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ABSTRACT

Damage of DNA and Photosystem-II are among the most sig-

nificant effects of UV-B irradiation in photosynthetic organ-

isms. Both damaged DNA and Photosystem-II can be

repaired, which represent important defense mechanisms

against detrimental UV-B effects. Correlation of Photo-

system-II damage and repair with the concurrent DNA dam-

age and repair was investigated in the cyanobacterium

Synechocystis PCC6803 using its wild type and a photolyase

deficient mutant, which is unable to repair UV-B induced

DNA damages. A significant amount of damaged DNA accu-

mulated during UV-B exposure in the photolyase mutant

concomitant with decreased Photosystem-II activity and D1

protein amount. The transcript level of psbA3, which is a UV-

responsive copy of the psbA gene family encoding the D1 sub-

unit if the Photosystem-II reaction center, is also decreased

in the photolyase mutant. The wild-type cells, however, did

not accumulate damaged DNA during UV-B exposure, suf-

fered smaller losses of Photosystem-II activity and D1 pro-

tein, and maintained higher level of psbA3 transcripts than

the photolyase mutant. It is concluded that the repair capac-

ity of Photosystem-II depends on the ability of cells to repair

UV-B-damaged DNA through maintaining the transcription

of genes, which are essential for protein synthesis-dependent

repair of the Photosystem-II reaction center.

Abbreviations: Chl, chlorophyll; CPD, cyclobutane

pyrimidine dimer; D1 and D2, reaction center protein

subunits of Photosystem-II; DCMU, 3-(3,4-dichlorophenyl)-1,

1-dimethylurea; PSII, Photosystem-II; qPCR, quantitative

PCR; UV-B, ultraviolet-B (280–315 nm) spectral range;

6-4 PPs, thymine–thymine pyrimidine–pyrimidone (6-4)

photoproducts.

INTRODUCTION

Photosynthetic organisms are unavoidably exposed to incident

solar light, which not only provides energy to the biosphere via

photosynthetic energy conversion, but at the same time can cause

damage to biological systems. During evolution of photo-

synthetic organisms several pathways arose to prevent, or repair

the negative effects of solar radiation. The most detrimental com-

ponent of sunlight that reaches the Earth’s surface is the UV-B

(280–315 nm) spectral range as the more damaging shorter

wavelength UV-C radiation is screened out by the ozone layer

and other components of the atmosphere.

DNA is particularly sensitive to UV radiation due to its

absorption that extends into the physiologically relevant UV-B

(1,2) region. Absorption of UV-B photons causes phototransfor-

mations in the DNA molecules leading to formation of cyclobu-

tane pyrimidine dimers (CPDs) and thymine–thymine pyrimidine

–pyrimidone (6-4) photoproducts (6-4 PPs) among others (3).

CPDs are the most predominant (~75–80% of all UV-B induced

damages) and biologically the most relevant UV-B induced

lesions in the DNA molecule. As DNA and RNA polymerases

cannot read through these lesions their accumulation must be

prevented by efficient repair and/or UV screening compounds to

maintain functional DNA (4). Photoreactivation with the help of

the photolyase enzyme is one of the most important and fre-

quently occurring mechanisms to repair UV-induced DNA pho-

todamages in prokaryotes (3). The structure and function of

photolyases is fairly well known: They specifically bind to

pyrimidine dimers, flip them out of the DNA duplex and with

the aid of photons from the 360–530 nm range their FADH�

prosthetic group reduces the cyclobutane ring, splitting it up,

thus restoring the functional DNA (5). The product of the phrA

gene, which codes for a CPD-specific DNA photolyase, is the

major photoreactivating factor in the cyanobacterium Synecho-

cystis sp. PCC 6803 (6,7). Cells lacking this gene are rendered

highly sensitive to UV-B radiation (8).

In photosynthetic organisms, pigmented complexes absorb

most of the incoming UV-B light (9), therefore besides DNA

components the photosynthetic apparatus, especially the Photo-

system-II (PSII) complex, is also an important target of UV-B

radiation (see Ref.[10]). Within PSII, the primary action site of

UV-B radiation is the catalytic manganese cluster of the water

oxidizing complex, which leads to inhibition of light-induced

electron transport (11–14). This effect is followed by damaging

the D1 and D2 protein subunits, which form the backbone of

the reaction center complex (15–19). UV-B-induced damage of

PSII can be restored via repairing the PSII core complex, which

proceeds via de novo synthesis of the damaged D1 and D2

subunits (18). The PSII repair cycle is a complicated process,

which has been studied in a great detail in case of photodamage

induced by visible light, for reviews see (20,21). Repair of

UV-B-induced damages occurs basically in the same way as in
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the case of photodamage of PSII by visible light, with the

following main steps: (1) Proteolytic removal of the damaged

D1 and D2 protein subunits, (2) Transcription of mRNA from

the psbA and psbD genes encoding the D1 and D2 subunits,

respectively, (3) Production of new protein subunits from the

respective mRNA pools, (4) Incorporation of the newly synthe-

sized protein copies into the PSII complex, and finally (5) Reli-

gation of redox cofactors and reactivation of PSII. In the repair

process, two UV-B-specific effects are noteworthy. One is the

FtsH protease dependent degradation of both D1 and D2 pro-

teins (19). The other such feature is the presence and induction

of UV-B-specific psbA gene copies in some cyanobacteria, such

as Synechocystis 6803, Anabeana 7120, Gloeobacter violacous

(22–24). Although UV-B-induced damage of DNA molecules

and photosynthetic complexes obviously occurs in a parallel

fashion, as shown by growth retardation under conditions when

DNA lesions accumulate (25), there has not been a serious

attempt in the literature to study the influence of DNA damage

on the PSII repair cycle. The only indication for such an effect

so far is the observation that the presence of a UV-C contamina-

tion from the UV-B source, which significantly enhances DNA

damage, decreases the extent of PSII recovery associated with

the D1 turnover (18). However, the molecular background of the

mechanism that retards the protein synthesis has not been

elucidated.

In the repair cycle of photodamaged PSII complexes de novo

synthesis of damaged D1 and D2 protein subunits is a highly

important step. As this includes the transcription and translation

of several genes encoding D1, D2, chaperons, accessory proteins,

etc. see (20,21) we hypothesize that following UV-B stress there

is a strong connection between the ability of cells to maintain

damage free DNA molecules and to regain their photosynthetic

activity.

In this study, we investigated the correlation of PSII damage

and its protein synthesis-dependent repair with the concomitant

DNA damage and its repair. Our results show that DNA repair is

a prerequisite of efficient protein synthesis and maintenance of

functional PSII.

MATERIALS AND METHODS

Cell cultures and UV-B treatment conditions. Synechocystis PCC6803
(denoted as Synechocystis hereafter) wild type and the ∆phrA (∆slr0854)
photolyase deficient mutant were grown in BG-11 medium, in an incuba-

tor with an orbital shaker (120 rpm1 ), in 3% CO2-enriched atmosphere
under constant 40 lmol m�2 s�1 PAR at 30°C.

The photolyase lacking mutant (∆slr0854) was constructed by inter-
rupting the slr0854 gene with a spectinomycin cassette.

For the experiments, 200 mL cultures were harvested by centrifuga-
tion (6500 g, 5 min, 24°C) in their exponential growth phase, re-

suspended in fresh BG-11 medium at ~6.5 lg mL�1 Chl concentration,
and further incubated for an hour. The UV-B treatments were carried out
at 30°C, with continuous stirring in square glass containers in which the
suspension formed a 2.5 cm high layer. UV-B radiation was provided by
a Vilber Lourmat VL-215M lamp in combination with cellulose acetate
filter (Clarfoil 0.1 mm, cut off at 290 nm) to screen out any possible
UV-C radiation. The UV-B intensity was 3.0 W m�2 (� 8.0 lmol

m�2 s�1) at the surface of the cell suspension as measured with a Cole-
Parmer radiometer (model 97503–00) equipped with a 312 nm sensor.
Due to the high optical density of the cell suspension, the average UV-B
irradiation intensity was only approximately 0.3 W m�2 (�
0.8 lmol m�2 s�1) within the cell suspension, as calculated by taking
into account the absorption by the optically dense sample according to

Ront�o et al. (26). Before UV-B treatments, cells were kept for 30 min
under 50 lmol m�2 s�1 white light, which was also used as background

illumination during the UV-B treatments, as well as during the recovery
period following the UV-B treatments.

The radiation intensities for the white light and the UV-B illumination
were measured using a LiCor Photometer (DMP Ltd.) equipped with a
PAR sensor and a Cole-Parmer Radiometer equipped with a UV-B
(312 nm) sensor, respectively.

Assessment of photosynthetic activity. Wild type and ∆phrA mutant
cells were exposed to UV-B light (8 lmol m�2 s�1) either in the

absence, or in the presence of the protein synthesis inhibitor lincomycin
(300 lg mL�1). The UV-B light was supplemented with white light
(WL, 50 lmol m�2 s�1) in the initial phase of the experiments
(UV-B + WL, for 270 min). This was followed by a recovery period
under white light only (WL) for 120 min. In the final phase of the exper-
iment, the UV-B exposure was repeated in the absence of white back-
ground illumination (UV-B) for 60 min. In experiments, in which the

protein synthesis inhibitor lincomycin was added to the cell cultures only
UV-B + WL illumination was applied for 120 min.

PSII activity during and after UV-B treatments and recovery peri-
ods was assessed by measuring the changes of variable Chl fluores-
cence values, as the initial amplitudes of the flash induced
fluorescence signals (Fv = Fm � Fo) relative to the control (t = 0 min)

point reflect the relative amount of functional PSII complexes. The
flash-induced Chl fluorescence measurements were performed with an
FL 3000 Fluorometer (Photon Systems Instruments Ltd.), using 1 mL
samples in the absence and presence of 3-(3,4-dichlorophenyl)-1,
1-dimethylurea (DCMU). Measurements were repeated on three biologi-
cally different samples at preset time points (see Fig. 1). The data were
visualized and evaluated using the Fluorwin software, version 3.6.3.11

and Origin.
D1 protein analysis. Thylakoid membranes were isolated as

described in Ref. (27) from samples taken right before the onset of
UV-B + WL irradiation (0 min time point), at the end of the 270 min
UV-B + WL treatment, at the end of the subsequent 120 min WL
recovery period, as well as at the end of the final 60 min UV-B

Figure 1. PSII activity changes, assessed by flash-induced Chl fluores-
cence, of Synechocystis cells in response to UV-B exposure. WT (circles)
and the photolyase lacking ∆phrA mutant (squares) were exposed to
UV-B light (8 lmol m�2 s�1) either in the absence (open symbols) or in
the presence (closed symbols) of the protein inhibitor lincomycin. The

UV-B light was supplemented with white light (WL, 50 lmol m�2 s�1)
in the initial phase of the experiment (UV-B + WL), which was followed
by a recovery period under white light only (WL). In the final phase of
the experiment, the UV-B exposure was repeated in the absence of white
background illumination (UV-B). PSII activity was assessed by measur-
ing the initial amplitude of flash-induced Chl fluorescence signals that

reflects the amount functional PSII centers. The data are shown in per-
centage of the control value measured in untreated cells. The error bars
indicate standards deviations obtained from three independent experi-
ments. When error bars are not visible, they are either smaller than the
size of the closed symbols, or overlap with the outline of the open
symbols.
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treatment. Thylakoid samples, each equalized to contain 1 lg of
Chl, were separated by SDS-PAGE, on a 12% gel, blotted on nitro-

cellulose membrane and visualized with specific antibodies according
to (19). Protein bands were quantified with the help of ImageJ (http://
rsbweb.nih.gov/ij/2 ). The measurements were repeated on three biologi-
cally different samples and the mean values were used for assessing
the changes in the D1 protein amounts.

Expression level of the psbA3 gene was assessed by qPCR as

described earlier (28).
Isolation of genomic DNA. Genomic DNA was isolated using meth-

ods that minimize the risk of inducing single or double strand breaks.
Cells of 15 mL samples were harvested and resuspended in 200 lL of
saturated NaI solution. After incubation for 10 min at 37°C, 1 mL water
was added, and samples were centrifuged. The pellets were resuspended
in 400 lL of Tris buffer I (50 mM Tris, pH 8, 5 mM EDTA, 50 mM

NaCl) and 100 lL of lysozyme (50 mg mL�1) was added. The suspen-
sion was incubated for 10 min at 37°C and then centrifuged (5500 g, 4°
C, 5 min). The pellets were washed with 400 lL Tris buffer I and cen-
trifuged (5500 g, 4°C, 5 min). The pellets were resuspended in 500 lL
Tris buffer I and 100 lL of N-lauryl-sarcosine (10% w/v), 4 lL of
RNase A (10 mg mL�1) was added and kept for 20 min at 37°C. From

this point on samples were handled with extra care and wide bore pipette
tips were used. 25 lL of Proteinase K (20 mg mL�1) was added and the
samples were then incubated for 60 min at 60°C, and centrifuged
(17 500 g, 4°C, 20 min). The clear green supernatants were carefully
transferred into new tubes and gently mixed on a tube rotator for
15–20 min with equal volume of Phenol-TE pH 8.0, and centrifuged
(15 000 g, 4°C, 5 min). The upper phases were carefully transferred to

new tubes and the phenol extraction was repeated. The DNA was precip-
itated with 1/9 vol of 3M NaOAc and 0.7 vol of i-Propanol at �20°C for
at least 30 min, centrifuged (20 000 g, 4°C, 1 h), and washed with
400 lL of 70% ET-OH. The supernatant was discarded and the samples
were left to dry on room temperature, and rehydrated in 20–30 lL of
water at 4°C for overnight.

Detection of UV-B induced DNA damage by qPCR. This method is
based on the assumption that biologically significant lesions block the
action of Taq polymerase. Therefore, only the intact DNA molecules can
be quantified using qPCR, and the extent of damage can be calcu-
lated from the virtually decreased amount of the DNA. Accordingly,
UV-B-dependent decrease in amplified 16S rDNA was shown in Ref.
(25). To enable exact determination of the extent of DNA damage, we

carried out similar PCR reactions, but using qPCR. Keeping in mind that
pyrimidine dimers are the most abundant type of lesions caused by
UV–B (4), a 1 kbp long region of the Synechocystis genome containing
the most pyrimidine neighbors was selected using a custom made PERL
script for amplification in a ABI SDS7000 qPCR equipment. A 50 bp
long genomic sequence with the least number of these neighbors was

used as an internal control and the relative apparent quantities were used
for calculation of the probabilities of DNA lesions. The cells were har-
vested, washed, subjected to three freeze-thaw cycles and used in PCR
reactions as templates like in colony-PCR.

Detection of UV-B-induced DNA damage by alkaline gel method.

Pyrimidine dimers were detected by incubating gDNA with T4 Endonu-
clease V, which specifically cleaves the DNA molecule at pyrimidine

dimer sites, causing single strand brakes (29). The resulting fragments
were separated on a 0.6% alkaline agarose gel, previously soaked in alka-
line electrophoresis buffer (50 M NaOH, 1 mM EDTA). The same solu-
tion was used as running buffer.

The presence of unrepaired pyrimidine dimers yields strand brakes
leading to reduced size of DNA fragments, which show up as a smear

on the alkaline gel. The relative decrease in the apparent average
length is representative of the encountered direct UV-B damages and
also allows for quantitative determination of those. Nucleic acids were
visualized with the help of ethidium–bromide. Gel images were evalu-
ated using custom made software written in MATLAB for establish-
ing the average/mean fragment lengths according to the calculations

in (30).
The two DNA damage quantification methods complement each

other well. The qPCR-based assay is faster and simpler than the alka-
line gel method, and it shows the sum of all the lesions; while the alka-
line gel is more sensitive and allows selective detection of pyrimidine
dimers.

Significance in dataset variability was tested with one-way ANOVA,

at P = 0.05.

RESULTS AND DISCUSSION

Effect of the lack of photolyase on UV-B induced activity loss

of PSII

We aimed to investigate the role of UV-B-induced DNA lesions

in PSII activity loss during UV-B stress. To achieve this, we

compared the changes in the amount of functional PSII, quanti-

fied by flash-induced Chl fluorescence measurements in UV-B

exposed WT Synechocystis and its photolyase deficient mutant

(DphrA), which is defective in its DNA repair capability.

In the initial phase of the UV-B treatment, which was per-

formed in the presence of 50 lmol m�2 s�1 visible light, the

DphrA mutant lost its PSII activity somewhat faster than the

WT. After 120 min of UV-B + WL treatment, the loss of PSII

activity became significantly more pronounced in the DphrA

mutant than in the WT cells (F = 0.009, at P = 0.05), in which

protein synthesis-dependent PSII repair is functional (Fig. 1 open

symbols). This large difference in PSII activity was retained dur-

ing the subsequent exposure to UV-B + WL, and after 270 min

the amount of active PSII decreased to 60 and 20% of their ini-

tial values in the WT and DphrA cells, respectively (Fig. 1 open

circles and open squares).

When the cells were kept under visible light following the

UV-B + WL treatment, the PSII activity partially recovered and

after 120 min it reached 70 and 30% of the initial values in the

WT and the DphrA mutant, respectively. When the cells were

subsequently exposed to UV-B light in the absence of back-

ground visible light, PSII activity dropped rapidly to as low as

10% of its original level in the DphrA mutant in 60 min,

whereas in the WT it dropped only to 45% of its initial value

(Fig. 1 open squares and open circles, respectively).

When PSII repair was blocked by the protein synthesis inhibi-

tor lincomycin, the loss of PSII was accelerated in both strains

and decreased in a parallel fashion to a value lower than 10% of

their initial values in 120 min (Fig. 1 closed symbols). In the

presence of lincomycin, the loss of activity reflects the efficiency

of PSII photodamage in itself without the influence of the protein

synthesis dependent repair. Therefore, the identical inhibition

course of PSII in the WT and DphrA mutant cells in the pres-

ence of lincomycin shows that the lack of DNA repair capacity

does not modify the UV-B sensitivity of the PSII complex. The

different extent of activity loss in the absence and presence of

lincomycin in the same strain reflects the efficiency of protein

synthesis dependent PSII repair during the light treatment. The

difference between the inhibition curves measured in the absence

and presence of lincomycin at 120 min is significantly

(F = 0.012, at P = 0.05) smaller in the DphrA mutant than in

the WT (Fig. 1). Further into the UV-B + WL treatment (210

and 270 min), when the PSII activity in the presence of linco-

mycin is close to zero, the difference between the activities of

the WT and the DphrA mutant increases even more. These data

show that PSII damage is repaired less efficiently in the absence

of photolyase in the DphrA mutant cells than in the WT cells,

which have active photolyase.

Effect of the lack of photolyase on UV-B-induced D1 protein

loss

UV-B-induced inactivation of PSII function is accompanied with

the damage and degradation of the D1 subunit of the PSII
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reaction center (18,31). When low intensity white light is applied

simultaneously with UV-B illumination, it helps to ameliorate

the UV-B-induced activity loss of PSII through enhanced protein

turnover (32). Changes in D1 protein levels during the UV-B

treatment (Fig. 2) corroborate the fluorescence data. The mutant

cells lost a large portion of their D1 pool during UV-B stress,

and were unable to recover it even in the absence of UV-B

(Fig. 2 right panel), whereas D1 levels in WT cells were much

less affected under the same treatment (Fig. 2. left panel), being

significantly (F = 0.0419, at P = 0.05) higher than in the DphrA

cells.

Effect of the lack of photolyase on UV-B-induced psbA

mRNA response

The prerequisite of efficient PSII protein repair is the availability

of abundant psbA mRNA pool for translation of D1, as well as

transcription of other genes whose protein products, such as D2,

the FtsH protease, etc. (18,19,33,34) are required for PSII repair.

In Synechocystis, the psbA3 copy of the psbA family serves as a

UV stress gene, and its UV-B-induced transcription contributes

significantly to the increase of the total psbA mRNA pool (22).

Therefore, we used the psbA3 transcript abundance as a marker to

evaluate the effects of photolyase deactivation on UV-B-induced

responses at the transcript level of genes essential for PSII repair.

UV-B light highly induces the psbA3 gene both in the WT and the

DphrA cells during the first phase of UV-B exposure reaching a

steady-state level after 60–120 min (Fig. 3). When UV-B illumi-

nation was stopped after 270 min of treatment and cells were

exposed to visible light alone the psbA3 transcript level rapidly

decreased in the WT cells, and was inducible again by subsequent

UV-B exposure in the absence of visible background light.

In contrast, in the DphrA cells the psbA3 mRNA pool did not

respond to the lack of the UV-B stimulus in the presence of

background visible light, or to a repeated UV-B exposure. No

significant (F = 0.744, at P = 0.05) change could be observed

from the level that was reached at the end of the UV-B plus visi-

ble light treatment (Fig. 3). This behavior led us to assume that

in the absence of the main DNA repair facilitator photolyase, the

DphrA cells accumulate so many UV-B-induced DNA damages

that prevent the transcription of not only psbA3 but also of those

genes whose protein products are needed to degrade the already

existing mRNAs.

Quantification of UV-induced DNA damage

In another cyanobacterium, Anabaena variabilis, Rastogi et al.

(25) have shown that DNA damages accumulated in a UV-B

Figure 2. Response of D1 protein to UV-B treatment in WT and ∆phrA cells. Cells were exposed to 270 min of 8 lmol m�2 s�1 UV-B, in the pres-
ence 50 lmol m�2 s�1 white light (UV-B + WL), followed by a 120-min WL only recovery period, and an additional UV-B only (UV-B) exposure.
Isolated thylakoid membranes from samples taken during the treatment were separated by SDS-PAGE. D1 proteins were detected and visualized via

immunoblotting. Protein bands were quantified with ImageJ and D1 amounts are shown relative to the untreated control samples (0 min). n = 3.

Figure 3. Changes of relative psbA3 transcript levels in WT and ∆phrA

cells. Cells were exposed to 8 lmol m�2 s�1 UV-B in the presence of
50 lmol m�2 s�1 white light (UV-B + WL) for 270 min, followed by a
120-min WL (50 lmol m�2 s�1) only recovery period and then a 60-min

UV-B (8 lmol m�2 s�1) only treatment. The columns represent the
induction levels of psbA3, after normalization to the transcript amount of
the rnpB (slr1311) housekeeping gene of Synechocystis, coding for the
RNase P subunit B. n = 3.
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dose-dependent manner. We used two different methods to

assess the extent of UV-induced DNA damage. Our qPCR-based

method, described in the Materials and Methods, makes possible

to determine the average number of DNA lesions without speci-

fying the type of the lesions. In the WT cells, there was no sig-

nificant (F = 0.724. at P = 0.05) accumulation of DNA damages

during the UV-B treatment with concomitant visible light

present, and the detected average DNA damage remained below

0.1–0.2 lesions per 1 kb long DNA segment (Fig. 4). In contrast,

in the DphrA cells DNA lesions gradually accumulated reaching

ca 1 lesion in average per 1 kb long DNA segment after

270 min UV-B plus visible light treatment (Fig. 4). The level of

DNA damage was maintained during the recovery period, which

shows that DNA repair is irreversibly inhibited in the absence of

photolyase in the DphrA mutant. Although cyanobacteria possess

an excision repair mechanism that eliminates UV-induced pyrim-

idine dimers in the absence of photoreactivating blue/UV-A light

(see Ref. [35]), the efficiency of excision repair seems to be neg-

ligible under our conditions. This could be due to the slow

response of the excision repair system as indicated by the obser-

vation that 15 h was required for removal of pyrimidine dimers

by excision repair in another cyanobacterium Synechocystis PCC

6308 (35). In addition, it has been shown that the absence of the

photolyase enzyme inhibits excision repair in Saccharomyces

cerevisiae and Escherichia coli (36). The interaction of photoly-

ase dependent and excision repair appears to be a general phe-

nomenon (36) and can explain the irreversible inhibition of DNA

repair under our conditions (Fig. 4).

During the second phase of UV-B illumination, which was

performed in the absence of background visible light the level of

average DNA damages was also induced in the WT cells. This is

most likely due to the absorption of the second cofactor of

the Synechocystis CPD photolyase, 7,8-didemethyl-8-hydroxy-5-

deazariboflavin (8-HDF) in the 430–450 nm wavelength range

(37), which is absent in the UV-B alone illumination protocol.

Therefore, the activity of this particular photolyase is lower if no

white light is present, leaving room for the accumulation of

UV-B-induced DNA damages.

The average gene length in the Synechocystis genome is about

1 kb. Thus, the observed 1 DNA lesion/kb implies that by the

end of the UV-B treatment virtually all genes in the genome of

the ∆phrA mutant could have a lesion that can stop transcription

under the applied irradiation conditions.

The qPCR method cannot discriminate among the different

types of UV-induced DNA modifications, and it approximates

the quantity of all sorts of DNA damages that could potentially

impair gene expression. Therefore, we also applied a method that

can specifically detect pyrimidine dimers that represent the most

abundant type of UV-B-induced DNA lesion. We treated gDNA

isolated from UV-B-treated cells with T4 endonuclease V, which

produces single strand brakes at pyrimidine dimer sites, and sep-

arated the single stranded DNA fragments using alkaline gel.

Quantification of the separated fragments carried out via analysis

of the gel images with the help of a Matlab software, designed

in our laboratory, resulted in DNA-damage amounts (Fig. 5),

very similar to those detected by the qPCR method. The high

degree overlap of the qPCR and alkaline gel data sets indicates

that the overwhelming majority of the DNA lesions which accu-

mulate during UV-B stress are in fact pyrimidine dimers.

Figure 4. qPCR assessment of DNA damage. WT and ∆phrA cells were
exposed to 8 lmol m�2 s�1 UV-B in the presence of 50 lmol m�2 s�1

white light (UV-B + WL) for 270 min, followed by a 120 min WL

(50 lmol m�2 s�1) only recovery period and then a 60-min UV-B
(8 lmol m�2 s�1) only treatment. The columns represent the number of
DNA polymerase hindering lesions on a 1 kb long DNA sequence.
n = 2.

Figure 5. Alkaline gel assessment of DNA damage. Isolated gDNA from UV-B-treated WT and ∆phrA cells was digested with T4 Endonuclease V and
separated on alkaline gels. The gels were neutralized and soaked in ethidium–bromide for visualization. Panel A: gDNA from WT and ∆phrA cells.
Panel B: Calculated amount of DNA lesions. n = 3.
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Concluding remarks

The results described here represent the first demonstration that

UV-B-induced DNA damage affects photosynthetic functions,

and show that the absence of the photolyase enzyme encoded by

the phrA gene enhances photodamage of PSII in Synechocystis

6803 cells. This effect is caused by the accumulation of un-

repaired DNA lesions, which give rise to inefficient transcription

of psbA and other key genes of PSII repair, leading to enhanced

loss of the D1 reaction center protein and photosynthetic activity

during UV-B irradiation. Therefore, the DNA and PSII repair

cycles, which represent two highly important defense mecha-

nisms against UV-B-induced damage in photosynthetic organ-

isms, are directly connected (Scheme 1).

The D1 subunit of the PSII complex is the protein with the

highest turnover rate in oxygenic photosynthetic organisms,

therefore accumulation of transcription limiting DNA lesions rep-

resent a key target for the PSII repair cycle. Our data also show

that when UV-B exposure occurs in the presence of visible light

and at temperatures close to the optimal growth conditions the

DNA repair capacity of the photolyase enzyme is sufficient to

keep DNA damage at a sufficiently low level that does not inter-

fere with PSII repair. The effect of DNA repair limitation on

PSII repair becomes significant when the photolyase enzyme is

inactivated or inhibited. Low temperature is known to decrease

the efficiency of photolyase (38,39) and generally the photoreac-

tivation of tymidine dimers (25), which leads to decreased DNA

repair activity. Therefore, limitation of DNA repair on PSII func-

tion may occur under physiological relevant conditions, such as

in polar and alpine environments where elevated UV exposure

occurs in combination with low temperature.
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