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The most obvious symptom of systemic virus infection is the mosaic pattern of the leaves.
Yellowing, chlorosis is also frequent and characteristic sign of the altered photosynthetic activity. Virus
infection effects photosynthesis in a complex manner, depending on the particular host-virus combination.
The symptoms are basically different in the incompatible or the compatible host-virus interaction. 
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Photosynthetic changes in incompatible host-virus interaction

Virus infection often causes local lesions in resistant plants. The development of
local lesions in hypersensitive reaction (HR) was described in details by electron micros-
copy, based on the time course of the appearance of symptoms (Weintraub and Ragetli,
1964). The ultrastructure of the lesion and the surrounding cell layers and the role of the
active zone in the localisation of the infection was highlighted (Israel and Ross, 1967).

In tobacco mosaic tobamovirus (TMV) infected N. glutinosa leaves the size and
number of the starch grains increased in the chloroplasts following the infection
(Weintraub and Ragetli, 1964). One day after the infection plasmolysis occurred, and first
the cytoplasm and later the chloroplast membranes completely disappeared. In the remains
of the chloroplasts large vesicles were formed, the number of mitochondria increased and
their structure changed. Finally the whole cell structure collapsed and its content disin-
tegrated. All these alterations were consequences of the loss of osmotic regulation, and
have been related to the so-called ‘starch-lesions’ described by Holmes (1931).

Israel and Ross (1967) have studied the cells of necrotic lesions, the tissues in the
direct vicinity (active zone), and the outer visually unaffected cells. The cells in the
lesions contained very few cell organelles; starch grains, disrupted thylakoid membranes,
displaced ribosomes. The cells of the active zone showed increased metabolic activity.
The number of chloroplasts increased due to their frequent division. Similar alterations
were described in the case of another host plant (Phaseolus vulgaris var. Pinto) following
TMV infection (Spencer and Kimmins, 1971).

The phenomena of chloroplast swelling and abruption in HR were examined by
da Graça and Martin (1975) in TMV infected N. tabacum cv. “Samsun NN” plants. The
primary symptom of HR was the change in the permeability of membranes. The oxidative
burst, the increase in peroxidase and lipoxigenase activity lead to the brake up of mem-
branes (Weststeijn, 1978; Dhindsa et al., 1981; Sutherland, 1991).
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In the lesions of potato virus S carlavirus (PVS) infected Chenopodium quinoa
Shukla and Hiruki (1975) often found cytoplasmic invaginations containing ribosomes in
the chloroplasts and in the stroma, the accumulation of fitoferritin, which was not specific
to the PVS infection, because other viruses or certain stress factors cause the same symp-
toms (Rana et al., 1989).

Photosynthetic changes in compatible host-virus interaction

For the synthesis of virions the parasite uses the metabolites and energy of the
host plant, which are produced in the course of photosynthesis. It is evident that the phy-
siological processes of the virus and the plant are linked in complex ways, the structure
and the function of the chloroplasts are disturbed (Zaitlin and Hull, 1987).

Changes in the ultrastructure of chloroplasts

The chlorosis of leaf tissues in the compatible host parasite interactions can be
traced back to different causes. The number, size or chlorophyll content of the chloroplasts
may decrease (Tu et al., 1967). Their shape, inner membrane structure may alter to some
degrees, some of their metabolites may accumulate, etc. (Goodman et al., 1986). Often the
starch grains enlarge, or accumulate for example in the case of the cauliflower mosaic
caulimovirus (CaMV) infected cabbage plants (Conti et al., 1972). In several other
combinations the appearance of large starch grains, the disappearance of thylakoid, stroma
and grana membranes and the increase of plastoglobuli (Koiwa et al., 1989; Russo and
Martelli, 1981) is similar to the chloroplast to chromoplast transformation (Tomlinson and
Webb, 1977; Schuchalter-Eicke and Jeske, 1983), or to the phenomena of senescence. This
idea is underlined by the fact that the application of a citokinin type substance
(karbendazim) in the leaves of lettuce infected with beet western yellows betaluteovirus,
(BWYV) caused the suppression of symptoms (Tomlinson and Webb, 1977). Schuchalter-
Eicke and Jeske (1983) studied the seasonal rhythm of chloroplast symptoms in abutilon
mosaic bigeminivirus (AbMV) infected Abutilon sp. plants, which can also be correlated
with senescence. The microscopic changes reflected the influence of light intensity and
season on the lighter/darker mosaic pattern: in summer the inner membrane structure
almost completely disintegrated, showed vesicular, tubular or myelin-like structure, while
in winter prolamellar body-like structures developed in the plastids, which resulted in the
reorganisation of grana. According to the authors the virus regulates the chloro-
plast/chromoplast transition by switching the organelle’s coded ‘program’ on and off.

The effect of virus infection on the development and differentiation of plastids
was summarised in the study of cucumber mosaic cucumovirus (CMV) infected tobacco
leaves (Ehara and Misawa, 1975). Depending on the time of inoculation, the plastids
differentiated irregularly. The ratio of degenerated plastids changed with the time course
of symptom development. The myelin-like or tubular structure was not formed by the
disruption of the existing lamellae, but by their irregular development. In the case of
BSMV infected etiolated barley seedlings we reported not only the accelerated senes-
cence but the inhibition of chlorophyll biosynthesis (Almási et al., 2000).
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The presence of vesicles within or attached to plastids was reported by Hibino et
al. (1974a,b). In tobacco leaves infected with TMV U5 strain it was proved by autoradio-
graphy that the chloroplasts do not take part in the biosynthesis of virions, which means
that  the vesicles do not play any role in virus replication (Betto et al., 1972). This was
also regarded as a secondary effect in tomato spotted wilt tospovirus (TSWV) infected
tobacco leaves (Mohamed, 1973).

In contrast, the replication of tymovirus genus is related to the chloroplasts. The
swelling of the chloroplasts and the formation of small vesicles were reported in chinese
cabbage infected with turnip yellow mosaic tymovirus (TYMV) (Ushiyama and Matthews,
1970). The plastids became globular, the number of vesicles in the plastids increased and
they formed clusters covered by endoplasmic reticulum (ER) from the cytoplasmic side
(Hatta and Matthews, 1974). The region between the ER and the plastid envelope became
electronlucent, and the ER disappeared. Then the plastids clustered and virions were
observable in the zone between the plastids. In the vesicles of the inner surface of the
envelope, double stranded nucleic acids were visible, which proved to be the replicative
form of viral RNA. Based on these results it was supposed that these vesicles serve as sites
of viral replication, then the viral RNA translocates into the cytoplasm where the viral
proteins are synthesised, and finally the assembly of the virions is completed. These
peripheral vesicles open into the cytoplasm with short necks (channels) (Matthews, 1977).
Similar changes were noted for leaves of wild cucumber (Marah oreganus) infected with
wild cucumber mosaic tymovirus (WCMV) (Allen, 1971), where virions were also present
in the stroma as well as in the cytoplasmic invaginations.

Abnormal vesiculated plastids were observed in susceptible host plants (barley,
wheat) infected with barley stripe mosaic hordeivirus (BSMV). The grana of the de-
formed, swollen plastids had an unusual structure. Between the inner and outer mem-
branes of the envelope single membrane bound vesicles were apparent (Carroll, 1970;
Jackson et al., 1989). In the peripheral vesicles of the chloroplasts Lin and Langenberg
(1985) had observed the replicative form of viral dsRNA, so the plastids could be related
to virus synthesis. Symptom development was categorised into timecourse stages, such
as primary, secondary acute (inoculated leaves) and chronic phase (systemic leaves)
(Mc Kinney and Greeley, 1965). In yellow tissues of the primary acute phase plastids
were often found with translucent stroma, which lacked ribosomes. Their thylakoids were
irregularly twisted, forming a tubular reticulum with enlarged grana. In the secondary
acute phase the degradation of plastids continued until the death of the cells. The young
plastids of the chronic phase contained irregular thylakoids, small, few lamellar grana,
which sometimes vesiculated (Mc Mullen et al., 1978). The reason for the development
of a mosaic pattern is the clustered layout of the chloroplasts that have been damaged to
various degrees. Chalcroft and Matthews (1967) had thought that in the dividing cells of
chinese cabbage infected with TYMV the spontaneously mutating virus strains of
different pathogenicity end up in different daughter cells. The symptom development was
regarded by Gardner (1967) as the result of the different tolerance level of the host cells.
Mc Mullen et al. (1978) had proposed that the virus regulates the phenotype of the
plastids through the nuclear or plastidial genom. In contrast, in the case of systemic
infection of barley yellow mosaic bymovirus (BYMV) there was a linear correlation
between the virus concentration and symptom severity (Huth et al., 1984).
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In certain host-parasite interactions the presence of unusually large grana (“super-
grana”) had been observed (Šarič and Wrischer, 1975; Sjolund and Smith, 1974). By freeze
fracture method replica were made from the granal surface, and based on the number and
size of the contained particles the damage of photosystem II (PSII) was determined.

Changes in the chlorophyll protein complexes and chloroplast proteins

Virus infected monocotyledons (e.g. barley infected with BSMV or WSMV) con-
tained reduced amount of chlorophyll protein complexes compared to the healthy controls
(White and Brakke, 1983). Koiwa et al. (1992) supposed that virus infection inhibits PSII
activity selectively by the decomposition of light harvesting antenna complex of PSII
(LHCII), based on their findings on the ratio of particles in the surface of the thylakoid
membranes in tomato plants infected with TMV. Similarly, Eupatorium makinoi leaves
infected with tobacco leaf curl geminivirus (TLCV) the amount of LHCII decreased in the
chloroplasts (Funayama et al., 1997a,b). The chlorophyll protein complexes and the
protein content of the thylakoids in peanut infected with peanut green mosaic potyvirus
(PGMV) had been altered in parallel to the symptom development (Naidu et al., 1984a).
The complexes reduced to the greatest extent were identified by SDS polyacrylamid gel
electrophoresis (PAGE). All these components belonged to PSII and LHCII: namely the
47 kD chlorophyll protein, the 23 kD LHCII chlorophyll protein and the a-, b-subunits of
the ATP synthase). There were no significant differences in PSI reaction centre, while in
LHCI the amount of the chlorophyll protein complexes slightly increased. In our
experiments we detected the loss of chlorophyll protein complexes of both photosystems
(i.e. PSII and PSI) (unpublished data). In TYMV infected chinese cabbage chloroplasts the
antenna complexes (LHCII and LHCI) decreased to the greatest extent, while in TSWV
infected Nicotiana benthamiana chloroplasts the complexes belonging to the reaction
centers (PSII CC and PSI RC) were mostly affected. Later in a more sophisticated system
(by improved PAGE techniques) Naidu et al. (1986) detected the loss of 14, 18, 19, 23 and
33 kD proteins. The 23 and 33 kD proteins belong to the oxygen evolving complex (OEC)
of PSII, and their changes showed a good correlation with the decreased efficiency of O2

evolution. Takahashi et al. (1991) determined the 22, 23 and 24 kD proteins of OEC from
tobacco leaves infected with CMV separately by using two-dimensional gels. They
supposed these three proteins to be the products of the same small multigen family. The
amount of the 22 and 23 kD proteins had started to decrease at the time of the appearance
of chlorotic spots, while the changes in the amount of the 24 kD and 33 kD proteins which
induce more severe symptoms started only after that (Takahashi and Ehara, 1992). To sum
up all these results the authors proposed, that the environmental factors do not induce or
suppress the distinct elements of certain gene families in the same manner or at the same
time. The inhibition of OEC is not a secondary consequence of the symptom development,
but it is rather connected with the primary molecular processes of the infection.

Among the stroma proteins the loss of the small subunit of ribulose-1,5-bisphos-
phate-carboxylase-oxygenase (Rubisco) enzyme was reported in the chlorotic tissues of
cucumber plants infected with CMV (Ziemieczki and Wood, 1975), and in the chloro-
plasts of tobacco leaves infected with TSWV together with the reduced level of 70 S ribo-
somes (Mohamed and Randles, 1972).
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In parallel to the decrease in chlorophyll content a significant increase was
measured in the enzyme activity of the chlorophyllase which catalyses the dephytilisation
of the chlorophyll molecules (Bailiss, 1970). It was interpreted as the consequence of the
release of chlorophyllase enzyme bound to the chloroplast inner membrane following the
disrupture of the chloroplasts.

Effect of virus infection on the photosynthetic electron transport

Chlorotic leaves of tobacco infected with tobacco etch potyvirus (TEV) showed a
decreased level of photosynthetic activity compared to control plants. The light reaction
(Hill reaction and photophosphorylation) of isolated chloroplasts showed similar
efficiency (Hopkins and Hampton, 1969a). Hodgson et al. (1989) described the selective
inhibition of PSII in spinach infected with TMV. The fluorescence kinetic parameters
measured in the thylakoids of mosaic pattern leaves showed considerable deviance. The
Fv/Fm ratio (the potential photosynthetic efficiency parameter of PSII) significantly
decreased to the values of the uninfected DCMU treated leaves. The O2-evolution of
thylakoids was lower than in the healthy control, and this was the primary result of PSII
inhibition. The PSI electrontransport was unaffected. The chlorophyll a/b ratio slightly
decreased. From the above results the authors concluded that in the symptomatic leaves of
virus-infected plants the cyclic phosphorylation and ATP synthesis dominates over the
non-cyclic electrontransport that results in NADP+ reduction. In TYMV inoculated leaves
of chinese cabbage both the cyclic and the non-cyclic phosphorylation is more intensive
during the period of active virus synthesis (Goffeau and Bové, 1965). When the virus con-
centration reaches its maximum in the plant, in the chloroplasts of systemically infected
leaves the previous activity is depressed, the amount of ATP is significantly lower than in
the control. Therefore Goffeau and Bové (1965) considered that the ATP formed by
photosynthesis as energy source is directly used for the virus protein and nucleic acid
synthesis. Kano (1985) drew the same conclusion. Net photosynthesis, chlorophyll content
and the ratio of chlorophyll a/b decreased in peanut leaves infected with PGMV (Naidu 
et al., 1984b). The loss of PSII activity was more pronounced than that of PSI. Both cyclic
and non-cyclic photophosphorylation was inhibited, although still functioning.

Funayama et al. (1997b) found higher chlorophyll a/b ratio in the leaves of a
geminivirus infected Eupatorium makinoi. The net photosynthesis measured at saturating
light intensity (Pm) and Fv/Fm showed lower values with the increasing Fm. In virus
infected plants the proportion of the b reaction centers that have smaller antennae related
to the all PSII centers proved to be much higher than in the healthy plants. Energy
distribution balance between PSII and PSI broke down (Funayama et al., 1998).

In dark-adapted leaves of N. benthamiana plants infected with PMMV-S,
PMMV-I or with the hybrid viruses constructed of them. Rahoutei et al. (1998) detected
a considerable increase of the non-photochemical quenching (NPQ) while photochemical
quenching (qP) decreased. These changes show the diminished ability for energy capture
of PSII reaction centers in virus infected plants, and they function as photoprotective
mechanisms to irradiate excess energy (Barón et al., 1995; Rahoutei et al., 1998).
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In the leaves of Abutilon striatum plants infected with AbMV simultaneously
with the symptom development the Fv/Fm slightly decreased compared to the controls
while the drop of Fo was considerable (Osmond et al., 1998). In the orange coloured leaf
tissue and in the ‘green islands’ surrounded by veins NPQ had been continuously reduced
or stopped. The disability of the chloroplasts to emit/dissipate excitation energy neither
by NPQ, pH-dependent quenching nor by thermal irradiation, leads to the loss of more
chlorophylls and to the appearance of more severe symptoms.

Peterson and Aylor (1995) studied the spatial distribution of fluorescence in leaves
of plants under different biotic stresses in vivo by using a new method, the fluorescence
imaging. The transformation of chlorosis to mosaic pattern at high light intensity coin-
cided with the loss of fluorescence.

Effect of virus infection on CO2-fixation and on some biosynthetic processes 

In several virus-host interactions the disturbances of CO2-fixation and of related
metabolic ways, or the alteration in ratio of certain products was reported. At the early
stage of systemic TMV infection (virus replication) more CO2 molecules assimilated by
the photosynthetic processes (Doke and Hirai, 1970a). As the infection had been prog-
ressed this tendency inverted: CO2-uptake was decreasing in the infected tissues (Doke and
Hirai, 1970b; Hunter and Peat, 1973). The same changes as well as the increase of res-
piration were observed in tobacco leaves infected with tobacco etch potyvirus (TEV)
(Hopkins and Hampton, 1969b). The enzyme activity of phosphoenol-pyruvate-carbox-
ylase (PEP-carboxylase) increased in the leaves of chinese cabbage infected with TYMV
(Bedbrook and Matthews, 1972). In contrast, in tobacco leaves infected with TSWV activ-
ity loss of PEP-carboxylase was measured (Mohamed, 1973), and it was explained as the
early senescence induced by the virus infection.

In virus infected plants amino acids translocated from the chloroplasts to the cyto-
plasm, which means that CO2 built into amino acids instead of free sugars (Magyarosy 
et al., 1973; Platt et al., 1979). The primary metabolites of the photosynthetic pathway
transformed into glucose, amino acids or organic acids, which are not able to translocate
from the site of their production (Bedbrook and Matthews, 1973). Sugar and starch
accumulation was the result of the disturbed translocation. Therefore metabolites like
soluble carbohydrate cannot get from the healthy leaves into the infected ones (Tu, 1978;
Mandahar and Garg, 1972). Tomato yellow mosaic geminivirus (ToYMV) primarily
replicates in the phloem cells of tomato plants causing their pathologic alterations (Leal
and Lastra, 1984). This way, virus infection inhibits the translocation of assimilates. But
in the case of red clover mottle comovirus (RCMV), the distribution is not restricted to the
phloem of the host plant. Photosynthetic metabolites transformed into starch, amino acids
and organic acids, too (Técsi et al., 1992). Hence starch accumulation was observed in the
cells in which virus did not replicate, therefore it could not be a direct or specific effect,
but secondary consequences of the upset balance between the sink and source.

Disturbances in the translocation of the photosynthetic assimilates may be re-
lated to the synthesis of viral movement protein (MP) (Lucas et al., 1993; Olesinski et al.,
1995; Ding et al., 1996, 1998; Helms and Wardlaw, 1977; Herbers et al., 1997). Roberts
and Wood (1982) analysed the possible relationship between chlorosis, virus replication
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and starch accumulation in two pathogenically different CMV strains. They concluded that
the severity of chlorotic symptoms does not depend on the virus content. In the leaves of
tobacco infected with the strain inducing strong chlorosis they could not detect more starch
than in the control leaves, while in the leaves showing milder symptoms typical pattern of
starch accumulation appeared. On the primary leaves of squash cotyledons susceptible to
CMV infection chlorotic lesions developed (Cohen and Loebenstein, 1975) while on the
mature leaves yellow mosaic pattern occurred systemically, which contained starch grains
(Técsi et al., 1994). These starch lesions could be divided into four concentric parts based
on their structure. In the middle there were cells showing high photosynthetic activity, with
a great amount of starch. The next surrounding zone contained mostly starch-free cells
with lower photosynthetic activity, then a transitional zone, and the most outer zone
contained cells with higher photosynthetic activity, but without a considerable amount of
starch. Starch accumulation was the direct effect of the increased photosynthetic activity
rather than the result of the metabolite translocation from the non-infected tissues. In the
cells of the lesions the physiological changes were connected to the virus replication,
which was supported by the fact that positive and negative sense viral RNA accumulated
in the first front line of the infection (Técsi et al., 1996). In the zones of the lesions the
activity of the enzymes of the oxidative pentose-phosphate pathway and of the NADP-
dependent malate dehydrogenase enzyme grew (Técsi et al., 1996). The spatial distribution
of chlorotic symptoms correlated with the increase of glycolysis and respiration, and with
the loss of the photosynthetic activity and protein synthesis.

Relationship between the virus and/or its product accumulation and the symptom devel-
opment

The build up of TMV virions was proven by ultrathin microscopic slices of
tobacco chloroplasts (Esau, 1968), or in the chloroplast stroma of Johnsongrass chlorotic
stripe carmovirus (JoCSV) infected Sorghum halepense (Izadpanah et al., 1993). Several
authors studied the presence of viruses in the etioplasts of tobacco plants (Pratt, 1969;
Honda and Matsui, 1971). Following infection with TMV U5 strain, in the chloroplasts of
the susceptible tobacco plants, the size of the observed virions was 1/3 the normal virion
length, so the virus-like particles were probably pseudovirions (Shalla et al., 1975). Koiwa
et al. (1990) proved the in situ presence of TMV in the chloroplasts by electron
microscopic slides. It still remains as a matter debate, what role the individual viral
constituents like the coat protein (CP), or the “movement proteins” (MP), or other possibly
toxic product of the viral genom, or the viral nucleic acids play in the development of
different symptoms.

Reinero and Beachy (1986) have described the accumulation of TMV CP and the
correlation between the CP concentration and the severity of symptoms. The coat protein
was primarily attached to the thylakoid membrane. They proposed that the TMV CP was
bound to one of the chloroplast proteins. Reinero and Beachy (1989) compared symp-
toms caused by TMV strains of different pathogenity, and concluded that the impairment
of the electron transport was on the reducing site of PSII. The results of Hodgson et al.
(1989) also underlined the hypothesis, that the CP directly inhibited PSII by binding
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directly onto it. The 20, 40 and 60 kD proteins which appeared with the onset of infection
in the thylakoid membranes have been shown by immunological detection to be the oligo-
mer forms of the coat protein. Thus the impairment of the electron transport was directly
induced by the CP. Changes in fluorescence kinetics have also been attributed to the
attachment of CP to the thylakoids (Balachandran et al. 1994a), and later to the aggrega-
tion of chlorophylls in the light harvesting antenna complex of PSII.

From experiments with coat protein mutant viruses it was evident that even
though the virion assembly was inhibited by the modification of the coat protein by gene
insertion or deletion, it did not block the replication, or the movement from cell to cell
and certain systemisation of the infection (Dawson et al., 1988). The mutant viruses
replicated and moved within the cells in the form of free RNA. The protein products de-
rived from abnormal CP genes led to the development of diverse symptoms, but common
among them was the appearance of chlorosis. This observation showed that the CP plays
an important role in the initiation of the close physiological interaction between the virus
and the host plant. In experiments of Banerjee and Zaitlin (1992) with mutant TMV
strains and artificially created chimera viruses had shown that a single nucleotide change
in the CP gene caused a drastic change in symptoms.

The toxicity of CP was proved by Naderi and Berger (1997) with the use of gene-
tically modified tobacco plants, into which the potato Y potyvirus (PVY) CP gene linked
with the transit peptide of the small subunit of Rubisco enzyme was built in, so the virus
coat protein was transmitted into the chloroplast. The coat protein like products of the CP
mutant TMV strains did not accumulate in the chloroplasts (Lindbeck et al., 1991),
however still different symptoms were expressed. According to the authors the CP
excerted its effect on symptom development outside the chloroplast. Slight and severe
symptom producing strains of CMV (where CP did not accumulate in the plastids) were
compared by Roberts and Wood (1981) based on the rate of CP accumulation. The strain
with strong symptoms produced considerably greater concentration of CP within the cells
of the host plant, and there was a direct correlation between the concentration of CP and
the development of symptoms.

Viral RNA was detected within the plastids in the case of several virus infections.
The presence of these RNAs may indicate the site of viral synthesis, e.g. in TYMV
(Ralph et al., 1971), or in BSMV (Lin and Langenberg, 1985). With regards to the syn-
thesis of potyviruses it was possible that the replication takes place within the plastids
(Mayhew and Ford, 1974; Teakle and Pares, 1977; Gadh and Hari, 1986). During the
systemic infection of PVY it was also shown that the CP, the helper component  (HC) and
the PVY RNA was present in the plastids (Gunasinghe and Berger, 1991). The coat
protein was present mainly in the thylakoid fraction rather than in the stroma. It is still an
open question whether the gene products of the virus RNA are translated in the
chloroplasts or are transported from the cytoplasm. TMV L-RNA devoid of coat protein
was detected inside the chloroplasts, while S-RNA was not found (Schoelz and Zaitlin,
1989). The authors therefore doubted the translocation of TMV CP into the plastids, but
supposed that the protein is translated by the chloroplast ribosomes from the TMV RNA.
An answer to this hypothesis was attempted by Banerjee and Zaitlin (1992), who had
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investigated the in vitro mobility of the TMV CP into isolated intact chloroplasts. TMV
CP quickly mobilised into the chloroplasts, without the preliminary splitting of any transit
peptide as was previously observed in vitro by Chua and Schmidt (1978) when the smaller
subunit of the Rubisco enzyme mobilised into the chloroplast. The process also took place
in the absence of ATP, so unlike active transport it does not need an energy source.

The parallel inoculation with (CMV Y) satellite RNA and CMV strain with weak
pathogenity produced the modification of symptoms in tobacco (Masuta et al., 1993). The
authors considered that the chlorosis induced by the satellite RNA was a result of the
inhibition of de novo chlorophyll synthesis, because the symptoms were solely expressed
in the newly developing leaves.

In the inhibition of photosynthesis and the modification of symptoms not only the
coat protein might play a role, but also the different virus MP-s (Helms and Wardlaw,
1977; Ding et al., 1998). TMV MP producing transgenic tobacco plants were made in
which the photosynthetic activity was lowered and NPQ was higher. The rate of electron
transport decreased. Based on the different chlorophyll fluorescence parameters it seemed
likely that the TMV MP did not directly effect any step of the electron transport chain, but
caused the specific inhibition of phosphate uptake (Wolf and Millatiner, 2000). The trans-
port of carbon metabolism and CO2 fixation products into the distal parts of the plant were
impaired in these plants (Lucas et al., 1993; Olesinski et al., 1995). The continuous pro-
duction of TMV MP affected the plasmodesma size dependent permeability (SEL) of the
palisade layer in the mesophyll. It was shown that the product transport through the
simplast, the distribution of photosynthetic assimilates and the distal transport processes in
the phloem were also affected. In the same experiment the build up in the concentration of
saccharose, glucose and fructose as a negative feedback blocked the triose phosphate
translocator of the chloroplast. Thus stimulated the starch synthesis and storage, which
lead to a net reduction in photosynthesis. The TMV MP therefore affected the photo-
synthetic activity of plants in a complex way.

Herbers et al. (1997) compared the effect of the potato leafroll polerovirus
(PLRV) MP with the findings of TMV MP to see how general these changes were. The
function of the chloroplasts was altered compared to the control, the maximum rate of
photosynthesis was lowered. The Rubisco enzyme was not activated by the substrate CO2,
and thus could not function efficiently. The concentration of Rubisco proteins decreased,
the concentration of carbohydrates increased, which in turn inhibited photosynthesis.
According to Herbers et al. (1997) unlike the TMV MP producing transgenic plant, the
PLRV MP blocks photosynthesis by another process. Based on their findings the TMV
MP reduced the rate of sugar transport and allocation through the simplast in the meso-
phyll cells, while the PLRV MP blocks the charging of the apoplast, and the accumulating
sugars take part in the extracellular signalling, which leads to the change in the expression
of different genes (pathogenesis related /PR/ proteins, genes of photosynthetic proteins).

In BSMV infected barley leaves, with the increase in the concentration of RNA
dependent RNA polymerase, the rRNA concentration of chloroplasts decreased (Brakke
et al., 1988). This was earlier reported by Hirai and Wildman (1969) in the chloroplasts
of TMV infected tobacco, which was explained by the competition between the virus and
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the chloroplast for the metabolic products. In the chloroplasts of tobacco leaves infected
with TEV the synthesised total protein concentration decreased (Hampton et al., 1966).

Effect of virus infection as a biotic stress factor on photosynthesis

Stress has been described by Osmond et al. (1987) as all parameters that suppress
the maximum, potential genomial value of growth and reproduction of a plant. Plants
adopt to stress conditions in two ways, either by tolerance or avoidance. In the case of
tolerance the plant’s reaction to a moderate stress is the upregulation, while against a
severe stress the downregulation of metabolic processes.

At the cellular level the damage in the membranes and the fluorescence of chlo-
rophyll built in the thylakoid membranes indicated the post stress conditions. In the
early phase of virus infection both the non-photochemical quenching of fluorescence
and the predominantly reduced state of QA the primary electronacceptor of PSII, indi-
cated the development of symptoms and the rapid chloroplast destruction due to photo-
inhibitory conditions (Balachandran et al., 1997). The build up of carbohydrates and the
brakeup of the equilibrium between synthesis and brakedown probably blocks the gene
regulation, which effects the level of chlorophyll-protein complexes and photosynthetic
metabolic enzymes.

The plant’s reaction to stress was also determined by other abiotic factors, such
as the light intensity or the availability of nitrogen (Balachandran et al., 1994b). TMV
infection in tobacco plants has multiplied the rate of photoinhibition (which was shown
in the high Fo and low Fv/Fm values) especially with low nitrogen concentrations
(Balachandran and Osmond, 1994).

Similarly to the abiotic stress processes, stress hormones are also synthesised in
virus infected plants. In parallel with the brakedown of chloroplasts in TMV infected to-
bacco plants, the concentration of abscisic acid (ABA) also rose (Fraser et al., 1986). In the
leaves of healthy control plants, in which drought stress was not induced, ABA was located
in the chloroplasts, while virus infection enhanced ABA synthesis, changed its location
within the cell and blocked the growth (Balázs et al., 1973; Fraser and Whenham, 1989).
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