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The changes of cell surface hydrophilicity in Bacillus subtilis were analyzed in 
response to oxygen-limitation, heat shock, salt stress, pH-shock, phosphate- and carbon-
limitation.  Although cell surface hydrophilicity varied during growth phases, an increase 
of surface hydrophilicity was observed under several of these stress conditions.  An 
observed drop in intracellular GTP and/or ATP may be an element of the signal 
transduction pathway leading to an increase in surface hydrophilicity in response to 
environmental stresses.  Attachment of cells to soil particles under salt stress conditions is 
strongly influenced by the degS/degU two-component system, which thereby provides a 
mechanism for the bacteria to escape from the hostile environment. 
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Introduction 

Bacteria in their natural environment spend most of their lives under growth 
limiting conditions, which are associated with a variety of stresses. Understanding of 
the strategies used to cope with stress conditions is important for both basic 
microbiology and applied biotechnology. 

Bacillus subtilis, living in the upper-layer of the soil, is affected by many kinds 
of stresses (phosphate-, carbon-, energy-, and oxygen-limitation, osmotic stress, heat- 
or cold shock, etc.). As they live attached to the solid soil particles, the adhesion 
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features of the B. subtilis cells play a crucial role in their life cycle and in their stress-
tolerance. 

The exact physiological role and significance of many stress gene products is 
not yet fully understood.  To establish the role of stress proteins in the adaptational 
behavior of cells, the molecular approach is an indispensable tool. Several recent 
publications deal with this aspect [1, 2, 3]. 

The data presented in this paper suggest that certain stress-induced metabolic 
responses may participate in forming a cell surface level response (CSLR): the change 
of the hydrophilicity of the cell surface during stress response. In the cases of 
phosphate-limitation, salt stress, phosphate- and carbon-starvation and the entering of 
exponentially growing bacteria into the stationary phase, the surface of the B. subtilis 
cell becomes more hydrophilic. This phenomenon is markedly different from that of 
Gram negative bacteria as described in Salmonella typhimurium [4]. In a related study, 
both chemical treatments and changes in incubation temperature influenced cell surface 
hydrophobicity and cell surface charge in Azospirillum spp. [5] but, unfortunately, no 
kinetic analysis was carried out. 

The aim of the work presented here is to provide kinetic data about CSLR, to 
investigate the behaviour of potential signal transduction pathway elements and to 
elucidate the role of the DegS/DegU system in the development of CSLR and in the 
escape mechanism of the bacteria from an offensive environment. 

Materials and Methods 

Bacterial strains and growth conditions 

Bacillus subtilis strains 168 (trpC2) and QB4487 (trpC2 degU∆BclI-
EcoRI::erm) were used for the DegS/DegU experiments to generate data comparable 
with data published earlier. QB4487 was constructed from strain 168 [6], they were 
isogenic with the exception of a deletion in the degU gene in QB4487. For other 
experiments strain 1056 (wild type) has been used, because it is genetically closer to 
the Marburg strain. 

Strain 1056 was cultivated at 37 oC in a water bath shaker in a modified 
synthetic minimal medium as described earlier [2] in order to apply nutrient limiting 
stress conditions. B. subtilis 168 and QB4487 were grown in LB liquid medium and on 
LB-agar plates, so that the results could be easily compared with other DegS/DegU 
experiments [7, 8]. Each experiment was repeated 7–11 times. 
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Stress conditions 

Bacteria were stressed during the mid-exponential growth phase. Growing 
bacterial cultures were stressed (without collection and re-inoculation) in all cases with 
the exception of the nutrient limitation experiments. In all experiments two controls 
were taken directly before applying stress conditions. 

In the case of acid shock, 25mM Tris/HCl and 25mM Na3citrate/citric acid (pH 
7.5) were used in the medium as a pH-buffer instead of 0.5M Tris/HCl buffer (pH 7.5) 
recommended by Stülke et al. [9]. In the case of phosphate-starvation, phosphate-
limitation and carbon-limitation, the exponentially growing cultures were divided into 
two halves and the cells were collected separately. One half was resuspended in the 
original medium as a control and the other was in the limiting medium. For phosphate-
starvation, the medium did not contain any KH2PO4. To evoke phosphate-limitation, 
the limiting medium contained 20 mM KH2PO4. In the case of carbon-limitation, the 
limiting medium contained 0.02 % (w/v) glucose. Oxygen-limitation was induced by 
incubating the cells at 37 oC in settled (non-stirred) culture flasks. For evoking salt 
stress, NaCl was used in a 6 % (w/v) final concentration. Equal amount of LB medium 
was added to the control samples. 

In case of NaCl stress of the surface attached cells, the LB-agar of the stressed 
samples contained 6 % (w/v) of NaCl, whereas control bacteria were grown on LB-agar 
medium. Determination of the viable cell number was carried out in 3 duplicate 
samples; the standard deviation of the method was 8 %. Heat shock was induced by 
incubating the cells in a 45 oC water-bath shaker. For the induction of acid shock, the 
medium was set to pH=5.0 with 1 M HCl. To test the effect of a drop in nucleotide 
triphosphate concentrations, 2,4-dinitrophenol (DNP) was used in 300 µM final 
concentration, and mycophenolic acid (MPA) was applied in 0.045 µg/ml final 
concentration. 

Determination of cell surface hydrophilicity 

The determination of surface hydrophobicity was carried out following the rapid 
hexadecane-extraction method described earlier [10], with the following modifications: 
cells were killed immediately by pipetting them onto -20 oC ice containing 5 mM 
MgCl2, 20 mM NaN3 and 20 mM Tris/HCl at pH 7.5. Cells were collected, washed, 
and resuspended in physiological salt solution. The measured hydrophobicity was 
subtracted from 1 to obtain the hydrophilicity value. For the determination of the 
surface hydrophilicity during the various cell cycle phases under normal growth 
conditions the absolute hydrophilicity was calculated, whereas in cases of stresses the 
hydrophilicity of the stressed samples were compared to the untreated controls (relative 
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hydrophilicity). The results were only accepted if the controls were identical within an 
error of 4 %. 

Determination of the intracellular ATP- and GTP-pool 

Lysis of bacteria was brought about by adding 1/3 volume of 2 M ice-cold 
trichloroacetic acid (TCA) solution. The solution was prepared in pyrogen-free distilled 
water. Cells were collected by centrifugation for 3 minutes at 13000 g at +4 oC. 0.8 
volume of the supernatant was discarded and the bacterial pellet was resuspended in the 
remaining 0.2 volume of the supernatant. Cells were then chilled at -80 oC for 20 
minutes. Cell suspensions were thawed at room temperature and refrozen as above. 
Finally, the samples were thawed at room temperature and centrifuged at 13000 g for 
10 minutes at +4 oC. Supernatants were either immediately subjected to HPLC-
determination or stored at -20 oC until analysis. 

The HPLC measurement was performed with a Gyncotek 480 pump. The 
separation of nucleotides was achieved on a Whatman Partisil PXS 10 / 25 SAX 
column at +25 oC, with an isocratic elution in 0.1 M potassium-phosphate buffer pH 
6.0. The flow rate was 2.0 ml / minute. The volume of the loop was 100 µl. The 
detector was an UV TSK 6040 device set at 254 nm. Raw data were evaluated using 
Axxiom software. Relative nucleotide content was calculated as follows: the area of the 
nucleotide peak was integrated and compared to untreated control. These values were 
normalized to the OD550 of the cell suspension. The standard deviation of the method 
was 3 %. 

Determination of the attachment to soil particles 

Bacteria were cultivated in 25 ml of LB medium containing 1.5 g cellulose 
powder and 1.5 g washed river sand. The partition of the particle size of the river sand 
was: >0.005 mm 21.67 %, 0.05–0.01 mm 19.29 %, 0.01–0.02 mm 13.25 %, 0.02–0.05 
mm 15.71 %, 0.05–0.1 mm 12.12 %, 0.1–0.15 mm 17.96 %. The sand was washed 3 
times with 3 volumes of distilled water and dried at 60±5oC for 5 days. Cell number 
was determined from the optical density measured at 550 nm, after filtering out the 
solids. Optical density of the sample taken after 30 minutes under stress was divided 
with the OD550 of controls, which was taken immediately before applying the stress 
(relative attachment value). The ratio between the relative attachment values of the 
samples and the same values of the non-stressed wild-type (strain 168) cells was 
expressed in percentage. Relative attachment value of 100% indicated that the same 
number of cells was found in the supernatant as in the controls. Values below 100% 
meant that cells attached stronger to the solid matrix then the control ones. The 
standard deviation of the method was 6 %. 
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Results 

Description of the cell surface level response (CSLR) 

Initially, the characteristic features of cell surface hydrophilicity of B. subtilis, 
as a measure of the CSLR, were determined during the various cell cycle phases under 
normal growth conditions in liquid medium. Fig. 1. shows the change of surface 
hydrophilicity in time. The surface was relatively hydrophilic in the lag-period, as well 
as in the early and late stationary phases, while cells became more hydrophobic during 
exponential growth. The lag-period and stationary phases are known as typical 
adaptation periods in which cells sense the changing environmental signals and try to 
respond to them. In these two phases, cells are particularly exposed to a number of 
stresses (changing or depleting carbon-, nitrogen-, energy-sources, pH, etc.). We have 
assumed that responses to some of these stress signals include alteration of the surface 
properties of the cells. It should be noted that no sporulation took place during the 
experiments because of the limited time period of investigations (only exponential and 
early-mid stationary phases were measured). 
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Fig. 1. The changes of surface hydrophilicity during the growth of bacteria. 

The line demonstrates cell growth whereas the boxes show hydrophilicity of cell surfaces. For experimental 
procedures see: [10]. Error bars represent the standard deviation. 
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Fig. 2.A 
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Fig. 2.C 
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Fig. 2. The changes of the cell surface hydrophilicity after the impact of various stresses: (A) oxygen-
limitation; (B) heat shock; (C) salt stress. The columns represent the relative surface hydrophilicity. For 

experimental procedures see: [10]. Error bars show the standard deviation. C: Symbols indicate the 
hydrophilicity of strain 1056 - ●  -; 168 - ▲ - ; and QB4487  - ■  -, respectively. 

B. subtilis immediately enters stationary phase if oxygen is limiting. Oxygen 
limitation, however, increased the surface hydrophilicity only moderately (Fig. 2.A). 

In case of heat shock (Fig. 2.B), the CSLR was larger in amplitude. Following a 
pronounced increase in hydrophilicity during the first 10-15 minutes, a moderate 
decrease of surface hydrophilicity occurred. Thirty minutes after the provocation of cell 
response to heat shock, the cell surface hydrophilicity stabilized at the control level, 
indicating an acclimatization of the bacteria to the temperature shock. 

A considerable increase of surface hydrophilicity was detected after exposure of 
cells to salt stress (Fig. 2.C). It commenced between the 6th and the 15th minutes, 
reached a maximum at the 20th minute and remained at this level until, at least, 30 
minutes after stressing the exponentially growing culture. It should be noted that the 
observed 219 % change in the hydrophilic-hydrophobic features of bacteria was the 
second highest ever detected as a result of bacterial stress response. (In the case of 
Salmonella typhimurium more than a 20-fold increase of hydrophobicity was measured 
in a response to mild acid (pH=6.0) stress [4]). 

Lowering the pH of the medium to 5.0 did not markedly alter the surface 
hydrophilicity in B. subtilis (data not shown), similarly as observed in Gram negative 
bacteria [11]. 
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Fig. 3. Changes of the cell surface hydrophilicity under phosphate-limitation, carbon-limitation and 
phosphate-starvation, respectively. 

Open bars demonstrate the surface hydrophilicity values of the samples in comparision with the controls, 
taken 28 minutes after resuspension of the bacteria in the media represented on the x axis. Filled columns 

show the hydrophilicity of the samples at 45 minutes. For experimental procedures see [10]. Stress conditions 
are described in the Materials and Methods section. 

It is known that cells enter the stationary phase as soon as an essential 
component is depleted from the medium. This response is markedly different from a 
nutrient limitation induced specific response (e.g. phosphate or carbon limitation), in 
which the cells continue to grow but a signal of the suboptimal growth condition is 
sensed [12]. A manifestation of this phenomenon at CSLR level has been studied in 
detail. 

In the phosphate-free medium, the bacteria showed a stationary phase-specific 
response. As evident from Fig. 3., complete phosphate-depletion of the medium caused 
an increase of surface hydrophilicity when compared to the untreated control in the 45 
min observation period. The elevated hydrophilicity, measured during the first 30 
minutes of the experiment, in both the controls and the stressed cells, is likely due to 
the mechanical stress of centrifugation and re-suspension. In case of phosphate- and 
carbon (energy)- limitation a nutrient-specific response was expected. However, an 
increase of cell surface hydrophilicity, very similar to phosphate starvation, was 
observed. 

Because the CSLR induced by the stationary phase signals did not differ from 
that caused by either phosphate- or carbon (energy)- limitation specific responses, we 
concluded that, in all three cases, a general stress response was elicited from the 
bacteria, i.e. the observed CSLR was induced by general stress signals [12, 13, 14]. 
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Fig. 4A 
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Fig. 4. Changes in the GTP- and ATP-pools and in the surface hydrophilicity of cells after treatment with (A) 
MPA or (B) 2,4-DNP. Circles indicate the GTP-pool of cells, whereas squares represent the changes in the 

ATP-pool of bacteria. Columns show the changes of the surface hydrophilicity in comparison with the 
untreated control. Error bars indicate the standard deviation. For experimental procedures see: [10], and the 

Materials and Methods section. 
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Intracellular signals of CSLR 

It is important to establish the link between intracellular stress signal 
transduction mechanism(s) and CSLR as the bacteria enter into stationary phase or 
respond to various kinds of environmental stresses. Two potential parameters have 
been analysed: an energy limitation which, in most cases, induces the biosynthesis of 
general stress proteins [13, 15, 16], and a drop in GTP which leads to the onset of 
generalized physiological responses (e.g., sporulation) in B. subtilis [17, 18]. The 
intracellular responses have been followed by inhibitor studies. Although the drop of 
intracellular nucleotide levels is associated with the stress response, it is difficult to 
distinguish between primary and secondary effects. Therefore, the depletion of 
nucleotides can be either the cause or the result of a stress response. In any case 
nucleotide depletion can be viewed as part of the signal transduction pathway. 

Mycophenolic acid (MPA) brings about a drop in GTP and ATP levels [19]. 
MPA acts as an inhibitor of inosite monophosphate (IMP)-dehydrogenase, the enzyme 
that is required for the synthesis of GMP. Therefore, in the presence of MPA, the GTP-
pool in the cells decreases. It is also known that MPA strongly reduces the ATP-pool in 
cells [20]. This effect is most probably due to the phenomenon that adenylsuccinate-
synthetase, an enzyme that is required for the synthesis of AMP, uses GTP as its 
energy-source. The surface hydrophilicity increased in a significant manner 20 minutes 
after the MPA-treatment (Fig. 4.A). Around the same time, a strong drop in ATP and 
GTP occurred. Thirty minutes after applying stress-conditions, the GTP-drop 
continued, however, the ATP-pool showed signs of recovery (Fig. 4.A). These results 
suggest that the drop of GTP and/or ATP may be an element of the signal-transducing 
process, which leads to the increased surface hydrophilicity following the MPA-
treatment. 

The effect of 2,4-dinitrophenol (2,4-DNP), which transports H+-ions from the 
extracellular space into the cells, was also examined. Fig. 4.B demonstrates that the 
2,4-dinitrophenol treatment caused a rapid, long-lasting and drastic increase of cell 
surface hydrophilicity. However, no intracellular ATP- or GTP-drop was detectable 
under our experimental conditions. On the contrary, a small but significant increase in 
the cellular ATP-pool and a drastically elevated GTP-level was found in response to 
the 2,4-DNP treatment. Therefore these results do not corroborate a direct relationship 
between the ATP- or GTP-drop in B. subtilis and its CSLR, in case of 2,4-DNP shock. 

Role of the DegS/DegU two-component system in the CSLR 

Wild type strain B. subtilis 168 and the degU deletion mutant strain QB4487 
were subjected to NaCl stress in liquid medium and on solid surface. The results 
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observed in liquid medium indicated increased surface hydrophilicity following salt 
stress (Fig.2C). This was mainly due to the DegS/DegU-two component system in 
suspended culture as salt stress was accompanied by a significantly elevated surface 
hydrophilicity in the wild type B. subtilis compared to the degU deleted strain. It 
should be noted that a limited stress response was also detected in the mutant strain 
QB4487. The two wild type strains 1056 and 168 showed essentially the same 
behaviour regarding surface hydrophilicity. No differences were detected in the 
survival ability of strain 168 and QB4487 in response to salt stress (data not shown). 
Cells attached to agar plate containing 6 % (v/v) NaCl showed a distinct salt stress 
response (Fig. 5). Interestingly, the cell surface of the degU mutant QB4487 cells show 
essentially the same hydrophilicity on plate as wild-type strain 168, whereas the mutant 
cells were 7 times more resistant against salt stress than the wild-type strain. 

0

20

40

60

80

100

168 QB

H
yd

ro
ph

ilic
ity

 (%
)

0

1

2

3

4

5

6

7

8

9

10

Vi
ab

le
 c

el
l n

um
be

r (
%

)
Fig. 5. Comparison of cell surface hydrophilicity and cell number properties of wild-type (168) and degU 

mutant (QB4487) attached cells under NaCl stress conditions. 
Empty columns indicate cell surface hydrophilicity whereas hatched columns show cell number. Error bars 

indicate the standard deviation. For experimental procedures see the Material and Methods section. 

Adhesion to solid particles in attachment-experiments indicated a defected 
response to salt stress conditions by the degU deleted cells, i.e. the stressed cells were 
strongly attached to the particles. No detectable differences were observed in the 
unstressed control samples, moreover the attachment properties of the wild type cells 
were the same in the presence and absence of the salt stress. It should be noted that the 
observed differences between the attachment properties of the strains QB4487 and 168 
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couldn’t be explained by the different growth rate of the two strains. Unstressed 
QB4487 and 168 cells, similarly to NaCl-stressed QB4487 and 168 cells, grew 
identically in liquid medium (data not shown). 

Discussion 

The biosynthesis of a set of stress specific and general stress proteins is induced 
by environmental stimuli [14, 21, 22]. Defence mechanisms also include the synthesis 
of extracellular enzymes [9]. According to the results presented here, the complex 
modification of behaviour affects the cell adhesion features. In line with this 
conclusion, CSLR appeared as a general stress response and no variation in CSLR was 
found between C- and P-limitation. The pronounced effect induced by salt stress was 
remarkable. Salt stress was shown to activate the DegS-DegU two component system 
(for a review see [23]). The DegS-DegU system was probably also activated in strain 
168 in a response to salt stress. This system has been implicated in the inhibition of the 
biosynthesis of the wall-associated high molecular mass WapA protein [6, 24]. Taken 
together, one can assume that the DegS-DegU system is participating in evoking a salt 
stress response through the inhibition of synthesis of WapA, which is likely to change 
the surface properties of the cells. DegS-DegU regulated processes are induced in the 
stationary phase [25, 26, 27], therefore their individual contribution to the increased 
surface hydrophilicity in the stationary phase (Fig. 1) cannot be distinguished. 

According to the MPA inhibition experiments, a drop in intracellular GTP 
and/or ATP likely plays an important role in the signal transduction pathway. This 
trend was not corroborated by the 2,4-DNP inhibition studies. 2,4-DNP induced CSLR 
may be the result of a change in intracellular pH caused by 2,4-DNP, which invokes 
e.g. the synthesis of σB dependent gene products [28]. Therefore, we think that 
induction of CSLR should be occurred according to at least two pathways: an ATP 
and/or GTP-dependent and an -independent pathway, likely as it was described in case 
of the σB regulon [16]. 

An increase of cell surface hydrophilicity increases the probability that cells can 
disengage themselves from the soil particles [11]. In addition, cell motility can be 
increased through the induction of flagellin synthesis as part of the competence process 
regulated by the phosphorylation status of DegU [8, 29, 30]. The enhancement of 
motility of B. subtilis cells under growth-limiting conditions may be an important 
physiological function of CSLR to improve survival under unfavourable environmental 
conditions. The adhesion properties of the cells are important for numerous 
biotechnological applications where the binding of cells to carrier surface(s) is 
important for managing the active biomass within the fermentation space. 
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The DegS/DegU system does not appear to provide life saving function for the 
B. subtilis cells, since the deletion mutant cells were just as viable under stress 
condition as the wild type strain.  Marked effects in cell surface hydrophilicity could be 
provoked by salt stress, although the cells behaved differently in suspended culture and 
on the surface of agar plates (Figs. 2.C. and 5). There is no clear explanation for the 
distinct surface properties, depending on the liquid vs. solid growth conditions, the 
changes should be linked to the DegS/DegU system. 

Results of the attachment-experiments suggest that the DegS/DegU two-
component system plays a crucial but complex role in responding to stress situation. 
The less hydrophilic mutant cells have certainly a lower chance to escape from salt 
stress when they were attached to a mixture of cellulose and sand particles. This strong 
attachment may be correlated with the hydrophilicity behaviour in solution, where the 
cells having a defected DegS/DegU system showed significantly lower surface 
hydrophilicity than the wild type controls, therefore they appeared to have restricted 
motility. 
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