we called the Small Gap Conjecture:

Theorem C ([11, 2009]). ∆1 = 0.

Soon after it we improved this to
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Theorem D ([12, 2010]). We have

lim inf
n→∞

dn
(logn)1/2(log logn)2

< ∞. (2.5)

Finally a few years ago I improved the exponent to 3/7 and announced the result at the Journées
Arithmétiques, Vilnius, 2011, and Turán Memorial Conference, Budapest, 2011.

Theorem E ([21, 2013]).

lim inf
n→∞

dn
(log n)3/7(log logn)4/7

< ∞. (2.6)

In a joint work with B. Farkas and Sz. Gy. Révész [9, 2013] we also showed that essential new
ideas are necessary to improve (2.6).

2.2 Polignac numbers

The Twin Prime Conjecture appeared already in a more general form in 1849 in a work of de
Polignac.

First we give two definitions.

Definition 1. A positive even number 2k is a strong Polignac number, or briefly a Polignac
number if dn = 2k for infinitely many values of n.

Definition 2. A positive even number 2k is a weak Polignac number if it can be written as the
difference of two primes in an infinitude of ways.

The set of (strong) Polignac numbers will be denoted by Ds, the set of weak Polignac numbers
by Dw. (We have trivially Ds j Dw.)

Polignac’s Conjecture ([23, 1849]). Every positive even integer is a (strong) Polignac number.

Since the smallest weak Polignac number has to be a strong Polignac number, an easy consid-
eration gives that using |A| (or sometimes #A) to denote the number of elements of a set A, the
following proposition is true.

Proposition. The following three statements are equivalent:

(i) the Bounded Gap Conjecture is true;

(ii) there is at least one (strong) Polignac number, i.e. |Ds| ≥ 1;

(iii) there is at least one weak Polignac number, i.e. |Dw| ≥ 1.

The above very simple proposition shows that the Bounded Gap Conjecture itself leaves still
many problems open about Polignac numbers or weak Polignac numbers, but solves the crucial
problem that their set is nonempty. We will prove several unconditional results about the density
and distribution of (strong) Polignac numbers.

Theorem 1. There exists an explicitly calculable constant c such that for N > N0 we have at least
cN Polignac numbers below N , i.e. Polignac numbers have a positive lower asymptotic density.

Theorem 2. There exists an ineffective constant C′ such that every interval of type [M,M +C′]
contains at least one Polignac number.

Remark. As mentioned earlier, the term Polignac number means always strong Polignac numbers.
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2.3 The normalized value distribution of d
n

The Prime Number Theorem implies

lim
N→∞

1

N

∑ dn
logn

= 1, (2.7)

so it is natural to investigate the series dn/ logn. Denoting by J the set of limit points of dn/ logn,
Erdős [7, 1955] conjectured

J =

{

dn
logn

}′

= [0,∞]. (2.8)

While Westzynthius [27, 1931] proved more than 80 years ago that ∞ ∈ J , no finite limit point
was known until 2005 when we showed the Small Gap Conjecture, i.e. Theorem C [11, 2009], which
is equivalent to 0 ∈ J .

Interestingly enough Erdős [7, 1955] and Ricci [25, 1954] proved independently about 60 years
ago that J has a positive Lebesgue measure. What I can show is a weaker form of Erdős’s conjecture
(2.8).

Theorem 3. There is an ineffective constant c > 0 such that

[0, c] ⊂ J. (2.9)

Kálmán Győry asked me at the Turán Memorial Conference in Budapest, 2011 whether it
is possible to find a form of the above result which gives answers about the more subtle value-
distribution of dn if we use a test-function f(n) ≤ logn, f(n) → ∞ as n → ∞.

Definition 3. Let F denote the class of functions f : Z+ → R+ with a slow oscillation, when for
every ε > 0 we have an N(ε) > 0 such that

(1− ε)f(N) ≤ f(n) ≤ (1 + ε)f(N) for N ≤ n ≤ 2N, N > N(ε). (2.10)

Theorem 4. For every function f ∈ F , f(n) ≤ log n, lim
n→∞

f(n) = ∞ we have an ineffective

constant cf > 0 such that

[0, cf ] ⊂ Jf :=

{

dn
f(n)

}′

. (2.11)

2.4 Comparison of two consecutive values of d
n

Erdős and Turán proved 65 years ago [8, 1948] that dn+1 − dn changes sign infinitely often. This
was soon improved by Erdős [6, 1948] to

lim inf
n→∞

dn+1

dn
< 1 < lim sup

n→∞

dn+1

dn
. (2.12)

Erdős [7, 1955] wrote seven years later: “One would of course conjecture that

lim inf
n→∞

dn+1

dn
= 0, lim sup

n→∞

dn+1

dn
= ∞, (2.13)

but these conjectures seem very difficult to prove.”
In Section 6 I will show this in a much stronger form:

Theorem 5. We have

lim inf
n→∞

dn+1/dn
(logn)−1

< ∞ (2.14)

and

lim sup
n→∞

dn+1/dn
logn

> 0. (2.15)
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2.5 Arithmetic progressions in the sequence of generalized twin primes

Based on the method of I. M. Vinogradov [26, 1937] van der Corput [2, 1939] showed the existence
of infinitely many 3-term arithmetic progressions in the sequence of primes. The problem of the
existence of infinitely many k-term arithmetic progressions was open for all k ≥ 4 until 2004, when
B. Green and T. Tao [14, 2008] found their wonderful result that primes contain k-term arithmetic
progressions for every k. I found recently [19, 2010] a common generalization of Green–Tao’s
result and our Theorem B [12, 2010] under the deep assumption that there is a level ϑ > 1/2 of
the distribution of primes. Combining Zhang’s method with that of [19, 2010] I can prove now the
following

Theorem 6. There is a d ≤ 7× 107 such that there are arbitrarily long arithmetic progressions of
primes with the property that p′ = p+d is the prime following p for each element of the progression.

3 Preparation for the proofs

All the proofs use some modified form of the conjecture of Dickson [3, 1904] about k-tuples of
primes. (His original conjecture referred for linear forms with integer coefficients.) LetH = {hi}ki=1

be a k-tuple of different non-negative integers. We call H admissible, if

PH(n) =

k
∏

i=1

(n− hi) (3.1)

has no fixed prime divisor, that is, if the number νp(H) of residue classes covered by H mod p
satisfies

νp(H) < p for p ∈ P . (3.2)

This is equivalent to the fact that the singular series

S(H) =
∏

p

(

1−
νp(H)

p

)(

1−
1

p

)−k

> 0. (3.3)

Dickson conjectured that if H is admissible, then all n + hi will be primes simultaneously for
infinitely many values of n.

Hardy and Littlewood [16, 1923], probably unaware of Dickson’s conjecture, formulated a quan-
titative version of it, according to which

πH(x) =
∑

n≤x
n+hi∈P(1≤i≤k)

1 =
(

S(H) + o(1)
) x

logk x
. (3.4)

In the work [11, 2009] we attacked (but missed by a hair’s breadth) the following weaker form
of Dickson’s conjecture which I called

Conjecture DHL (k, 2). If H is an admissible k-tuple, then n+H contains at least two primes
for infinitely many values of n.

It is clear that if DHL(k, 2) is proved for any k (or even for any single k-tuple Hk), then the
Bounded Gap Conjecture is true. DHL(k, 2) was shown very recently by Y. T. Zhang [28, 2013]
for k ≥ k0 = 3.5× 106 and this implied his Theorem A, the infinitude of gaps of size ≤ 7 · 107.

However, results of this type cannot exclude the existence of other primes and therefore give
information on numbers expressible as difference of two primes, in the optimal case of Zhang’s
very strong Theorem A prove the existence of many weak Polignac numbers. However, they do not
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provide more information about (strong) Polignac numbers than the very deep fact that Ds 6= ∅
and they do not help in showing any of Theorems 1–6. For example, in case of Theorem 6 they
do not yield, let say, 4-term arithmetic progressions of primes and a bounded number d such that
p+ d should also be prime for all four elements of the progression (even if we do not require that
p and p+ d should be consecutive primes).

By a combination of the ideas of D. Goldston, C. Yıldırım, Y. Zhang and mine, I am able to
show a much stronger form of Conjecture DHL(k, 2) which may be applied towards the proof of
Theorems 1–6. In case of Theorem 6 the ground-breaking ideas of Green and Tao [14, 2008] have
to be used too, of course.

In view of Zhang’s recent result the stronger form of Conjecture DHL(k, 2) will obtain already
the name Theorem DHL∗(k, 2) for large enough k and can be formulated as follows, first still as a
conjecture for k < 3.5 · 106.

Let P−(m) denote the smallest prime factor of m.

Conjecture DHL* (k, 2). Let k ≥ 2 and H = {hi}
k
i=1 be any admissible k-tuple, N ∈ Z+, ε > 0

sufficiently small (ε < ε0)

H ⊂ [0, H ], H ≤ ε logN, PH(n) =

k
∏

i=1

(n+ hi). (3.5)

We have then positive constants c1(k) and c2(k) such that the number of integers n ∈ [N, 2N) such
that n +H contains at least two consecutive primes and almost primes in each components (i.e.
P−(PH(n)) > nc1(k)) is at least

c2(k)S(H)
N

logk N
for N > N0(H). (3.6)

One can see that we have a looser condition than in DHL(k, 2) as far as the elements of H are
allowed to tend to infinity as fast as ε logN . On the other hand we get stronger consequences as

(i) we can prescribe that the two primes n+hi and n+hj in our k-tuple should be consecutive;
(ii) we have almost primes in each component n+ hi;
(iii) we get the lower estimate (3.6) for the number of the required n’s with the above property.
The condition n ∈ [N, 2N) makes usually no problem but in case of the existence of Siegel zeros

some extra care is needed if we would like to have effective results (see Section 8 for this).
After this it is easy to formulate (but not to prove) our

MAIN THEOREM. Conjecture DHL∗(k, 2) is true for k ≥ 3.5× 106.

Proof. Since this result contains Zhang’s Theorem and even more, it is easy to guess that a self
contained proof would be hopelessly long (and difficult). We therefore try to describe only the
changes compared to different earlier works.

The first pillar of Zhang’s work is the method of proof of our Theorem B. Although he supposes
H as a constant the method of proof of Theorem B (see Propositions 1 and 2 in [11, 2009]) allow
beyond H ≪ logN (required by (3.5) above) the much looser condition H ≪ N1/4−ε for any ε > 0.

The second pillar of Zhang’s work is to show that distribution of primes according to non-smooth
moduli, i.e. without any prime divisor > N b for any fixed small constant b, can be neglected.
As mentioned in the Introduction we showed this already much earlier in a joint work with Y.
Motohashi [18, 2008]. This work also supposed H to be a constant but the only place where
actually more care is needed in the proof is (3.11) of [18, 2008]. On the other hand, allowing here
the condition

H ≪ logN, (3.7)
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the same simple argument as in Section 6 of [11, 2009] adds an additional error term

k2 log log logR ≪ log log logR (3.8)

to the right-hand side of (3.11) of [18, 2008] which is far less than the present error term logR0 =
logR/(log logR)5. Otherwise the proof works without any change, everything remains uniform
under our condition (3.7) above.

Remark. The crucial Lemmas 3 and 4 of our work [18, 2008] contain an additional factor γ(n,H).
However, by the definition (4.17) of [18, 2008] we have γ(n,H) = 1 if P−

(

PH(n)
)

> Rη for any
fixed η > 0. In such a way the extra factor γ(n,H) does not affect the validity of our Lemma 2
below since the asymptotic provided by Lemma 3 for the right-hand side of (3.11) (and similarly
the analogue of it for primes, Lemma 4) is the same as if we used the constant weight 1 instead of
γ(n,H).

No change is required in the third pillar of Zhang’s work where he proves some sort of extension
of the Bombieri–Vinogradov theorem for smooth moduli and the residue classes appearing by the
method of Theorem B.

However, the proof of Theorem DHL∗(k, 2) (for k large enough, k ≥ 3.5 ·106) requires a further
important idea, namely Lemmas 3–4 of the author’s work [19, 2010]. This we formulate now as

Lemma 1. Let N c0 < R ≤
√

N/p(logN)−C , p ∈ P, p < RC0 with a sufficiently small positive c0
and sufficiently large C. Then we have with the notation

ΛR(n;H, k + ℓ) =
1

(k + ℓ)!

∑

d≤R,d|PH(n)

µ(d)

(

log
R

d

)k+ℓ

(ℓ ≤ k) (3.9)

the relation
∑

n∈[N,2N)
p|PH(n)

ΛR(n;H, k + ℓ)2 ≪k
log p

p logR

∑

n∈[N,2N)

ΛR(n;H, k + ℓ)2. (3.10)

Lemma 1 immediately implies

Lemma 2. Let N c0 < R ≤ N1/(2+η)(logN)−C , η > 0. We have then

∑

n∈[N,2N)

P−(PH(n))<Rη

ΛR(n;H, k + ℓ)2 ≪k η
∑

n∈[N,2N)

ΛR(n;H, k + ℓ)2. (3.11)

Remark. Lemmas 1 and 2 were already proved in [19, 2010] under the loose condition H ≪ logN .

Lemma 2 asserts that numbers n where PH(n) has a prime factor < Rη (equivalently < N b)
with a small enough value of η (or b) might be neglected, since the weight used in all proofs is
actually of type (3.9). The value of η (or b) depends on k.

These results play a crucial role in the common generalization of the Green–Tao theorem and
of our Theorem B (cf. [19, 2010]) and also in the proof that prime gaps < ε log p form a positive
proportion of all gaps for any ε > 0 (proved in a joint work with Goldston and Yıldırım).

These four pillars lead finally to the stronger form of Theorem DHL∗(k, 2) if we combine it with
a standard assertion following from Selberg’s sieve, which we can formulate in this special case as

Lemma 3. Let 0 < α < 1/2 be any constant. Then

∑

n∈[N,2N)

P−(PH(n))>Nα

1 ≪k
Nα−k

logk N
S(H). (3.12)
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Proof. This is Theorem 5.1 of [15, 1974] or Theorem 2 in §2.2.2 of [13, 2001]. This is also valid if
we assume only H ≪ logN .

We further need a generalization of Gallagher’s theorem proved by the author which we formu-
late as

Lemma 4. Let Hk be an arbitrary admissible k-tuple with

H = Hk j [0, H ]. (3.13)

Then we have for any η > 0

SH(H) :=
1

H

H
∑

h=1

S(H ∪ h)

S(H)
= 1 +O(η) (3.14)

if
H ≥ exp(k1/η). (3.15)

Proof. This is Theorem 1 of [20, 2010].

Remark. As it is easy to see Lemma 4 implies Gallagher’s classical theorem [10, 1976] on the
singular series.

Combining the proofs of Theorems A and B (in the modified forms mentioned above) with the
assertion of Lemma 2 we obtain under the weaker condition (3.6), i.e. for all admissible k-tuples
Hk = {hi}

k
i=1, hi < hi+1,

H = Hk j [0, ε logN ], (3.16)

at least

c2(k)S(H)
N

logk N
(3.17)

numbers n ∈ [N, 2N) such that n + H contains at least two primes and almost primes in each
components, i.e.

P−
(

PH(n)
)

> nc1(k). (3.18)

However, we must show the same with consecutive primes as well.
We can define for any subset V of {1, 2, . . . , k} the set

V (N) =
{

n ∈ [N, 2N) : n+ hi ∈ P ⇔ i ∈ V
}

. (3.19)

Since k is bounded the number of possible subsets V is also bounded, therefore we can choose a
V0 such that

V0 ⊂ {1, 2, . . . , k}, |V0| ≥ 2, |V0(N)| ≥ c3(k)S(H)
N

logk N
. (3.20)

Choosing two arbitrary consecutive elements i, j ∈ V0(N) with i < j we have at least

c3(k)S(H)
N

logk N
(3.21)

numbers n ∈ [N, 2N) such that for any µ ∈ (i, j)

n+ hµ /∈ P . (3.22)

We have to assure, however, additionally that for a positive proportion of these numbers n we
have also

n+ h /∈ P for h /∈ H, hi < h < hj . (3.23)
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Applying Lemma 3 for all these values h and summing up we arrive at the conclusion that

∑

n∈[N,2N)

P−(PH(n))>Nc1(k)

∑

h
hi<h<hj

n+h∈P

1 ≤ C4(k)
N

logk+1 N

∑

hi<h<hj

S(H ∪ h) (3.24)

≤ 2C4(k)
NεS(H)

logk N

by Lemma 4. This shows that if ε was chosen sufficiently small depending on k, i.e.

ε < ε0(k) (3.25)

then our original primes n+ hi and n+ hj are consecutive for at least

c5(k)S(H)
N

logk N
(3.26)

elements n ∈ [N, 2N), thereby showing our Main Theorem.

4 Polignac numbers

1. Proof of Theorem 1
The fact that DHL∗(k, 2) implies the positivity of the asymptotic lower density of Polignac

numbers is expressed as Corollary 1 of [19, 2010] with the value

1

k(k − 1)

∏

p≤k

(

1−
1

p

)

(4.1)

and proved in Section 11. The above value is about e−γ/(k2 log k) for large values of k. (If k → ∞,
they are asymptotically equal.)

1. Proof of Theorem 2
We again suppose DHL∗(k, 2) for k ≥ k0.
The reasoning is more intricate in this case and the resulting value C is ineffective. The trivial

relation
hk − h1 ≥ (k − 1)min

i>j
(hi − hj) (hi < hi+1) (4.2)

even gives the impression that the best we can prove about localization of Polignac numbers is an
interval of type

[

M, (k − 1)M
]

. (4.3)

Let us suppose that Theorem 2 is false. Then we have for any C0 > 0 an infinite series of
intervals

Iν :=
[

Mν ,Mν + Cν

]

, Mν > Cν > 4Mν−1, M1 > C0 (4.4)

such that

Ds ∩

( ∞
⋃

ν=1

Iν

)

= ∅. (4.5)

For p > k we have clearly
νp(Hk) < p for p ∈ P , (4.6)

so we have no problem of choosing an admissible system Hk in a sufficiently long interval (e.g. if
Ck is large enough). Let

Hk := {hν}
k
ν=1 , hν ∈ I ′ν :=

[

Mν + Cν/2,Mν + Cν

]

. (4.7)
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For hν ∈ Iν , hµ ∈ Iµ, ν < µ we have then

hµ − hν ∈
[

Mµ + Cµ/2− 2Mµ−1,Mµ + Cµ

]

⊂ Iµ. (4.8)

Since in case of k ≥ k0 at least one of the numbers

hµ − hν (1 ≤ ν < µ ≤ k) (4.9)

can be written as a difference of two consecutive primes, (4.8) contradicts to (4.5) and thus proves
our theorem.

5 The normalized value distribution of dn

1. Proof of Theorems 3–4
Since Theorem 4 implies Theorem 3 it is sufficient to prove the latter. The structure of the

proof will follow that of Theorem 2 proved in the previous section. Suppose that Theorem 4 is
false. In this case we have for a sufficiently small c∗ > 0 an infinite series of intervals

Jν =
[

cν , cν + δν
]

, cν > 4δν > 20cν+1, c1 < c∗ (5.1)

such that for K large enough

{

dn
f(n)

}∞

n=N

∩

( K
⋃

ν=1

Jν

)

= ∅, where N = N(K) > 0. (5.2)

Let
Iν(n) :=

[

cνf(n), (cν + δν)f(n)
]

, ν = 1, 2, . . . ,K. (5.3)

Then we have

dn /∈
K
⋃

ν=1

Iν(n) for ν = 1, 2, . . . ,K, n ∈ [N, 2N), N > N(k). (5.4)

Using our Main Theorem, similarly to (4.7) we can construct an admissible k-tuple Hk = {hν}kν=1

with 3.5 · 106 ≤ k ≤ K such that h1 > h2 > · · · > hk and with a sufficiently small ε > 0

hν ∈ I ′ν(N) :=

[(

cν +
δν
2

)

(1 + ε)f(N), (cν + δν)(1 − ε)f(N)

]

. (5.5)

For hµ ∈ I ′µ, hν ∈ I ′ν , µ < ν we have for N > max
(

N(K), N0(ε)
)

hµ − hν ∈

[(

cµ +
δµ
2

− 2cµ+1

)

(1 + ε)f(N), (cµ + δµ)(1− ε)f(N)

]

:= I∗µ(N). (5.6)

Since we have for any 1 ≤ µ < ν ≤ k0 and any n ∈ [N, 2N)

I∗µ(N) ⊂ Iµ(n), (5.7)

the fact that by the Main Theorem hµ−hν = dn for some n ∈ [N, 2N), 1 ≤ µ < ν ≤ k0 contradicts
to (5.4) and thus proves Theorems 3 and 4.

10



6 Comparison of two consecutive values of dn

1. Proof of Theorem 5
Since the proof of the two inequalities are completely analogous, we will only prove the second

one. The basis of it is the Main Theorem proved in Section 3. We can start with an arbitrary
admissible k-tuple H = Hk = {hi}ki=1, h1 < h2 < · · · < hk with k ≥ 3.5 · 106. Let with a fixed
sufficiently small c1(k) define

B(i, j, N) =
{

n ≤ N,n+ hi ∈ P , n+ hj ∈ P ,P−(PH(n)) > nc1(k)
}

, (6.1)

T =

{

(i, j); j > i, lim sup
N→∞

|B(i, j, N)| logk N

N
> 0

}

(6.2)

and let us choose the pair (i, j) with maximal value of j, afterwards that with maximal value of
i < j. Then for any hµ ∈ (hi, hj) (i.e. i < µ < j) we have clearly

lim sup
N→∞

|B(µ, j,N)| logk N

N
= 0 (6.3)

so all components n+ hµ between n+ hi and n+ hj are almost always composite if n ∈ B(i, j, N)
and N = Nν → ∞ through a suitable sequence Nν .

On the other hand if we have an arbitrary h ∈ (hi, hj), h /∈ H, then the assumption n+ h ∈ P
implies for H+ = H ∪ h

P−
(

PH+(n)
)

> nc1(k). (6.4)

However, by Lemma 3 the number of such n ≤ N is for all N

≪k,c1

S(H ∪ {h})N

logk+1 N
≪k,c1

S(H)N log hk

logk+1 N
≪k,c1,H

N

logk+1 N
. (6.5)

This, together with (6.3) shows that we have at least

(

c1(k,H) + o(1)
) N

logk N
(6.6)

values n ≤ N with n+ hi, n+ hj being consecutive primes for some sequence N = Nν → ∞.
Let us consider now these differences. Let

n+ hi = pν ∈ P , n+ hj = pν+1 ∈ P , dν = hj − hi ≪ 1 (6.7)

where
logn ∼ log ν ∼ logN. (6.8)

Suppose now that the second inequality of Theorem 5 is false. Then we have for all those values
of ν with an arbitrary ε > 0 for N > N(ε)

dν+1 ≤ dνε logN ≤ Cε logN, C = hk − h1. (6.9)

The already quoted sieve of Selberg (Lemma 3) gives an upper estimate how often this might
happen for any particular value

dν+1 = d ≤ Cε logN. (6.10)

Adding it up until Cε logN we obtain at most

≪k,c1

N

logk+1 N

Cε logN
∑

h=1

S(H ∪ h) ≪k,c1 S(H)
CN

logk N
ε (6.11)

by Lemma 4. This means that in view of (6.6) this cannot hold for all N = Nν → ∞. This
contradiction proves Theorem 5.
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7 Arbitrarily long arithmetic progressions of generalized

twin primes

Proof of Theorem 6
In this case we have to use again our crucial Main Theorem and the rest of the machinery

executed in Section 7 of [19, 2010]. This yields the combination of Zhang’s theorem with that of
Green and Tao [14, 2008].

8 How to make Zhang’s theorem effective?

Our last point is that in its original form Zhang’s theorem is ineffective since it uses Siegel’s
theorem. His result and similarly to it all results of the present work can be made effective in the
following way.

According to the famous theorem of Landau–Page there is at most one real primitive character
χ with a modulus q (and the characters induced by it) which might cause ineffectivity in the
Bombieri–Vinogradov theorem, and this modulus has to satisfy

(logX)2 ≤ q ≤ (logX)ω(X) (8.1)

for any ω(X) → ∞ as X → ∞. This modulus can cause any problem only in the case

q | PH(n). (8.2)

However, our Lemma 3 says that we can neglect all numbers n with

P−
(

PH(n)
)

< nc1(k), (8.3)

so (prescribing additionally q ∤ d in the definition (3.9) of ΛR(n;H, k, ℓ)) both Zhang’s theorem
and all our present results become effective.

Remark. It is an interesting phenomenon that in the sieving process yielding bounded gaps between
primes and in all our present results we can choose

λd = 0 (8.4)

if d has either a prime divisor
> N c′(k) (8.5)

or if it has a prime divisor
< N c′′(k). (8.6)
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Ann. Math. 8 (1849), 423–429.

[24] R. A. Rankin, The difference between consecutive prime numbers. II, Proc. Cambridge
Philos. Soc. 36 (1940), 255–266.

[25] G. Ricci, Sull’andamento della differenza di numeri primi consecutivi, Riv. Mat. Univ.
Parma 5 (1954), 3–54.

13



[26] I. M. Vinogradov, Representation of an odd number as a sum of three prime numbers,
Doklady Akad. Nauk. SSSR 15 (1937), 291–294 (Russian).
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