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For decades plaque neovascularization was considered as an innocent feature of advanced
atherosclerotic lesions, but nowadays growing evidence suggest that this process triggers
plaque progression and vulnerability. Neovascularization is induced mostly by hypoxia,
but the involvement of oxidative stress is also established. Because of inappropriate
angiogenesis, neovessels are leaky and prone to rupture, leading to the extravasation of
red blood cells (RBCs) within the plaque. RBCs, in the highly oxidative environment of
the atherosclerotic lesions, tend to lyse quickly. Both RBC membrane and the released
hemoglobin (Hb) possess atherogenic activities. Cholesterol content of RBC membrane
contributes to lipid deposition and lipid core expansion upon intraplaque hemorrhage.
Cell-free Hb is prone to oxidation, and the oxidation products possess pro-oxidant
and pro-inflammatory activities. Defense and adaptation mechanisms evolved to cope
with the deleterious effects of cell free Hb and heme. These rely on plasma proteins
haptoglobin (Hp) and hemopexin (Hx) with the ability to scavenge and eliminate free Hb
and heme form the circulation. The protective strategy is completed with the cellular heme
oxygenase-1/ferritin system that becomes activated when Hp and Hx fail to control free Hb
and heme-mediated stress. These protective molecules have pharmacological potential in
diverse pathologies including atherosclerosis.

Keywords: atherosclerosis, intraplaque hemorrhage, red blood cell lysis, hemoglobin oxidation, haptoglobin,

hemopexin, heme-oxygenase, ferritin

INTRODUCTION
Complications of cardiovascular disease, and in particularly lumi-
nal thrombosis triggered by rupture of atherosclerotic lesions,
are the leading cause of mortality and morbidity worldwide. Not
all the plaques are prone to rupture, only the vulnerable ones,
characterized by thin fibrous cap. Recently, plaque neovascular-
ization and intraplaque hemorrhage (IPH) have been linked to
plaque progression and vulnerability and these processes gained
substantial interest (reviewed in Moreno et al., 2012).

In this review we briefly summarize what is known regarding
the triggers of neovascularization and IPH. We overview the fate
of red blood cells (RBCs) in the highly oxidative environment of
the atherosclerotic plaque, and discuss the defense and adaptation
mechanisms which have evolved to control the deleterious effects
of cell free Hb.

NEOVASCULARIZATION IN ATHEROSCLEROTIC LESIONS
Oxygen and nutrients are diffused from the vessel lumen into
the intimal and medial cells of healthy vessels, while the outer
layers of media and the adventitia are nurtured by the cap-
illary network of vasa vasorum (Moreno et al., 2006, 2012).
Neovascularization, that is the growth of capillary-like microves-
sels into the thickened media and intima, has long been consid-
ered as a prominent feature of late-stage atherosclerotic plaques

(O’Brien et al., 1994). Nowadays growing evidence support that in
fact neovascularization is present in early atherosclerotic lesions
(Jeziorska and Woolley, 1999) particularly when the thickness of
the tunica intima exceeds the maximum oxygen diffusion distance
that is ∼200–250 μm (Geiringer, 1951; Torres Filho et al., 1994;
Moulton et al., 1999).

Hypoxia as a trigger of plaque neovascularization
Hypoxia, a condition when oxygen tension drop below its normal
level in the particular tissue (20–100 mmHg), is a long-recognized
stimulus for angiogenesis (Knighton et al., 1983). Using oxygen
microelectrodes or specific hypoxia markers, hypoxia of the mid-
region of the atherosclerotic plaques was demonstrated in various
animal models (Jurrus and Weiss, 1977; Zemplenyi et al., 1989;
Crawford and Blankenhorn, 1991; Bjornheden et al., 1999). In
humans, the presence of hypoxic milieu in advanced atheroscle-
rotic lesions of carotid arteries was also shown (Sluimer et al.,
2008). As a consequence of hypoxia, switch from aerobic to anaer-
obic metabolism, characterized by glucose and ATP depletion and
lactate accumulation, occurs in both human and experimental
atheroma (Levin et al., 2003; Leppanen et al., 2006). Recently
it has been shown that both sustained and intermittent hypoxia
accelerates the progression of atherosclerosis in apolipoprotein E
(apoE) deficient mice (Nakano et al., 2005; Jun et al., 2010).
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Hypoxia-inducible factor-1 (HIF-1) pathway is the major
mediator of the biological effects of hypoxia (Wang and Semenza,
1995). HIF-1 is active exclusively as a heterodimer of HIF-1α

and HIF-1β subunits. While HIF-1β is stable, the level of HIF-
1α is regulated by oxygen (Wang et al., 1995). Under normoxia,
HIF-1α subunits are hydroxylated by the Fe2+-dependent prolyl
hydroxylases (PHD) followed by ubiquitination and subsequent
degradation by the proteasome (Maxwell et al., 1999; Ivan et al.,
2001). In contrast, under hypoxia PHDs are inactive and HIF-
1α subunits are no longer degraded. This allows the formation
of the active HIF-1 heterodimer, which then translocate into the
nucleus, binds to the hypoxic response elements and initiates
transcription of target genes (Wenger et al., 2005). These genes
are involved in the adaptation of the organism to hypoxic condi-
tion, such as vascular endothelial growth factor (VEGF) that has
a pivotal role in angiogenesis (Forsythe et al., 1996).

Expression of HIF-1α is increased in deep and less-
vascularized layers of human carotid and femoral endarterectomy
specimens (Vink et al., 2007; Higashida et al., 2008). Increased
HIF-1 alpha expression is associated with elevated level of VEGF
suggesting that HIF-1 pathway is active and most probably play a
role in neoangiogenesis in these hypoxic regions of the atheroscle-
rotic plaques (Vink et al., 2007; Higashida et al., 2008; Gao et al.,
2012).

Inflammation and ROS as triggers of plaque neovascularization
Although hypoxia is by far the most studied angiogenic factor,
recent discoveries highlighted the role of reactive oxygen species
(ROS) that are implicated in both physiological and patholog-
ical angiogenesis under normoxic conditions (reviewed in Kim
and Byzova, 2014). ROS activates the HIF-1/VEGF pathway that
serves as the major underlying mechanism of ROS-mediated
angiogenesis. Additionally, recent discoveries highlighted the
role of toll-like receptors (TLR) behind angiogenic activity of
ROS. The activation of various TLR receptors (TLR2, TLR3,
TLR4, TLR2/6) can lead to angiogenesis in both HIF-1/VEGF-
dependent and HIF-1/VEGF-independent manners (Leibovich
et al., 2002; Pollet et al., 2003; Grote et al., 2010; Paone et al.,
2010; Spirig et al., 2010) (reviewed in Bordon, 2010). For exam-
ple activation of TLR4 by lipopolysaccharide activates the HIF-1
pathway (Vink et al., 2007), whereas activation of TLR2 by its
novel endogenous ligand, ω-(2-carboxyethyl) pyrrole, leads to an
angiogenic response that is independent of VEGF (West et al.,
2010).

Besides its direct angiogenic potential, ROS have been impli-
cated in the generation of lipid oxidation products with proangio-
genic activities, such as oxidized phospholipids that can be found
in large amounts in atherosclerotic lesions (Bochkov et al., 2006;
West et al., 2010; Hutter et al., 2013).

Physiological and pathological angiogenesis
Angiogenesis in general is fundamental for development and
repair. It was proposed that physiologic angiogenesis can serve
as a defense mechanism in atherosclerosis to compensate tis-
sue hypoxia and restore homeostasis in the vessel wall (Moreno
et al., 2006). Theoretically neovessels could provide channels for
immune cells and bone marrow-derived progenitors to resolve

inflammation and facilitate repair of the diseased vessel, respec-
tively. It was also postulated that physiological angiogenesis con-
tributes to the elimination of accumulated lipids from the intima
(Moreno et al., 2006). Regardless of these potential beneficial
effects, growing body of evidence suggest that plaque neovascu-
larization correlates with the progression of atherosclerosis and
neovessel density was found to be an independent risk factor for
aortic plaque rupture (McCarthy et al., 1999; Moreno et al., 2004).
Many studies revealed that inhibition of angiogenesis with dif-
ferent approaches reduces plaque growth (Moulton et al., 1999,
2003; Luttun et al., 2002; Petrovan et al., 2007; Drinane et al.,
2009; Bot et al., 2011), whereas stimulation of angiogenesis with
VEGF or nicotine results in elevated lesion progression in exper-
imental atherosclerosis (Celletti et al., 2001; Heeschen et al.,
2001). The observed disadvantageous effects of plaque neovascu-
larization might be explained by pathological angiogenesis that
proceeds in an uncontrolled manner, and results the formation of
an abnormal neovessel structure.

Neovessles can originate from three sources. Sprouting of the
adventitial vasa vasorum in response to angoigenic stimuli is the
most widely accepted mechanism of neovessel formation. Besides
vasa vasorum, luminal endothelial cells, or recruitment and dif-
ferentiation of vascular progenitor cells inside the plaque can be
involved in the formation of neovessels (reviewed in Galis and
Lessner, 2009). Regardless of their origin, plaque neovessels differ
both anatomically and in their response to different stimuli from
the normal vessels (Ritman and Lerman, 2007). Neovessels are
dysmorphic and characterized by discontinuous basement mem-
brane and a relatively low number of tight junctions between
endothelial cells (Heistad et al., 1981; Dunmore et al., 2007;
Sluimer et al., 2009). Moreover these premature vessels are rel-
atively poor in smooth muscle cells or pericytes (Kolodgie et al.,
2003). Consequently, neovessels are leaky and unable to control
intraluminal pressure therefore they are prone to rupture (Zhang
et al., 1993; Sluimer et al., 2009).

INTRAPLAQUE HEMORRHAGE
Continuous leakage or rupture of immature neovessels leads to
extravasation of RBCs within plaques which process is defined as
IPH. IPH is present in about 40% of high-risk plaques (Kockx
et al., 2003). Recently IPH has been linked to plaque progression
and vulnerability and nowadays is considered as a critical event
in triggering atherosclerosis-associated acute clinical symptoms
(Michel et al., 2011). Different theories evolved about the molec-
ular mechanisms via which IPH contribute to plaque progression.

RBC membrane-derived cholesterol as a trigger for lipid core
expansion and inflammation
The casual relationship between elevated cholesterol level and
atherosclerosis is known for more than 60 years. Early atheroscle-
rotic lesions are characterized by subendothelial accumulation of
cholesterol-laden macrophages called foam-cells. During plaque
progression foam cells dye and release free cholesterol that
deposits inside the plaque forming the necrotic core a char-
acteristic feature of more advanced lesions (Lusis, 2000). For
decades low-density lipoprotein (LDL) was considered as the
main source of atherosclerotic plaque lipid content, and lowering
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circulating LDL-cholesterol level is still a major approach for
anti-atherosclerotic therapies (Sahebkar and Watts, 2013).

Recently it has been shown that in human atherosclerotic
lesions cholesterol crystals are co-localized with glyophorin A, a
characteristic protein of RBC membrane, suggesting that choles-
terol content of RBC membrane contributes to lipid deposi-
tion and lipid core expansion upon IPH (Kolodgie et al., 2003,
2007). In fact, RBC membrane is particularly abundant in choles-
terol (Yeagle, 1985). RBCs are not able to synthetize lipids, but
there is an active exchange between RBC membrane lipids and
plasma lipoproteins. Therefore lipid composition of RBC mem-
brane reflects plasma lipoprotein levels. For example it has been
shown that familial hypercholesterolemia is associated with ele-
vated RBC membrane-associated cholesterol (Koter et al., 2002)
and that high-fat diet increase membrane lipid content of RBCs in
experimental animal models (Bhandaru et al., 1982; Ivanov et al.,
1991; Tziakas et al., 2013). Accordingly, lipid lowering strategies
such as statin treatment and life-style changes have been shown
to positively modulate RBC lipid composition which might con-
tribute to the atheroprotective effects of these approaches (Tynan
et al., 1995; Koter et al., 2002; Caspar-Bauguil et al., 2010; Tziakas
et al., 2013).

The direct evidence that RBC contribute to lesion progres-
sion is provided by the experiment of Kolodgie et al. in which
they injected packed RBCs directly into quiescent atherosclerotic
lesions in rabbit aortas. RBC injection triggered the enlargement
of necrotic core and formation of free cholesterol crystals along
with excessive macrophage infiltration (Kolodgie et al., 2003).

Inflammation has a fundamental role in mediating all stages
of atherosclerosis (Libby, 2002). Discoveries of the last 20 years
made us to understand that besides pathogen-associated molec-
ular patterns (PAMPs) several endogenous molecules, called
danger- or damage-associated molecular patterns (DAMPs) can
activate cellular receptors leading to downstream inflammation
(Matzinger, 1994, 2002). Rajamaki et al. showed that choles-
terol crystals serve as DAMPs and cause the activation of the
NLRP3 [nucleotide-binding domain leucine-rich repeat contain-
ing (NLR) family, pyrin domain containing 3] inflammasome
in macrophages (Rajamaki et al., 2010). Activation of NLRP3
inflammasome by cholesterol crystals leads to the activation of
cytoplasmic caspase-1 that promotes maturation and secretion
of the proinflammatory cytokine IL-1β (Rajamaki et al., 2010)
and thus link altered cholesterol metabolism and inflammation
in atherosclerotic lesions.

RBC lysis, Hb release and Hb oxidation upon IPH
While compartmentalized in RBCs oxidation of Hb is controlled
by a highly effective antioxidant defense system including enzy-
matic (Cu/Zn superoxide dismutase, catalase, glutathione per-
oxidase, and peroxiredoxins) and non-enzymatic (glutathione)
scavengers (Siems et al., 2000; Jeney et al., 2013). Upon IPH RBCs
enter to the highly oxidative milieu of atherosclerotic lesion, the
“death zone” that contains cytotoxic products of lipid peroxida-
tion such as lipid hydroperoxides, aldehydes, and carbonyls (Li
et al., 2006). The high occurrence of IPH prompted us to study
the interaction of RBC and atheroma lipids. We revealed that
these reactive lipids, extracted from human atheroma trigger the

lysis of RBCs (Figure 1) (Nagy et al., 2010). Oxidized LDL and
cumene hydroperoxide mimic the effect of plaque lipid extract on
RBC lysis (Nagy et al., 2010). Moreover, enzymatic conversion of
lipid-hydroperoxides to lipid-alcohols by glutathione/glutathione
peroxidase causes significant inhibition of RBC lysis triggered
by oxLDL and plaque lipids highlighting the critical role of
lipid-hydroperoxides in RBC lysis (Nagy et al., 2010).

Hb once outside the protective environment of RBC is prone
to oxidation (Figure 1). Auto-oxidation of Hb occurs resulting
in metHb generation meanwhile superoxide anions are formed
(Table 1, equation 1). Peroxides, such as H2O2 can trigger a
two-electron oxidation of Hb leading to the formation of ferryl
(Fe4+ = O−

2 ) Hb (Table 1, equation 2), whereas the reaction of
metHb with H2O2 yields ferrylHb radical (Hb·+(Fe4+ = O−

2 )) in
which the unpaired electron is associated with the globin or the
porphyrin ring (Table 1, equation 3) (Harel and Kanner, 1988;
Patel et al., 1996; Alayash et al., 2001; Jia et al., 2007).

The generated high-valence iron compounds are highly reac-
tive intermediates that can decay by several routes (Reeder et al.,
2008). FerrylHb can trigger further production of globin radicals
via an intramolecular electron transfer between the ferryl iron
and specific amino acid residues such as αTyr-24, αTyr-42, αHis-
20, βTyr-35, βTyr-130, and βCys-93 of the globin chains resulting
the formation of metHb globin radical (Table 1, equation 4)
(Ramirez et al., 2003; Deterding et al., 2004; Jeney et al., 2013).
Termination reactions of globin- and porphyrin-centered radicals
lead to the formation of globin-globin (Table 1, equation 5) or
porphyrin-globin crosslinks. The common feature of these struc-
turally heterogeneous molecules is the modification of the globin
chain. The nomenclature of these molecules is not concise in these
days. Nevertheless, along this review in order to distinguish from
metHb and ferrylHb—in which only the oxidation state of heme
iron is altered but no globin modification is present—we will
refer to those globin-modified molecules as oxidatively modified
Hb (oxHb).

Studying the interaction of Hb and atheroma lipids, we
observed a severe oxidation of Hb leading to the generation
of metHb and oxHb (Figure 1). Moreover, we revealed signif-
icant accumulation of metHb and oxHb within human com-
plicated atherosclerotic lesions—covalently cross-linked globin-
globin multimers, and dityrosine formation occurs upon IPH—
suggesting that the above-mentioned reactions take place in such
lesions (Nagy et al., 2010; Jeney et al., 2013). We suggested that
oxidation of Hb in the atherosclerotic plaque might be triggered
by reactive lipid mediators (Figure 1). Besides atheroma lipids
oxLDL was also shown to cause oxidation of cell-free Hb, pro-
ducing metHb as well as ferrylHb and oxHb (Tynan et al., 1995;
Nagy et al., 2005; Potor et al., 2013). Oxidation of Hb provoked
by reactive lipid mediators can be inhibited by the heme scaveng-
ing Hx and by the elimination of lipid hydroperoxides, suggesting
that interactions between the heme moiety and the hydroperoxide
group drive the oxidation (Jeney et al., 2013).

Extracellular Hb, oxidized Hb species and heme as triggers of lipid
peroxidation and endothelial damage
Oxidative modification of LDL and endothelial damage are key
elements of atherogenesis. More than 20 years ago Balla et al.

www.frontiersin.org October 2014 | Volume 5 | Article 379 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Oxidant_Physiology/archive


Jeney et al. Atherogenic activity of extracellular hemoglobin

FIGURE 1 | Deleterious effects and defense mechanisms triggered by

extracellular hemoglobin and its oxidation products upon intraplaque

hemorrhage. Interactions between RBCs and plaque lipids lead to lysis of
erythrocytes and release of Hb. Extracellular Hb by reacting with plaque lipids
undergo rapid oxidation to metHb and oxHb. MetHb and oxHb release their
heme moieties that possess pro-oxidant and pro-inflammatory properties.
OxHb is a strong pro-inflammatory agonist which effect is independent of
heme release. As an atheroprotective mechanism in response to Hb stress
Mhem macrophages polarization occurs. Hp binding Hb but not oxHb
attenuates Hb oxidation and their uptake by Mhem macrophages results in

heme catabolism. Heme liberated from MetHb and oxHb can be captured by
hemopexin (Hx). Hx inhibits catalytic activity of heme, and after internalization
of Hx:heme complex heme is catabolized. Induction of heme oxygenase-1
(HO-1) and ferritin in vascular cells in response to such and insult (Hb, oxHb,
heme, lipid oxidation) provides inhibition of oxidant damage and
inflammation. HO-1 degrades heme into biliverdin, CO and iron which is
sequestered by ferritin. Products of HO-1 mediated heme degradation: CO
and biliverdin—that is readily converted to bilirubin—possess different
antioxidant and anti-inflammatory properties. Additionally, ferritin inhibits
vascular calcification.

showed that heme, the prosthetic group of Hb, is a very efficient
trigger of LDL oxidation in vitro and suggested that it might be
a physiological mediator of LDL oxidation in vivo (Balla et al.,
1991a). We also showed that heme greatly amplifies oxidant-
mediated endothelial damage (Balla et al., 1990, 1991b). Several
lines of evidence support, that these heme-triggered events have
etiopathogenic roles in diverse vascular pathologies, including
atherosclerosis (Balla et al., 2007). Deficiency of the heme-
catabolizing enzyme, heme oxygenase-1 (HO-1), in humans was
found to be associated with elevated plasma heme levels, exten-
sive LDL oxidation, severe endothelial damage and accelerated
atherosclerosis (Yachie et al., 1999; Jeney et al., 2002; Kawashima
et al., 2002; Radhakrishnan et al., 2011). The role of HO-1 in
atherogenesis was also examined in animal models. It has been
shown that overexpression of HO-1 in apoE deficient mice inhibit
lesion formation (Juan et al., 2001), whereas HO-1 deficiency is
associated with accelerated atherosclerosis in apoE deficient mice
(Yet et al., 2003). In heme-mediated LDL oxidation a unique
oxidation product, 5-hydroxy-2-amino valeric acid (HAVA) is
formed (Julius and Pietzsch, 2005). HAVA is a hallmark of heme-
mediated LDL oxidation, because other known triggers of LDL
oxidation, such as HOCl, H2O2 alone or in combination with
Cu2+ or Fe2+ induce no or minor HAVA formation (Julius and
Pietzsch, 2005). HAVA levels in LDL was found to be elevated
in patients with impaired glucose tolerance and with diabetes

mellitus suggesting that heme-mediated LDL oxidation occurs in
these patients (Julius and Pietzsch, 2005).

Not only free heme, but metHb and oxHb trigger LDL oxi-
dation and sensitize endothelial cells to oxidant-mediated killing
(Balla et al., 1993; Paone et al., 2010; Potor et al., 2013). These
Hb species readily release heme moiety (Bunn and Jandl, 1968),
which step is of crucial importance in mediating their effect
(Figure 1). This notion is supported by the observation that
restriction of heme release using different approaches, such as
binding of Hb to Hp or strengthening the globin-heme binding,
inhibits the deleterious effects of these Hb species (Balla et al.,
1993; Jeney et al., 2002; Nagy et al., 2010; Potor et al., 2013).

Extracellular Hb, oxidized Hb species and heme as modulators of
inflammation
Inflammation is an important etiopathogenic component of
atherogenesis, and several evidence suggest that cell free Hb,
oxidized Hb species and heme possess specific immunomodula-
tory activities (Figure 1). Hemolytic or hemorrhagic episodes are
often associated with inflammation even in the absence of infec-
tious agents (Arruda et al., 2005; Gram et al., 2013). Vascular
endothelium, that provides a barrier between blood and tis-
sue has a critical role in the inflammatory response mainly by
inducing the leukocyte adhesion cascade to facilitate transmi-
gration of inflammatory cells to the inflamed tissue. Endothelial
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Table 1 | Routes of hemoglobin oxidation.

Formed species

Hb(Fe2+)O2 → Hb(Fe3+) + O•−
2 Methemoglobin

Hb(Fe2+)O2 + H2O2→ Hb(Fe4+ = O−
2 ) +

H2O + O2

Ferrylhemoglobin

Hb(Fe3+) + H2O2 → Hb•+(Fe4+ = O−
2 ) +

H2O
Ferrylhemoglobin globin
radical

Hb(Fe4+ = O−
2 ) + 2H+ → Hb•+(Fe3+) +

H2O
Methemoglobin globin radical

Hb•+(Fe3+) + Hb•+(Fe3+) → (Fe3+)
+Hb-Hb+(Fe3+)

Covalently cross-linked
methemoglobin multimer

Auto-oxidation of Hb generates metHb and superoxide anions (equation 1).

H2O2 triggers a two-electron oxidation of Hb leading to the formation of ferryl

(Fe4+ = O−
2 ) Hb (equation 2). The reaction of metHb with H2O2 yields ferrylHb

radical (Hb·+(Fe4+ = O−
2 )) in which the unpaired electron is associated with the

globin or the porphyrin ring (equation 3). FerrylHb can trigger further produc-

tion of globin radicals via an intramolecular electron transfer between the ferryl

iron and specific amino acid residues of the globin chains resulting the forma-

tion of metHb globin radical (equation 4). Termination reactions of globin- and

porphyrin-centered radicals lead to the formation of globin-globin (equation 5)

crosslinks.

cells when exposed to heme or oxHb up-regulate the expres-
sion of adhesion molecules: intracellular adhesion molecule-1
(Icam-1), vascular cell adhesion molecule-1 (Vcam-1) and E
selectin (Wagener et al., 1997; Silva et al., 2009). Comparing
to heme, oxHb is a more robust inducer of this inflamma-
tory response, as one-tenth of oxHb provoke the same response
as heme. Also, the mechanism of oxHb-triggered inflammatory
response seems to be different from the one that heme ini-
tiates. OxHb mediated inflammatory response is independent
of heme release, which notion is supported by the observa-
tion that metHb that can release heme moiety similarly to
oxHb has no pro-inflammatory properties (Figure 1) (Silva et al.,
2009). Additionally, endothelial cells exposed to oxHb show
rearrangement of the actin cytoskeleton leading to disruption
of the endothelial cell monolayer, intercellular gap formation
and increased permeability of the monolayer, which did not
occur upon heme exposure (Silva et al., 2009). Both heme and
oxHb have been shown to induce inflammation in mice, with
the notion that oxHb seems to be a 10-times more potent
agonist than heme (Wagener et al., 2001; Silva et al., 2009).
Both heme and oxHb are chemotactic for neutrophils when
injected into the peritoneal cavity of mice, but again, oxHb is
a much stronger chemotactic agent compared to heme (Porto
et al., 2007; Silva et al., 2009). Importantly, heme and oxHb-
mediated inflammatory responses do not share a common sig-
naling pathway, as heme mediated response has been shown to be
TLR4-depenedent (Figueiredo et al., 2007; Belcher et al., 2014),
whereas oxHb acts on a TLR4-independent manner (Silva et al.,
2009).

Macrophages are considered to be the major immune cell
type involved in atherogenesis. These macrophages originate from

blood monocytes which are attracted to the subendothelial space.
The plaque microenvironment dictates the differentiation of these
cells functionally diverse phenotypes. Besides the most extensively
studied M1 and M2 subtypes, several other macrophage popula-
tions have been identified in atherosclerotic plaques (reviewed in
Leitinger and Schulman, 2013; Vinchi et al., 2014). Boyle et al.
recently identified a novel hemorrhage-associated macrophage
phenotype (Mhem, HA-mac) in human hemorrhaged atheroscle-
rotic plaques (Boyle et al., 2009). It has been demonstrated that
polarization of these Mhem macrophages is driven by Hb bound
to its endogenous scavenger Hp (Boyle et al., 2009; Finn et al.,
2012). The major function of Mhem macrophages is the safe elim-
ination of cell free Hb from the plaque, therefore they highly
express CD163, the receptor for uptake of Hb:Hp complex and
HO-1, the rate limiting enzyme of heme catabolism (Boyle et al.,
2009, 2012). Moreover, Mhem differentiation prevents foam cell
formation via decreased lipid uptake and increased cholesterol
efflux (Finn et al., 2012). All of these properties can contribute
to the atheroprotective nature of these Mhem macrophages
(Figure 1).

DEFENSE AND ADAPTATION MECHANISMS
Extracellular Hb and heme are harmful therefore efficient mecha-
nisms have evolved to control their deleterious effects (Figure 1).
The plasma acute phase proteins Hp and Hx are in the first line of
defense upon intravascular hemolysis. The protective strategy is
completed with the HO-1/ferritin system that could serve as the
last line of defense and become activated when the Hp and Hx
cannot control free Hb and heme mediated stress (Figure 1). The
pharmacological potential of these molecules emerged recently
to neutralize the adverse effects of Hb and heme in diverse
pathologies (Durante, 2010; Schaer et al., 2013a).

Control of free Hb by Hp
Hp is present in plasma in high amounts (0.41–1.65 mg/ml)
with the exclusive recognized function of capturing and chap-
eroning cell free Hb to macrophages for degradation (Figure 1)
(reviewed in Alayash, 2011). Hp binding accelerates the elimina-
tion of circulating Hb through the CD163 macrophage scavenger
receptor-mediated endocytosis (Kristiansen et al., 2001). The
Hp:Hb complex is highly stable and protects Hb from H2O2-
induced oxidation (Miller et al., 1997; Buehler et al., 2009;
Pimenova et al., 2010; Banerjee et al., 2012; Potor et al., 2013;
Schaer et al., 2013b). Recent resolution of the crystal structure
of the porcine Hp:Hb complex revealed that Hb residues known
to be prone to oxidative modifications are buried in the Hp:Hb
interface thereby explaining the protective effect of Hp against
H2O2-induced oxidation (Andersen et al., 2012). Hp binding not
just provide structural stabilization of Hb but also inhibits heme
transfer from Hb toward LDL or vascular endothelial cells (Balla
et al., 1993; Nagy et al., 2010; Schaer et al., 2013b).

In humans there are two alleles for the Hp gene resulting
3 different genotypes Hp1-1, Hp2-1 and Hp2-2 (reviewed in
Goldenstein et al., 2012) accompanied by structurally differ-
ent proteins. This molecular heterogeneity of Hp was found
to be associated with cardiovascular diseases. Many clinical
observations revealed that the Hp2-2 genotype is a risk factor
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for cardiovascular complications in diverse patient populations
(reviewed in Costacou and Levy, 2012), however the attempt
to understand the underlying mechanisms lead to controversial
results. It has been demonstrated that Hp1-1 is more efficient
in blocking heme transfer from Hb to LDL or endothelial cells
than Hp2-2 (Melamed-Frank et al., 2001; Bamm et al., 2004)
but recently it was reported that the two proteins are equally
efficient (Lipiski et al., 2013). Furthermore, Hp2-2:Hb complex
was found to be associated with higher functional affinity for the
macrophage scavenger receptor CD163 than the Hp1-1:Hb com-
plex (Kristiansen et al., 2001), though other group observed the
opposite (Asleh et al., 2003).

Nevertheless, the protective effect and the therapeutic poten-
tial of Hp in various hemolytic models has been reported
(reviewed in Schaer et al., 2013a), but whether Hb scavenging by
Hp acts in an atheroprotective manner remained to be elucidated.

Control of free hem by Hx
Upon excessive hemolysis Hp is consumed, causing accumula-
tion and oxidation of cell-free Hb that eventually lead to the
release of heme. Hx is an acute-phase plasma protein that binds
heme with the highest affinity of any known heme-binding pro-
teins (Hrkal et al., 1974). Hx-heme complexes are internalized
via the scavenger receptor LDL receptor-related protein 1/CD91
(Hvidberg et al., 2005) mainly by hepatocytes and macrophages
(Figure 1) (Herz and Strickland, 2001). Following endocytosis
heme is degraded by HO-1 and iron is stored by ferritin (Alam
and Smith, 1989). Although it is well-established that Hx bind-
ing inhibits the catalytic activity of heme in oxidative reactions
including LDL oxidation (Figure 1) (Gutteridge and Smith, 1988;
Vincent et al., 1988; Balla et al., 1991a), its role in atherogenesis
remained to be elucidated.

Larsen et al. showed that Hx can be used therapeutically
to attenuate heme-mediated tissue damage upon severe sepsis
in mice (Larsen et al., 2010). Following this study the protec-
tive nature of Hx has been shown in different hemolytic mice
models, in which administration of Hx improved cardiac func-
tion of those mice (Vinchi et al., 2013). These studies raise
the possibility of Hx-based therapeutics in the treatment of
diverse pathologies in which heme-mediated tissue damage play
an etiopathogenetic role.

The HO-1 ferritin system
Cells exposed to free heme or heme-releasing Hb species, i.e.,
metHb and oxHb up-regulate HO-1 and ferritin (Figure 1) (Balla
et al., 1992a,b; Nath et al., 1992; Potor et al., 2013). These pro-
teins provide cellular and tissue protection in diverse pathologies.
The mechanism of cytoprotection by HO-1 was recently reviewed
(Gozzelino et al., 2010), and it relies on the ability of HO-1 to
degrade heme into biliverdin—that is promptly converted into
biliverdin—carbon-monoxide (CO) and iron (Tenhunen et al.,
1968). The subsequent upregulation of ferritin is essential to
obtain the protective effect, as it can store the released iron in a
catalitically inactive form (Balla et al., 1992b). Additionally, the
side-products of heme degradation—bilirubin and CO—exert
various antioxidant and anti-inflammatory properties (Gozzelino
et al., 2010).

Many lines of evidences support the atheroprotective nature of
HO-1 in humans and in experimental atherosclerosis (reviewed
in Vinchi et al., 2014). Recently it has been shown that HO-
1 not simply slow down, but reverse plaque progression from
a vulnerable plaque to a more stable phenotype (Cheng et al.,
2009).

Autopsy examinations of human atherosclerotic lesions
revealed that HO-1 expression correlates with plaque instabil-
ity and the level of pro-inflammatory markers. This might be
explained by the stress responsive nature of HO-1. Initial induc-
tion of HO-1 expression may act as a compensatory atheroprotec-
tive mechanism, whereas at later stages HO-1 expression reflects
oxidative stress, inflammation and tissue damage.

Upregulation of HO-1 in atherosclerotic lesions generally
appears to coincide with ferritin induction in vitro (Juckett et al.,
1995; Pang et al., 1996). The increased expression of ferritin
also reflects cellular response to heme or heme-iron generated
lipid peroxidation products (Agarwal et al., 1996; Hill-Kapturczak
et al., 2003). Such induction correlates with the oxidative insult
imposed by reactive oxygen and iron. The mechanism by which
ferritin provides cytoprotection relies on the ferroxidase activity
of H-ferritin subunit (Balla et al., 1992b). Beyond cytoprotection,
ferritin serves as a regulator for cell proliferation, inflammation
and vascular calcification (Figure 1) (reviewed in Crawford and
Blankenhorn, 1991; Zarjou et al., 2009).

Impaired defense mechanisms in the atherosclerotic lesion
The elimination of cell-free Hb and heme by Hp and Hx is well
characterized in hemolytic pathologies where Hb is released into
the circulation. But our knowledge is quite limited when Hb is
released from RBC outside of the circulatory system. Hp and Hx
are plasma proteins and their penetration into the deeper com-
partments of atherosclerosic plaque might be limited. This could
be particularly true for Hp2-2 that is a large molecule thereby
its restricted diffusion may explain the apparent association of
the Hp2-2 genotype with more severe symptoms in different
pathologies.

Following IPH oxidation of Hb occurs, leading to the for-
mation of structurally altered (e.g., covalently cross-linked) Hb
species. It was hypothesized that these structural changes might
be associated with the impairment of the endogenous scaveng-
ing pathways. Recent studies have revealed that elimination of
oxidized Hb species via both high-affinity and low-affinity path-
ways are severely compromised (Schaer et al., 2006; Vallelian et al.,
2008).

Impaired defense mechanisms following IPH might limit the
clearance of extracellular Hb and heme from the atheroscle-
rotic plaque thereby this could be a new etiopathogenic factor to
address in details in the future.

Control of free heme in extravascular sites by α-1 microglobulin
(A1M)
A1M is a small glycoprotein that is found ubiquitously in all
tissues. Recently it has been demonstrated that A1M can bind
small molecules in its hydrophobic pocket, scavenge free radi-
cals and possesses reductase activity. Based on these features A1M
plays a crucial role in tissue housekeeping (reviewed in Akerstrom
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and Gram, 2014). Importantly, heme is a major ligand for A1M
that can bind heme with high affinity and degrade it (Allhorn
et al., 2002). The protective effect of A1M against Hb/heme-
mediated oxidative stress has been shown in different in vitro
models (Olsson et al., 2008, 2011). Moreover, recently it was
demonstrated that A1M infusion attenuates Hb-induced kidney
damage in rats (Sverrisson et al., 2014). Based on these proper-
ties, we can assume that A1M plays a beneficial role upon IPH by
neutralizing and eliminating radicals, oxidants and free heme, but
this hypothesis and the potential therapeutic potential of A1M
needs to be tested in the future.

CONCLUSIONS
In the last decade, our understanding of atherosclerotic plaque
progression and vulnerability underwent a fundamental revision,
and neovascularization accompanied by IPH shifted from being
an innocent bystander to a pathogenic event that plays a critical
role in atherogenesis.

Extravasation of RBCs into the plaque is of crucial importance
in triggering IPH-associated reactions. RBC membrane lipids
contribute to plaque expansion, whereas cell-free Hb and its oxi-
dation products are strong pro-oxidants and pro-inflammatory
agonists targeting cell types with major roles in atherogenesis,
such as vascular endothelial cells and macrophages. Systemic and
cellular defense strategies to cope with extracellular Hb and its
oxidation products might not be efficient or sufficient enough to
control the deleterious effects of these molecules deep inside the
atherosclerotic plaque, the “death zone.”

Comprehensive understanding the role of neovascularization,
IPH and Hb release and oxidation on atherogenesis may lead to
the development of novel therapeutics intended to interrupt these
pathological events.
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