REAL

Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

Beke, Dávid and Károlyházy, Gyula and Czigány, Zsolt and Bortel, G. and Kamarás, Katalin and Gali, Ádám (2017) Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures. SCIENTIFIC REPORTS, 7 (1). p. 10599. ISSN 2045-2322

[img]
Preview
Text
Harnessing_SciRep7201710599_BekeSiC_u.pdf

Download (3MB) | Preview

Abstract

Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.

Item Type: Article
Subjects: Q Science / természettudomány > QC Physics / fizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 14 Sep 2017 13:14
Last Modified: 14 Sep 2017 13:14
URI: http://real.mtak.hu/id/eprint/62441

Actions (login required)

Edit Item Edit Item