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ABSTRACT 

 A novel method was introduced for the quantitative determination of substances in 

aqueous solutions by using the evaporative light scattering (ELS) detector of a high 

performance liquid chromatograph (HPLC). The principle of the measurement is the 

different equilibrium vapor pressure of the solvent and the analyte resulting in decreasing 

evaporation rate, larger droplets and stronger signal with increasing concentration. The new 

technique based on vapor pressure analysis was validated with traditional UV-Vis detection 

carried out with a diode array detector (DAD). The new technique was used for monitoring 

the concentration of solutions obtained during the enzymatic degradation of poly(3-

hydroxybutyrate) yielding the 3-hydroxybutyrate monomer as the product. The accuracy of 

the measurement allowed the determination of degradation kinetics as well. The results 

obtained with the two techniques showed excellent agreement at small concentrations. 

Deviations at larger concentrations were explained with the non-linear correlation between 

analyte concentration and detector signal and the linear regression used for calibration. 

Mathematical analysis of the method made possible the determination of the evaporation 

enthalpy of the analyte as well. The new approach is especially suitable for the quantitative 

analysis of compounds, which do not absorb in the detection range of the DAD detector or 

if their characteristic absorbance is close to the lower end of its wavelength range. 
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1. INTRODUCTION 

 Because of its advantages, e.g. simplicity, ease of operation and convenience, UV-

VIS spectrophotometry is a frequently used qualitative and quantitative analytical method 

in the field of biotechnology [1-5], but also in liquid chromatography [4-16]. However, 

besides their advantages, UV-VIS detectors have some drawbacks as well. The lack of 

significant UV absorbance of the analyte, or absorbance close to the lowest wavelength of 

the detector and the cut-off wavelength of the solvent makes determination difficult or 

impossible [20-21]. Other detection techniques must be applied in such cases, [17-19]. The 

enzymatic degradation of polyesters generally yields hydroxyl-acids [22] which absorb in 

the wavelength range of 190-250 nm [23,24], thus the limitations mentioned above decrease 

reliability. Moreover, also buffers must be often used and they absorb generally in the low 

UV wavelength range [23-25] and the presence of the enzyme further complicates detection, 

since its absorbance may influence the spectrum under 250 nm as well [26-30].  

 The problem of overlapping UV absorbance can be eliminated by simple baseline-

correction in which the spectrum of the solution containing the buffer and the enzyme is 

subtracted from the spectrum of the analyte [31-34]. Castela [35] and Iwata [36], on the 

other hand, separated the components of the aqueous medium chromatographically and then 

analyzed the metabolites quantitatively. However, usually more effective detection 

techniques are needed to solve these problems. Refractive index detectors offer a cost 

effective solution [17-19], but their low sensitivity might limit the accurate determination 

of metabolite concentration. Destructive detection methods, like mass spectrometry [37-42], 

might also be used, but LC-MS-MS systems generally require rather expensive 

instrumentation. 

 In this work we propose an alternative approach to the spectroscopy-based LC 

detection techniques used routinely, which, unlike the vast majority of destructive LC 
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detectors, is cheap and quite easy to operate. The method uses a less frequently applied 

detection method, the evaporative light scattering detector, but in a completely new way that 

has not been done before. Usually the ELS detector is used for the determination of small, 

insoluble, solid particles. In constant nitrogen flow the dispersion is sprayed by the nebulizer 

into small droplets, the solvent is evaporated in a heated tube and the detector measures the 

light scattered on the remaining non-volatile particles. The intensity of the scattered light is 

proportional to the number of particles. Our method, on the other hand, does not determine 

solid particles, but detects the size of droplets containing the analyte and it relies on the 

different equilibrium vapor pressures of the components separated by the LC system. 

 The principle of the method is that the equilibrium vapor pressure of a solution 

depends on the concentration of the dissolved component, which in our case is the analyte. 

Instead of measuring vapor pressure, which is difficult or in our case impossible, we follow 

the rate of evaporation instead. A solvent (eluent) with large vapor pressure evaporates fast, 

but vapor pressure and thus the rate of evaporation decreases, if a component with smaller 

vapor pressure is dissolved in it. The solution is sprayed and moved in the heated evaporator 

tube, as it is usually done in ELS detection. The principle of detection is demonstrated in 

Fig. 1. The size of the dispersed droplets decreases according to their rate of evaporation, 

which depends on the properties and amount of the dispersed component. The droplets pass 

before a light source, scatter light according to their size, the intensity of which is measured 

by a photodetector. At larger concentration of the dissolved component, particles evaporate 

slower and their size remains larger at detection. The theoretical background of the method 

is described more in detail in the paper and calculation details are given in the Appendix. 

 The application of the method is demonstrated by the quantitative analysis of the 

metabolites produced by the enzymatic degradation of a microbial polyester, poly(3-

hydroxybutyrate), PHB [43-45]. The enzyme used for catalysis originated from the strain 
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Bacillus Megaterium. The gene sequence, like the protein itself was discovered, isolated 

and characterized by Chen and his colleagues [46] who also demonstrated that the 

intracellular enzyme produces exclusively the monomer (3-hydroxybutyric acid) during 

degradation. Besides the quantitative determination of the metabolite, the approach makes 

possible the determination of its apparent evaporation enthalpy as well. 

 

2. EXPERIMENTAL 

2.1. Materials 

 Poly(3-hydroxybutyrate) granules were obtained from Metabolix Ltd. (Mirel 

M2100, ≥99.5% purity) with a crystallinity of ~60 %. HIS-tagged poly(3-hydroxybutyrate) 

depolymerase enzyme molecules were produced by recombinant Escherichia Coli bacteria 

[strain: Origami DE3 (Novagen), plasmid: pGS1865 bearing the depolymerase gene of the 

bacteria Bacillus Megaterium] and purified by affinity chromatography on a Ni-

nitrilotriacedic acid (NTA) agarose column. 

 

2.2. Sample preparation 

 Amorphous poly(3-hydroxybutyrate) films were prepared by compression molding 

and solvent casting, respectively. Films of 100 m thickness were compression molded 

using a Fontijne SRA 100 machine at 120 kN, 3 min, 220 °C and at a cooling rate of about 

30 °C/min. Films were cast onto a glass surface from a 2 m/m% chloroform solution of the 

polymer and subsequently kept at constant temperature (25 °C) and relative humidity (50 

%). 

 

2.3. Methods 

 The enzymatic degradation of amorphous poly(3-hydroxybutyrate) films was carried 
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out in Erlenmeyer flasks, at 37 °C  with continuous stirring at 200 rpm. The aqueous media 

consisted of 100 mmol/dm3 NaCl and 20 mmol/dm3 tris/HCl buffer [tris(hydroxymethyl)-

aminomethane hydrochloric acid salt] adjusted to pH 8.0. The amorphous polymer films 

and the enzyme solution were added to the Erlenmeyer flasks simultaneously, the latter in a 

quantity to provide 7 μg/ml enzyme concentration. The parameters (37 °C, pH 8.0 and 7 

μg/ml enzyme concentration) were selected using information previously published on 

maximum enzyme activity [31-33]. 

 Enzymatic degradation was monitored by recursive sampling with a time interval of 

20 min, over a 3 hour period. The samples were analyzed using a reversed phase liquid 

chromatograph (Merck-Hitachni LaChrom Elite) equipped with a LiChroChart 250-4 

column. The column contained LiChrospher 100 RP-18 type end-capped silica with an 

average particle diameter of 5 μm and pore size of 100 nm. 

 The reversed phase LC system was equipped with a Polymer Laboratories PL-

ELS2100 Ice detector, which was used as indirect vapor pressure analyzer over the 

temperature range of 35-50 °C. As sufficient detector sensitivity requires the equilibrium 

vapor pressure of the eluent and the analyte to be significantly different, the pH of the eluent 

was regulated with a volatile acid/salt buffer (HCOOH/NH4COOH) with the concentration 

of 10 mmol/dm3 at pH 3.0.  

 Reference measurements were carried out with the diode array detector of the 

LaChrom Elite liquid chromatograph. As the UV absorbance of the volatile buffer used for 

vapor pressure analysis (HCOOH/NH4COOH) overlaps with the absorbance peak of the 

metabolite (3-hydroxybutyric acid), adequate quantitative measurement based on UV 

absorbance required a buffer which did not absorb in the UV range. The buffer must also 

have provided stable pH at 3.0, which was achieved with the H3PO4/KH2PO4 phosphate 

buffer at the same, 10 mmol/dm3 concentration. The DAD detector measured the 190-300 
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nm range with the time interval of 400 ms. Eluent flow was kept constant at 1.0 ml/min both 

in the measurements based on vapor pressure analysis and on UV detection. 

 

3. RESULTS 

3.1. Vapor pressure analysis  

 According to Raoult’s law, increasing concentration of a liquid phase component 

with smaller equilibrium vapor pressure results in decreasing pressure of the vapor above 

the solution. As the equilibrium vapor pressure of each component of the aqueous media 

analyzed (tris buffer, NaCl, enzyme and the monomer) is significantly smaller than that of 

the eluent (10 mmol/dm3 HCOOH/NH4COOH buffer), the pressure of the vapor phase is 

smaller, when it contains any of the analytes listed above. When the eluent-analyte solution 

is evaporated, smaller equilibrium vapor pressure results in slower phase transition and thus 

slower evaporation rate. 

 A detection technique based on vapor pressure analysis requires a nebulizer 

dispersing the eluent flow into liquid droplets carried by an inert gas flow, which is usually 

dry nitrogen or argon. The evaporation of a droplet begins immediately when it leaves the 

nebulizer and enters the evaporator tube, which is equipped with a photodetector at the other 

end. If the eluent carries an analyte with smaller equilibrium pressure, the evaporation of 

the droplet slows down resulting in larger particles. The detector determines particle size by 

measuring scattered light, i.e. droplets with larger average diameter scatter more photons 

resulting in stronger detector signal. Chromatograms recorded by the ELS detector on 

solutions obtained after different times of enzymatic degradation are plotted in Fig. 2.  

 The first peak appears at 2 min and its intensity is independent of the time of 

degradation. It belongs to the ionized components of the aqueous media (NaCl salt, tris 

buffer and enzyme molecules), as these ions are barely detained by the RP-18 endcapped 
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silica column, and thus their retention time is close to the t0 value of the column (~1.90-1.95 

min). Due to the practically zero equilibrium vapor pressure of the components listed above, 

the decrease of the evaporation rate results in the formation of droplets with a diameter 

outside the range of the detector. The constant height and shape of this peak indicates that 

the concentration of the ionized components (NaCl salt, tris buffer and enzyme molecules) 

remains constant throughout the entire time interval measured. 

 The height of the peak eluting at 6 minutes, however, depends significantly on time 

because of the formation of 3-hydroxybutyric acid during enzymatic degradation (Fig. 3). 

While the charge of the buffer components applied to set the pH of the aqueous media (Na+, 

Cl- and tris ions) is not affected by the acidity of the eluent, the monomer with a pKa value 

of 4.70 can be protonated at pH 3.0. The dipole moment of a protonated acid molecule is 

generally significantly smaller than that of the deprotonated ion, which increases its 

retention time. Increased retention time (about 6 minutes, see Figs. 2 and 3) provides 

excellent separation efficiency and makes possible the quantitative determination of the 

concentration of the monomer separated from the other components by the column. 

 Because the presence of the buffer (10 mmol/dm3 HCOOH/NH4COOH) shifts the 

signal measured for the pure eluent to 140 mV (see Figs. 1 and 2) base line correction is 

needed and the integration of the peaks results in a quantity proportional to the concentration 

of the analyte. Quantitative analysis allows the determination of degradation kinetics. As 

Fig. 4 demonstrates, the enzyme starts to react with an initial accelerating stage, but reaction 

rate eventually reaches a constant value, which prevails until the end of the measurement. 

Although the results obtained by vapor pressure analysis seem to be reasonable and the 

kinetics of degradation corresponds to expectations, the new method must be validated with 

an accepted technique, e.g. by UV-Vis detection.  
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3.2. UV detection 

 Although the DAD was set to measure the entire wavelength range (190-300 nm), 

only absorbances recorded at 215 nm, at the maximum absorbance of the monomer 

molecules, were used in the quantitative analysis. The comparison of Figs. 2 and 5 

demonstrates the most important difference between the two detection techniques used, i.e. 

vapor pressure analysis and UV spectroscopy. Compared to the absorbance of the monomer, 

the first peak with a retention time of approximately 2 minutes is significantly smaller in 

Fig. 5 than the one recorded with the ELS detector (see Fig. 2). The NaCl concentration of 

the analyzed aqueous media was relatively large (0.1 mol/dm3), yet the equilibrium vapor 

pressure of this component is practically zero. This causes the eluent-NaCl solution to 

evaporate slowly resulting in the formation of relatively large droplets leading to a strong 

signal in ELS detection. Accordingly, the signal detected in the vapor pressure analysis is 

especially sensitive to the presence of non-volatile components. However, the DAD detector 

(see Fig. 5) gave a considerably smaller signal in this range, since the UV absorbance of 

Na+ and Cl- ions is practically zero in the entire 190-300 nm wavelength range. The 

relatively weak signal detected at around 2 min can be attributed to the absorption of the 

tris/HCL buffer and the enzyme molecules, but the concentration of these latter is much 

smaller than that of the buffer.  

 On the other hand, the peaks attributed to the protonated monomer detected by the 

two techniques are quite similar independently of the detection technique used. This 

similarity originates from the physical characteristics of the monomer (3-hydroxybutyric 

acid) molecules. The electrons of the carboxyl group present in the molecule result in 

significant UV absorbance, on the one hand, while 3-hydroxybutyric acid has a relatively 

low equilibrium vapor pressure, on the other, which makes it ideal as a reference material 

for the comparison of the two techniques.  
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 Similarly to the vapor pressure analysis, the kinetics of enzymatic degradation was 

determined also with UV detection. The results obtained are presented in Fig. 6. The 

similarity of the correlations to those shown in Fig. 4 is striking indicating that the two 

detection techniques yield very similar data at least qualitatively. A more detailed analysis 

is needed to check the agreement quantitatively. 

 

3.3. Comparison 

 The direct comparison of the results requires the preliminary calibration of the 

detectors with an internal standard. 3-hydroxybutyric acid with >95% purity is available as 

a commercial product. Using this product allows the determination of the calibration 

parameters required to convert detector signals into concentrations. The concentrations 

determined in the calibrating solutions are plotted against each other in Fig. 7. 

 The comparison of the results obtained with the two detection techniques reveals 

that at small concentrations the vapor pressure analysis based detection technique is just as 

reliable as the other method used for validation (UV). However, at larger concentrations the 

UV detection provides considerably larger values indicating that the measurement based on 

vapor pressure analysis is biased by a concentration dependent systematic error (see Fig. 7). 

This error is caused by the nonlinear correlation between analyte concentration and detector 

signal and by the fact that calibration constants were calculated with a simple linear 

regression for both detectors. One either eliminates this anomaly with the application of a 

nonlinear calibration curve, or continues to use linear regression and applies the calibration 

only at low analyte concentrations.  

 

3.4. Temperature dependence  

 The results presented above unambiguously proved that the novel chromatographic 
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detection method based on vapor pressure analysis is an excellent tool for the study of the 

enzymatic degradation of microbial polyesters. Measurements carried out as a function of 

temperature yield further information about the compound analyzed. The equilibrium vapor 

pressure of the eluent changes with changing temperature of the evaporator tube resulting 

in a modification of evaporation rate. Changes in equilibrium vapor pressure over an 

aqueous phase as a function of temperature can be estimated by the Clausius-Clapeyron 

equation which contains the apparent evaporation enthalpy of the compound in question. 

Measurements carried out as a function of temperature allow the determination of this 

quantity which is characteristic for the analyte studied.  

 In order to check the validity of the principle, chromatograms were recorded in the 

temperature range of 35-50 °C. As the ionized components (NaCl salt and tris/HCl buffer) 

are non-volatile, the peak eluted at 2 minutes does not depend on temperature. On the other 

hand, the height of the second peak attributed to protonated 3-hydroxybutyric acid 

molecules was drastically modified by changing temperature. At 36 °C the signal of the 

monomer is significant, but at 50 °C it is close to the detection limit (see Fig. 7). The 

considerable temperature dependence of the detected peak allows us the determination of 

evaporation enthalpy, but to achieve this further considerations and calculations are needed. 

 

4. DISCUSSION 

 The Clausius-Clapeyron equation forming the basis of our approach takes the 

following form 














212

1 1
  

1
  ln

TTR

H

p

p
   (1) 

where p1 and T1 are the equilibrium vapor pressure and temperature, respectively, in state 1, 

while p2 and T2 are the same quantities in state 2. State 1 is generally the state being 
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investigated, while state 2 is a reference state, most frequently the standard state. H is the 

apparent evaporation enthalpy of the material in question while R the universal gas constant.  

 In our case, however, the vapor pressure of the state being measured is required as a 

direct function of temperature. The rearrangement of Eq. 1 and the merging of constants 

results in the required function 








 


TR

H
Cp

 
exp   1

    (2)  

 Eq. 2 describes the temperature dependence of vapor pressure, but the detector 

supplies a signal related to droplet size and not directly the vapor pressure of the eluent. The 

calculation of droplet size requires the knowledge of the rate of evaporation, which depends 

on the equilibrium vapor pressure of the eluent (Eq. 2). For the sake of simplicity, this 

positive correlation is approximated with a linear function  

1   pkv ee       (3)  

where ve is the rate of the evaporation, ke is a constant and p1 is the equilibrium vapor 

pressure of the eluent. The latter is the driving force of evaporation, since at the moment of 

the droplet formation the vapor pressure of the eluent is zero in the dry nitrogen flow. By 

merging Eqs. 2 and 3 one obtains 

  






 


TR

H
CkTv ee

 
exp        (4)  

which gives the temperature dependence of evaporation rate directly. The average size of 

the droplets reaching the end of the evaporator tube can also be estimated from Eq. 4. The 

droplets are analyzed by a photodetector, which generates a signal related to the ratio of 

emitted photons to scattered photons. Such a relationship can be described by a number of 

models used for the description of photon scattering.  

 In our treatment we use the Rayleigh scattering. The application of the approach in 
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our specific case is described in the Appendix. The function derived relates the intensity of 

detector signal to temperature and allows the estimation of peak areas as a function of 

temperature (see Fig. 8) 
















 
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TR

H
CrAU id

 
exp     max     (5)  

where Ud is the output voltage of the detector (millivolts) Ai is an instrument specific 

constant (mV/nm), rmax is the average diameter of the droplets at the beginning of their 

evaporation (nm) and C’ is a pre-exponential coefficient containing the constants of the 

standard state as well as the rate constant of evaporation (nm). Since the function presented 

in Eq. 5 is not linear and it cannot be linearized either, the fitting of Eq. 5 onto the 

experimental data requires a nonlinear, iterative algorithm, which was the Levenberg-

Marquardt algorithm in our case. The result of the fitting procedure is shown in Fig. 9. 

 Fig. 9 shows very good agreement between the measured values and the fitted 

correlation. The fitting procedure yielded also the numerical values of the constants 

including the enthalpy of evaporation. Considering the technical difficulties of the 

measurement and the computational procedure, the value obtained by us (82.5 kJ/mol) 

agrees reasonably well with published values (67.5 kJ/mol) [47,48]. The deviation between 

the two values can be explained with the different temperature range of the actual 

measurements (308-323 K in our case, 371-485 K published), on the one hand, and with the 

uncertainty of the determination of droplet size.  

 

5. CONCLUSIONS 

 A novel method was introduced for the quantitative determination of substances in 

aqueous solutions by using the ELS detector of a HPLC chromatograph. The principle of 

the measurement is the different equilibrium vapor pressure of the solvent and the analyte 
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resulting in decreasing evaporation rate, larger droplets and stronger signal with increasing 

concentration. The new technique based on vapor pressure analysis was validated with 

traditional UV-Vis detection carried out with a diode array detector. The new technique was 

used for monitoring the concentration of solutions obtained during the enzymatic 

degradation of poly(3-hydroxybutyrate) yielding the 3-hydroxybutyrate monomer as the 

product. The accuracy of the measurement allowed the determination of degradation 

kinetics as well. The results obtained with the two techniques showed excellent agreement 

at small concentrations. Deviations at larger concentrations were explained with the non-

linear correlation between analyte concentration and detector signal and the linear 

regression used for calibration. Mathematical analysis of the method made possible the 

determination of the evaporation enthalpy of the analyte. The new approach is especially 

suitable for the quantitative analysis of compounds, which do not absorb in the detection 

range of the DAD detector or if their characteristic absorbance is close to the lower end of 

its wavelength range.   
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APPENDIX 

 According to the Rayleigh theory, the amount of scattered photons can be calculated 

as 
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where I0 is the intensity of the photon source, θ the scattering angle, R the distance of the 

photon source to the particle, λ the wavelength of the photons scattered, n the refractive 

index and d is the diameter of the particle. 

 The rate of evaporation in the ELS detector is proportional to the surface of the 

particles and depends on time (t). Accordingly the rate of evaporation can be expressed as 
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where V is the volume and r the radius of the droplets. Volume can be expressed in terms 

of radius, thus evaporation rate takes the form 
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where k' is a constant. Expressing the right hand side of the equation in volume again leads 

to the homogeneous first order differential equation  
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Separation of the variables and integration gives us the time dependent volume of the 

droplets 
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However, the intensity of scattering depends on the size of the particles and not on their 

volume, thus we must express Eq. A5 in terms of size in order to obtain time dependent 

particle size 
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Eq. A6 shows that particle size depends linearly on the time of flight.  

 The size of droplets depends on temperature and on their position in the evaporator 

tube. The final size of the droplet (rr) can be calculated from its initial size (rmax), particle 

size decreases continuously and linearly as it passes along the tube. Accordingly 
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where C' contains all constants related to the reference state and the geometry of the 

evaporation tube. Introducing Eq. A7 into Rayleigh's equation (Eq. A1), yields the final 

correlation for temperature dependent detector intensity 
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CAPTIONS 

Fig. 1 Schematic drawing of the detection system of used in the vapor pressure 

approach. 

Fig. 2 Dependence of the intensity of the signal detected by vapor pressure analysis 

(ELS detector) on aqueous solutions obtained by the enzymatic degradation of 

PHB as a function of time. Sample: compression molded film, temperature: 36 

°C. Degradation time increases from 0 to 180 min. 

Fig. 3 Increasing height of the peak assigned to the degradation product, 3-

hydroxybutirate. Conditions are the same as in Fig. 2. 

Fig. 4 Kinetics of the enzymatic degradation of PHB determined by vapor pressure 

analysis. Symbols: () compression molding, () solvent casting. Other 

conditions are the same as in Fig. 2. 

Fig. 5 Chromatograms recorded on degradation solutions by UV detection at 215 nm 

as a function of degradation time. Sample: compression molded film. 

Fig. 6 Kinetics of the enzymatic degradation of PHB determined by the UV detection 

of the concentration of the resulting monomer. Symbols: () compression 

molding, () solvent casting. 

Fig. 7 Comparison of monomer concentrations determined by traditional UV 

detection and vapor pressure analysis (ELS detector). 

Fig. 8  Temperature dependence of the signal recorded by the ELS detector (vapor 

pressure analysis) on aqueous solutions containing the 3-hydroxybutyrate 

monomer after 180 min enzymatic degradation of a compression molded PHB 

film. 

Fig. 9 Effect of temperature on the intensity of the signal recorded by vapor pressure 

analysis (ELS detector). Degradation time: 180 min, sample: compression 
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molded film. Symbols: () measured data,  fitted correlation.  
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Polyák, Fig. 2 
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Polyák, Fig. 3 
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Polyák, Fig. 4 
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Polyák, Fig. 5 
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Polyák, Fig. 6 
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Polyák, Fig. 7 

 

 

 

 

0 1 2 3 4 5
0

1

2

3

4

5

 

 
C

o
n
ce

n
tr

at
io

n
 -

 U
V

 (
m

m
o
l/

d
m

3
)

Concentration - ELS (mmol/dm
3
)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 

Polyák, Fig. 8 
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Polyák, Fig. 9 
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