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Abstract

This paper considers a resource-constrained project scheduling prob-
lem with self-interested agents. A novel resource allocation model is
presented and studied in a mechanism design setting without money.
The novelties and specialties of our contribution include that the non-
renewable resources are supplied at different dates, the jobs requiring
the resources are related with precedence relations, and the utilities of
the agents are based on the tardiness values of their jobs. We modify
a classical scheduling algorithm for implementing the Serial Dictatorship
Mechanism, which is then proven to be truthful and Pareto-optimal. Fur-
thermore, the properties of the social welfare are studied.
Keywords Project scheduling, non-renewable resources, mechanism design
without money, Serial Dictatorship Mechanism

1 Introduction

Recently, there has been a growing interest in game theoretical analysis in the
supply chain management and scheduling research communities. In large-scale
manufacturing systems with strategic setting, agents often possess private in-
formation, and since they are non-cooperative, they intend to manipulate the
outcome of the system for their benefit. Allocation of multiple goods or re-
sources is a frequently studied optimization problem of this sort. When the
protocol controlling the system behavior includes monetary transfers, like in
case of supply chains, setting the payments appropriately can be used to make
manipulations ineffective [Egri and Váncza, 2012]. If such transfers are not al-
lowed, usually only dictatorial mechanisms can prevent manipulations [see e.g.
Abdulkadiroğlu and Sönmez, 1998]. In this paper, we study this latter situation
specialized for a project scheduling application. The novelties and specialties
of our contribution are: (i) the non-renewable (consumable) resources are sup-
plied over the scheduling time horizon at different dates, (ii) the jobs requiring
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the resources are related with precedence relations, and (iii) the utilities of the
agents are not arbitrary, but based on the tardiness values of their jobs.

More specifically, we consider a project scheduling problem with non-renewable
resource constraints, where each project is owned by a selfish agent. The
projects consist of jobs that compete for commonly used resources. In this
paper we consider only non-renewable resources, such as raw-materials, energy,
money [Gafarov et al., 2011, Grigoriev et al., 2005], but even computational
resources—such as CPU, memory and network bandwidth—are frequently mod-
eled as consumable resources in cloud infrastructures [see e.g. Kash et al., 2014].
The resources are consumed by the jobs and they have an initial stock which is
replenished over time at given dates and in known quantities. The jobs have to
be executed while meeting precedence and resource constraints. That is, each
job may have some predecessors, all of which have to be completed prior to
starting the job, and it may require some non-renewable resources which have
to be on stock when starting the job, and once it is started, the stock levels
of the respective resources are decreased by the required quantities. The stock
levels can never be negative, so if the initial stock level of some resource is not
enough to complete all the jobs, some of them may have to be delayed extra
in order to meet the resource constraints. Each project has a due date, and if
it is completed afterwards, it will be tardy. A schedule specifies the start time
of each job, and it is feasible if all the precedence and resource constraints are
satisfied (see Fig. 1 for an illustration). Throughout the paper we assume that
the total supply from each resource equals the total demand in order to guar-
antee the existence of feasible schedules. Since the non-renewable resources are
replenished over time, it is not obvious when to start the jobs when some opti-
mization criteria are involved. In the basic problem (where all data is publicly
known, and there are no selfish agents) a feasible schedule is sought in which
the maximal tardiness among the projects is as small as possible. This problem
can be efficiently solved by the method of Carlier and Rinnooy Kan [1982].

Cumulative supply

Cumulative demand time

Figure 1: A sample schedule with 3 projects and a single resource.

In a multi-agent environment, projects are owned by selfish agents, which
want to minimize the tardiness of their own projects. The due date of a project
is only known by the corresponding agent. Further on, there is a central in-
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ventory , which allocates the resources to the jobs of the projects over time.
However, there is also a conflict of interests: while the central inventory still
aims at minimizing the maximum tardiness over all projects (this makes the
most unhappy agent less unhappy)1, each agent is interested in minimizing its
own tardiness. Therefore, the agents are competing for the resources, and they
are inclined to be untruthful about their due dates in hope of achieving a more
advantageous resource allocation for themselves. It is the central inventory, who
can inspire the agents to tell their true due dates by using a truthful allocation
mechanism, which ensures that reporting the true due dates yields the best
outcome for each agent.

Main results of this paper. We investigate truthful mechanisms without pay-
ments for the above project scheduling problem. We will show that no truth-
ful mechanism exists which always finds an optimal2 solution. After this, we
describe the Serial Dictatorship Mechnaism (SDM), which is (weakly) truth-
ful, and always finds a Pareto-optimal solution. Our SDM is based on the
polynomial time procedure of Carlier and Rinnooy Kan [1982] for solving the
project scheduling problem (without agents). We will investigate the proper-
ties of the SDM, and among others, we will show that it is not able to find
all Pareto-optimal solutions for the problem. We will also summarize compu-
tational results. Further on, we define a randomized SDM which can find any
Pareto-optimal solution with positive probability.

The motivation for this research comes from real industrial production en-
vironments, where project leaders (the agents in the model) want to reserve the
necessary resources greedily, in many cases too early, and in larger than neces-
sary quantities, in order to finish their projects on time. Practical approaches
like prioritizing the most important products or customers can help to alleviate
the problem, but cannot guarantee any optimality criteria. This situation also
resembles the coordination problem in supply chains, but a crucial difference is
that in the latter appropriate payments can ensure truthfulness [see e.g. Egri
and Váncza, 2013].

The paper is organized as follows. In Section 3, we review the classical
scheduling model and its solution that will be the basis of the resource allo-
cation problem. In Section 4, the mechanism design model is introduced, the
impossibility of truthful and optimal mechanisms is proven, then the SDM for
the this problem is described and analyzed. Next, we present a randomized
version of the SDM in Section 5. Finally, in Section 6, we conclude the results
and mention some future research directions.

1In the mechanism design literature this is referred to as egalitarian social welfare, which
is considered more fair than minimizing the total tardiness, the utilitarian social welfare [see
e.g. Rothe, 2015]. However, most of the results presented in this paper remains valid when
this latter objective is considered instead.

2Throughout the paper we refer to optimality with respect to the objective of the central
inventory.

3



2 Literature review

Planning assembly operations including precedence constraints and material
supply is a relevant and frequently studied problem in production systems [Ster-
natz, 2015, Tiacci, 2015]. Most of these studies, like traditional optimization
problems, usually assume a central decision maker and do not consider the con-
flict of interests. The most natural situation when multiple non-cooperative
parties are involved occurs in supply chain material management problems
[Edirisinghe and Atkins, 2017, Fandel and Trockel, 2011]. However, the game
theoretical analysis and design is not limited to supply chains. Scheduling prob-
lems involving self-interested agents were already studied in the seminal work
about algorithmic mechanism design [Nisan and Ronen, 2001], and even earlier
[Váncza and Márkus, 2000]. Since then, several authors have combined schedul-
ing and mechanism design [Christodoulou and Koutsoupias, 2009, Heydenreich
et al., 2007], but most scheduling papers consider renewable resources—such
as machines—as agents. A large number of mechanisms involve payments for
incentivizing the agents in scheduling or allocation settings [Chen et al., 2016,
Krysta et al., 2015, Robu et al., 2013]. Recently, mechanisms without money
are also studied for scheduling problems [Giannakopoulos et al., 2016], but to
the best of our knowledge, scheduling mechanisms with non-renewable resources
and without payments are not yet investigated.

Our resource allocation problem is related to the one-sided matching prob-
lems without money, such as the house allocation and the course allocation
[see e.g. Manlove, 2013]. These models consist of two different sets of objects,
where the elements of one set (called applicants) have privately known prefer-
ence orderings over the elements of the other set [Kurata et al., 2017]. This is in
contrast with the two-sided matching problems, where the elements of both sets
have preferences over the elements of the other set. The goal of the mechanism
design for these problems is to give a matching between the two sets that satisfy
certain properties, such as truthfulness and stability (e.g., Pareto-optimality)3.

For these matching problems, a frequently used mechanism is the Serial
Dictatorship Mechanism (SDM), which, in several cases, is the only mecha-
nism satisfying the required properties, and furthermore, it is straightforward
to implement [e.g. Abizada and Chen, 2016, Aziz and Mestre, 2014]. An SDM
considers a—random or pre-existing—priority ordering of the applicants and
works as follows. First, it determines the set of optimal allocations with regard
to the preferences of the applicant with the highest priority. Then in each con-
secutive step, it takes the set from the previous step, and determines a subset of
the best allocations considering the preferences of the next applicant. After the
last applicant, it yields an allocation from the final set. Note that if the pref-
erences always imply a unique preferred allocation, then only the preferences
of the applicant with the highest priority (the dictator) matters, which is the
classical dictatorship.

The house allocation problem is the one-to-one version of the one-sided

3These properties will be formally defined in Section 4.
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matching, where each applicant can be paired with at most one house, and
conversely, each house can be assigned to at most one applicant. For this prob-
lem the SDM is truthful, and in addition, it can generate every Pareto-optimal
matchings—with different priority orderings—, and it is the only Pareto-optimal
mechanism [Abdulkadiroğlu and Sönmez, 1998].

Dughmi and Ghosh [2010] study a one-sided, one-to-many General Assign-
ment Problem (GAP) without money, and some of its special cases. In their
model, job agents should be matched with capacitated machines. The problem
is formulated as an integer program, and by relaxing the integrality constraints,
an LP-based technique is shown to provide truthful approximate mechanisms.

The many-to-many extension of the one-sided matching is the course alloca-
tion problem, where both the applicants and the courses have quotas for their
connections. The SDM can generate every Pareto-optimal matchings, how-
ever, it is truthful only in special cases [Cechlárová et al., 2016, Cechlárová and
Fleiner, 2017]. Kash et al. present a dynamic version of the matching problem,
where the agents are not present simultaneously, but can arrive any time, and
their demands are not known in advance [Kash et al., 2014]. They regard re-
newable computational resources (such as CPU and memory), but they consider
them consumable, i.e., once allocated, it is irrevocable, thus they are actually
non-renewable.

Our resource allocation model is different from the above mentioned match-
ing problems in several aspects. First of all, the preferences are not ordinal but
cardinal, and not arbitrary: there is a scheduling problem in the background
with a predefined structure that influences the preferences. For example, hav-
ing a resource earlier is (weakly) preferred compared to having it later—if the
goal is to minimize the tardiness. The matching also cannot be arbitrary, each
job should be matched exactly with the required resources, only the timing can
vary. Furthermore, contrary to the house and course allocation problems, the
incoming batches of resources are divisible: they can be shared among several
jobs. However, since satisfying only a part of the resource requirements has
no value for the jobs, the problem resembles more to the matching than the
cake-cutting models [see e.g. Brandt et al., 2016, Rothe, 2015].

Finally, we mention that if, in addition to non-renewable resources, the pro-
cessing of jobs also require some renewable resources, such as machines, then
quite a few results are known. Carlier [1984] was the first who studies ma-
chine scheduling problems with non-renewable resources, and further complex-
ity results can be found in e.g., Grigoriev et al. [2005], Gafarov et al. [2011].
The approximability of machine scheduling problems is thoroughly studied for
the makespan objective for single as well as parallel machine environments in
Györgyi and Kis [2015a], Györgyi and Kis [2015b], Györgyi and Kis [2017], for
the maximum lateness objective in Györgyi and Kis [2017], and for the total
weighted completion time objective in Kis [2015].
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3 The scheduling model

3.1 The project scheduling problem with non-renewable
resources

Let us consider a set of projects P . Each project p ∈ P has a due date dp and
a set of jobs Jp. Each job j ∈ Jp has a processing time tj . We assume that the
Jp are disjoint and let J denote the union of all the Jp, containing altogether
n jobs. Each project has a set of precedence relations Ap ⊂ Jp × Jp, and if
(j, k) ∈ Ap then job j must be finished before k starts. We assume that the
precedence relations induce an acyclic graph.

There is a set of non-renewable resources R, where each ρ ∈ R has an initial
supply of bρ,1 at time u1 = 0, and additional supplies of bρ` at times u` for
` = 2, . . . , q, where we assume that u1 < u2 < . . . < uq. Each job j requires a
quantity of aρj ≥ 0 of resource ρ ∈ R at its start.

We assume that for each resource ρ ∈ R the demand does not exceed the
supply, i.e.,

∑
j∈J aρj ≤

∑q
`=1 bρ`, otherwise the scheduling problem has no

solution. For simplicity, we assume equality without loss of generality.
Let I denote an instance of the scheduling problem defined by the above

introduced parameters.
We call µ = {µρj` } an allocation of the supplied resources to the jobs,

if for each resource ρ and time u` the supply bρ` is divided among the jobs:∑
j∈J µρj` = bρ`. We call an allocation feasible, if every job j has enough

resources allocated, i.e., ∀ρ ∈ R : aρj ≤
∑q
`=1 µρj`.

4 Henceforward we consider
only feasible allocations and refer to them simply as allocations.

In order to have the schedule uniquely determined by an allocation, we
assume that each job starts as early as possible, i.e., when (i) all the required
resources are allocated to it, and (ii) every one of its predecessors defined by
the precedence constraints are finished. Let us denote therefore the start time
of job j ∈ Jp w.r.t. allocation µ by

s
(µ)
j = min

s ≥ 0

∣∣∣∣∣∣ ∀ρ :
∑
u`≤s

µρj` ≥ aρj ∧ ∀(k, j) ∈ Ap : e
(µ)
k ≤ s

 , (1)

where e
(µ)
k denotes the finish time of job k: e

(µ)
k = s

(µ)
k + tk.

Finally, let T
(µ)
p denote the tardiness of project p as the non-negative differ-

ence between its due date and the maximal finish time of its jobs:

T (µ)
p = max

{
max
j∈Jp

e
(µ)
j − dp, 0

}
. (2)

3.2 The Carlier – Rinnooy Kan algorithm

Carlier and Rinnooy Kan [1982] gave a polynomial time algorithm for solving

4Since we assumed that the total supply equals the total demand of the resources, it is
easy to see that equality holds in the definition of feasibility.
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the above defined problem. We briefly recapitulate the main ideas of their
solution here, since we are going to use a modified version of it in the SDM.
Let us consider the graph defined by the jobs as nodes and precedence relations
as edges, where the weight of edge (j, k) is tj . Let U(j) denote the set of all
(direct or indirect) successors of job j, and Wjk the weight of the maximal path
length between jobs j and k ∈ U(j). For each project p, we define the cost
function for each job j ∈ Jp as fj(t) = max{ t− dp, 0 }, i.e., the tardiness of the
job j finishing at time t, with regard to the project’s due date. In addition, let
Bρ(u`) =

∑`
τ=1 bρτ , the cumulative supply of resource ρ until time u`.

Then one can define a lower bound on the maximal tardiness in the case
when job j starts at time u`:

γ`j = max {fj(u` + tj),max{ fk(u` + tk +Wjk) | k ∈ U(j) }} . (3)

The algorithm seeks the smallest γ (denoting the maximal tardiness), such
that ∀ρ, ` :

∑
j∈J{ aρj | γ < γ`j } ≤ Bρ(u`−1), where Bρ(u0) = 0 (see Ap-

pendix A). For a fixed ` the smallest γ∗` can be found with a median search
procedure, and the optimal γ∗ = max` γ

∗
` , for more details, see Carlier and

Rinnooy Kan [1982].
Having the γ∗, the allocation µ can be computed by Algorithm 1.

Algorithm 1 Computing the allocation

Require: γ∗

for ` = 2 to q do
{Allocate resources to jobs that would be late starting at u`}
for j : γ`j > γ∗ ∧ γ`−1j ≤ γ∗ do

Allocate the necessary resources to job j arbitrarily from the resources
arriving earlier than time u` and not yet allocated. (Due to the construc-
tion of γ∗, there always exists enough free resources.)

end for
end for
for j : γqj ≤ γ∗ do

Allocate the necessary resources to job j arbitrarily from the resources not
yet allocated.

end for

3.3 An example

In order to demonstrate the solution algorithm, let us consider a simple example
with only one resource, two projects, four jobs and two supply times. Each job
j (1 ≤ j ≤ 4) has equal processing times tj = 1 and requires one unit of the
resource: aj = 1, where we have omitted the index for the single resource. The
precedences of the projects are as follows: (j1, j2) ∈ Ap1 and (j3, j4) ∈ Ap2 , while
their due dates are dp = 2 (1 ≤ p ≤ 2). There are two supply times, u1 = 0
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and u2 = 2, both with two units of supplied materials: b` = 2 (1 ≤ ` ≤ 2)—
again with omitted index for the resource. The resulted γ`j values are shown in
Table 1.

j
1 2 3 4

`
1 0 0 0 0
2 2 1 2 1

Table 1: The γ`j values for the example

Then the algorithm can compute γ∗1 = 0 and γ∗2 = 1, from which γ∗ = 1,
i.e., the optimal schedule will result in one time unit tardiness. This schedule
is when jobs j1 and j3 receives their required resources at time u1, and the rest
at time u2.

4 Mechanism design for project scheduling

In the mechanism design problem we consider project agents with their due
dates as private information. All other information is assumed to be public
knowledge.5 We examine the problem of a central inventory, which has to
allocate the resources supplied over time to the jobs.

We seek a direct revelation mechanism that consists of two steps: (i) col-
lecting due date information from the projects, and (ii) allocating resources to
the jobs. Since the project agents are interested in their own tardiness, they
might report false due dates to the central inventory in order to influence the
allocation to their advantage. We refer to the reported due dates as d′p. For
practical reasons, we restrict our study to mechanisms without money, i.e., it is
not allowed to charge higher prices for resources arriving earlier.

Definition 1 (Mechanism). Let I denote a scheduling problem instance. A
deterministic resource allocation mechanism is a function mapping the problem
instance to an allocation: Φ(I) = µ.

Definition 2 (Preference). Project p prefers allocation µ to µ′ (µ �p µ′), if

T
(µ)
p < T

(µ′)
p , and weakly prefers µ to µ′ (µ �p µ′), if T

(µ)
p ≤ T (µ′)

p .

An important property of a mechanism is truthfulness, when the agents can-
not decrease their resulted tardiness by misreporting the due dates. Truthfulness
is a desired property of a mechanism, since with false (usually too early) due
dates the inventory has no hope to take the tardinesses into consideration.

5This restriction is not necessary, only assumed for keeping the model simple. The set of
private information can be extended to every parameter related to the projects. In this case,
one does not have to use a direct mechanism—i.e., where the agents should report the full
private information—only the aρj and γ`j values are required by the mechanism.
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Definition 3 (Truthfulness). Let I denote an arbitrary scheduling problem in-
stance and I ′p the same problem, but with due date d′p of project p instead of dp.
A mechanism Φ is truthful, if for each instance I, project p, and due date d′p:
Φ(I) �p Φ(I ′p).

Note that the definition uses weak preference, thus reporting a false due
date does not necessarily worsen the tardiness of a project6. However, we as-
sume benevolent agents henceforward, i.e., they report truthfully, if they cannot
decrease their tardiness by misreporting.

Since in mechanism design it is often impossible to guarantee an optimal
solution, this is the situation in our model as we will see in Subsection 4.1,
therefore frequently weaker criteria are considered instead. A widely used prop-
erty for characterizing an acceptable solution is the Pareto-optimality, when
the resulted allocation cannot be improved for any agent without damaging the
others.

Definition 4 (Pareto-optimality). An allocation µ Pareto-dominates µ′, if ∀p :
µ �p µ′ and ∃p : µ �p µ′. An allocation µ is Pareto-optimal, if no other
allocation Pareto-dominates it. A mechanism is Pareto-optimal, if for all inputs
it yields a Pareto-optimal allocation.

Note that not every optimal allocation is Pareto-optimal, if we consider the
maximal tardiness, not the sum of the tardinesses. However, if an allocation
µ Pareto-dominates µ′, then the maximal tardiness implied by µ cannot be
greater than that of µ′. This property guarantees that there is at least one
optimal allocation among the Pareto-optimal ones.

4.1 Impossibility of truthful and optimal mechanisms

The first fundamental question we address is whether our scheduling problem
admits a mechanism which ensures that the benevolent players always tell their
true due dates, and always finds an optimal solution for the scheduling problem
(one minimizing the maximal tardiness of the projects)?

P
1

P
2

u
1

u
2

timeu
1

(a)

P
1

P
2

u
1

u
2

time

(b)

Figure 2: The optimal schedules in two different problem instances.

6Requiring strict preference would be problematic for the existence of truthful mechanisms.
For example, if a project has an appropriately late due date, any feasible allocation results in
no tardiness for the project, thus reporting any due date results in the same zero tardiness
for the agent.
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Proposition 1. There is no truthful mechanism that always returns an optimal
allocation.

Proof. By contradiction, suppose we have a mechanism that is truthful, and
on all inputs returns an optimal solution to the scheduling problem. Now we
examine how it works on the following problem instance I. There are only two
projects, p1 and p2, consisting of one job each, j1 and j2, respectively, and a
single resource ρ with an initial supply of bρ1 = 1 at u1 = 0, and a second
supply of bρ2 = 1 at u2 = 4. The two jobs are identical, i.e., tj1 = tj2 = 3, and
aρj1 = aρj2 = 1, but project p1 has a due-date of dp1 = 4, and project p2 has a
due-date of dp2 = 5. Notice that in any feasible schedule at most one job may
start at u1 = 0, the other must wait for the second supply at u2. Suppose both
projects report their true due dates. Then the algorithm must find the unique
optimum in which j1 starts at u1, and j2 starts at u2. The tardiness of p1 is
then 0, and that of p2 is 2 time units. This is depicted in Figure 2a.

Now suppose p2 is not truthful, and reports d′p2 = 2 instead of its original
due date. On the one hand, since the algorithm is truthful, it should not modify
the optimal solution obtained for the true values (as there is a unique optimum
for the true due-dates). On the other hand, consider the problem instance I ′

which differs from I only in the due date of p2, which is 2 in I ′. Then, the
algorithm must return the unique optimum for this instance, in which job j1
starts at u2, and job j2 starts at u1, giving a tardiness of 3 for project p1, and
1 for project p2, see Figure 2b.

Since the algorithm has no information about the private due dates of the
projects, it cannot tell, whether p2 lies about its due date, or tells the truth.
So, it cannot be truthful and optimal at the same time, a contradiction.

Note that the claim of the proposition remains valid if we change the opti-
mality criterion to the total tardiness instead of the maximal tardiness.

Notice that the above impossibility result is not concerned with the com-
plexity of the optimization algorithm, which makes it even more general.

Corollary 1. The näıve mechanism in which the central inventory computes
an optimal allocation with the Carlier–Rinnooy Kan algorithm is not truthful.

This corollary implies that if the central inventory uses the näıve mechanism,
it is beneficial for the projects to report as early due date as possible. This
corresponds to the industrial practice when everyone requests the resources as
soon as possible.

4.2 Serial Dictatorship Mechanism

Instead of minimizing the maximal tardiness as the näıve mechanism, the SDM
considers a multi-objective optimization problem. It requires a priority ordering
of the projects and generates an allocation that results in the lexicographically
smallest vector of the job tardiness values. For the sake of simplicity we assume
that the priority ordering is a fixed, commonly known input of the mechanism.

10



The basic idea of the mechanism is to take the projects in decreasing order of
priority. In step 1, it takes the project p1 with the highest priority, and creates an

allocation µ(1) that minimizes T ′
(µ(1))
p1 , where T ′ denotes the tardiness function

of Eq. 2 considering the reported due dates instead of the real ones. Then in each

subsequent step k, a new allocation µ(k) is computed that minimizes T ′
(µ(k))
pk

,
with the constraints that it cannot increase the tardinesses of the projects with

higher priorities, i.e., ∀k′ ∈ { 1, . . . , k − 1 } : T ′
(µ(k))
pk′

≤ T ′
(µ(k−1))
pk′

. The resulted
tardinesses of projects with lower priorities than pk are completely disregarded
in step k.

The allocation µ(k) can be computed with a modified version of the Carlier –

Rinnooy Kan algorithm. In step k, instead of γ`j , we use the following γ
(k)
`j :

γ
(k)
`j =


γ′`j , j ∈ Jpk
∞, j ∈ Jpk′ ∧ k

′ < k ∧ γ′`j > T ′
(µ(k−1))
pk′

0 otherwise

, (4)

where γ′`j is defined by Eq. 3, but considering the reported d′p due dates in the
cost function f instead of the real ones. For the jobs of project pk, this involves
the lower bounds γ′`j for the tardiness, while for any other job it is either zero
or infinity. For projects considered before pk, any allocation that would result
in larger tardiness for them than in the previous step, infinite tardiness is used,
these are therefore cannot start at u` or later. For the remaining case (when

γ
(k)
`j is defined as 0), the jobs may start at u` without increasing the tardiness

of the corresponding project.
Similarly to the original algorithm, we are looking for the smallest γ(k), such

that ∀ρ, ` :
∑
j∈J{ aρj | γ(k) < γ

(k)
`j } ≤ Bρ(u`−1), see Algorithm 2.

Algorithm 2 Serial Dictatorship Mechanism

Require: p1, . . . , pn: an arbitrary priority ordering of the projects
The projects announce their due dates to the central inventory
for k = 1 to n do

for ` = 1 to q do

Compute the γ
(k)
`j values

γ
(k)∗
` := min

{
γ(k) | ∀ρ :

∑
j∈J{ aρj | γ(k) < γ

(k)
`j } ≤ Bρ(u`−1)

}
end for
γ(k)∗ := max` γ

(k)∗
`

Compute µ(k)7

end for
Allocate the resources according to µ(n).

7This is not necessary, since only the tardinesses of projects p1, . . . , pk are used in the next
step. For project pk this will be equal to γ(k)∗, while for the other projects the tardinesses
remain the same as in the previous step.
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Theorem 1. The SDM is truthful.

Proof. Let us consider an arbitrary project pk. In steps 1, . . . , k − 1, the due
date d′pk is disregarded by the mechanism, therefore reporting it falsely cannot
decrease the tardiness of pk. In step k, the mechanism minimizes the tardiness
of pk with respect to the constraints derived from the previous steps, and using
the reported due date of pk. We claim that reporting a false due date cannot
decrease the tardiness of pk. For suppose, pk reports a false due date d′pk < dpk

and let µ′
(k)

and µ(k) denote the corresponding allocations. If the tardiness of

pk is smaller with respect to µ′
(k)

than that for µ(k), then µ′
(k)

would be a better
allocation for pk even when reporting its true due date, which is a contradiction.

In steps k′ = k+ 1, . . . , n, the tardiness T ′
(µ(k′))
pk

= T ′
(µ(k))
pk

remains constant: it
cannot increase due to the construction of the mechanism, but it also cannot
decrease, otherwise µ(k) is not optimal in step k, which is a contradiction.

Note that the proof of truthfulness requires that the agents cannot influence
the priority ordering. From now on, we take advantage of its truthfulness, and
assume that the SDM possesses the real due dates. Let us prove the Pareto-
optimality of the mechanism.

Theorem 2. The SDM is Pareto-optimal.

Proof. Let’s indirectly assume that ∃µ′ Pareto-dominating µ(n), i.e., ∀p ∈ P :
µ′ �p µ(n) and ∃pk : µ′ �pk µ(n). This contradicts optimality of µ(k) in step k,
thus such µ′ cannot exist.

Corollary 2. If there is a schedule where no project is tardy, then the SDM
returns such a schedule.

For several matching problems, every Pareto-optimal solutions can be gen-
erated by an SDM by using different priority orderings. Unfortunately, this
does not hold for our resource allocation problem. As a consequence, although
there exists at least one optimal allocation among the Pareto-optimal ones, it
is possible that such allocations cannot be found by any SDM.

Proposition 2. Not every Pareto-optimal solution can be generated by an SDM.

Proof. Let us consider a simple scheduling problem with two projects of two
jobs each, one resource and two supply times. Let dp1 = dp2 = u2, aρj1 =
aρj2 = aρj3 = aρj4 = 1, Ap1 = { (j1, j2) }, Ap2 = { (j3, j4) }, bρ1 = bρ2 = 2, and
tj1 = tj2 = tj3 = tj4 = (u2 − u1)/2.

There are only 2 SDMs for this problem, but 3 Pareto-optimal solutions
shown in Fig. 3. The two possible orderings of the projects for the SDM result
in (maximal) tardiness tj1+tj2 = tj3+tj4 , illustrated in Figs 3a and 3b. However,
the allocation shown on Fig. 3c is also Pareto-optimal and its maximal tardiness
is the half of what is achievable with an SDM.
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Figure 3: Pareto-optimal solutions of the problem.

Proposition 2 implies that using SDMs may exclude the possibility of gener-
ating an optimal solution—despite always being Pareto-optimal. Unfortunately,
there is an even more serious drawback of the SDMs. As the next theorem shows,
the difference between the optimal and the maximal tardiness generated by an
SDM is unbounded.

Proposition 3. The maximal tardiness found by the SDM can be arbitrary far
from the optimal.

Proof. Let us consider a simple scheduling problem with two projects of one job
each, one resource and two supply times. Let dp1 = u2, dp2 = u1, aρj1 = aρj2 =
1, bρ1 = bρ2 = 1 and tj1 = tj2 (a fixed constant).

P
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u
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time

(a) The optimal solution

P
1

P
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u
1

u
2

time

(b) Solution of the (p1, p2)-SDM.

Figure 4: Two possible allocations for the problem.

Fig. 4a illustrates the optimal schedule for this case, when the job of the
second project gets the resource at u1 and the other job at u2. This result in
tardinesses for both projects equal to their processing times. The solution on
Fig. 4b is resulted by an SDM where p1 has the higher priority. In order to
avoid (or minimize) its tardiness, the job of p1 must get the resource arriving
at u1. This results in u2 − u1 + tj2 maximal tardiness at project p2.
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As u2 → ∞, the maximal tardiness resulted by the optimal allocation does
not change, but with the SDM it grows infinitely.

Note that the claim of Proposition 3 remains valid if we change the optimality
criterion to the total tardiness instead of the maximal tardiness.

In order to compare the optimum of the scheduling problem with the one
obtained by SDM, we shift the tardiness values of the schedules, which is a
common technique in scheduling theory ??. That is, the shifted tardiness value
of a schedule s is

T∆
s := Ts + uq.

The shifted tardiness of any feasible schedule is uq or more. Let T∆
opt := Topt+uq

denote the optimum tardiness increased by uq. The relative error of some
schedule s is

Rel(s) :=
T∆
s

T∆
opt

. (5)

By this formula, the relative error of an optimal schedule is 1. The following
easy observation shows that with this normalized objective function, the relative
error of those schedules obtained by SDM is at most 2.

Proposition 4. The relative error of any schedule computed by SDM is at most
2.

Proof. In order to prove the statement, we define a trivial feasible schedule with
a relative error of at most 2, and argue that no job in a schedule obtained by
SDM starts later than the same job in the trivial schedule.

In the trivial schedule strivial all the jobs of all the projects are started at
time uq or later if they have some predecessors. More precisely, in the trivial
schedule first we schedule all the jobs without any predecessors at time uq, then
we schedule their immediate successors at the earliest possible time without
violating the precedence constraints, etc. (or in other words, we schedule the
jobs in topological order from time uq on without any unnecessary delays). The
trivial schedule satisfies all the precedence constraints by construction, and all
the resource constraints as well, since by time uq, all the resources are supplied,
and the total supply equals the total demand for each resource by assumption.

Now consider the output of SDM. Since it is Pareto-optimal, no job may
be started earlier without violating a resource constraint, or a precedence con-
straint. Hence, in this schedule no job may be started later than the same job
in the trivial schedule.

Finally, we claim that the relative error of the trivial schedule is at most
2. On the one hand, in any feasible schedule, the tardiness of any project is at
least uq as we have already noted. Now consider the optimal schedule sopt, and
increase the start time of each job by uq. In the the resulting schedule s′, every
job starts after uq. Notice that in s′, no job starts before the same job in the
trivial schedule. Since the tardiness of each project is increased by uq in s′, we
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conclude that

Rel(strivial) =
T∆

trivial

T∆
opt

≤ T∆
s′

T∆
opt

=
T∆

opt + uq

T∆
opt

≤ Topt + 2uq
Topt + uq

≤ 2.

Note that the tardiness value is shifted in order to avoid zero value in the
denominator of the relative error. Another possibility to do this is to compare
the resulted error to the optimal tardiness with the following formula:

Tsdm − Topt

max {Topt, 1}
. (6)

Due to Corollary 2, if Topt = 0 then this equals zero, otherwise—assuming
integer parameters—it reduces to (Tsdm − Topt) /Topt. However, we will consider
the relative error defined by Eq. 5 hereafter.

We can also get an upper bound on the absolute error of the schedule resulted
by the SDM. In order to do this, let us define a relaxed problem without resource
constraints. The optimal solution for this problem, srelaxed, is when each job
starts as early as possible: those jobs that do not have predecessors start at
u1 = 0, while others start as soon as their predecessors are finished. Note that
in srelaxed every job starts exactly uq time unit earlier than in strivial. Thus,
if Trelaxed and Tsdm denote the maximal tardiness of srelaxed and a schedule
resulted by an SDM, respectively, we have Trelaxed ≤ Topt ≤ Tsdm ≤ Ttrivial ≤
Trelaxed + uq. By rearranging these inequalities, we get an upper bound for the
absolute error:

Tsdm − Topt ≤ uq. (7)

This can be used to measure the relation of the absolute error and its upper
bound by (Tsdm − Topt) /uq, which yields a value between 0 and 1.

4.3 Numerical study

In order to asses the performance of SDM in practice, we have conducted a
series of computational experiments. To this end, we have generated several
problem instances with various characteristics, and compared the maximal tar-
dinesses obtained by the Carlier – Rinnooy Kan algorithm and by the SDM with
a random priority ordering. For comparison, we used the relative error defined
by formula (5).

We have generated problem instances with |P | ∈ {10, 50, 100} projects and
q ∈ {5, 10, 15} supply dates. In all instances the number of jobs in each project
was |Jp| = 5. The project parameters were random numbers, i.e., dp ∼ U(1, 50)
for each project p, tj ∼ U(1, 5) and aρj ∼ U(0, 5) for all the jobs j and resources
ρ, where U(a, b) denotes the discrete uniform distribution on the interval [a, b].
The density of the precedence graph of each project was 0.2. The supplies were
generated with u1 = 1, (u`−u`−1) ∼ U(1, 50/q), bρ` ∼ U(0,

∑
j aρj−Bρ(u`−1)),

and bρq =
∑
j aρj − Bρ(uq−1). The results show how the relative error varies
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depending on |P |, |R| and q. Each value in Table 2 represents an average (or
maximum) over 1000 problem instances.

Resources (|R|)
1 2 4 6 8 10

q
5 103% 106% 108% 110% 110% 112%

10 101% 101% 102% 103% 102% 103%
15 100% 101% 101% 101% 101% 101%

(a) Average with |P | = 10 projects

Resources (|R|)
1 2 4 6 8 10

q
5 181% 181% 181% 174% 182% 171%

10 168% 167% 151% 151% 152% 161%
15 154% 149% 134% 155% 129% 156%

(b) Maximum with |P | = 10 projects

Resources (|R|)
1 2 4 6 8 10

q
5 104% 107% 111% 114% 117% 118%

10 101% 102% 103% 104% 104% 104%
15 100% 101% 101% 101% 102% 102%

(c) Average with |P | = 50 projects

Resources (|R|)
1 2 4 6 8 10

q
5 172% 173% 175% 183% 176% 171%

10 131% 132% 149% 135% 149% 150%
15 116% 120% 125% 118% 117% 123%

(d) Maximum with |P | = 50 projects

Resources (|R|)
1 2 4 6 8 10

q
5 105% 108% 112% 115% 119% 119%

10 101% 102% 103% 104% 104% 106%
15 100% 101% 101% 101% 102% 102%

(e) Average with |P | = 100 projects

Resources (|R|)
1 2 4 6 8 10

q
5 166% 176% 168% 170% 175% 171%

10 136% 168% 135% 139% 138% 140%
15 125% 120% 123% 115% 120% 126%

(f) Maximum with |P | = 100 projects

Table 2: Average and maximum relative errors

Tables 2a, 2c and 2e suggest that there are two ways to decrease the expected
error: with more frequent supplies or with less resources. When the number of
supplies increases, there are usually more opportunities to schedule the non-
tardy projects closer to their due dates, thus freeing some resources for the
low priority projects. Decreasing the number of resources seems to be difficult
in practice, but only the scarce resources are relevant for the problem. If the
inventory keeps enough safety stock, then that resource does not constrain the
schedule, thus it can be omitted from the model. Of course, both approaches
come at a price which should be considered and balanced with the estimated
cost of the tardiness.

Tables 2b, 2d and 2f presents the maximum error considering the same
instances as for the average. Similarly to the average case, the maximum error
also decreases when q increases. Furthermore, it can be observed that the
maximum error tends to decrease with more projects. Since these values are
the extreme cases, it is more difficult finding trends in these tables, but they
can be used for estimating the worst case scenarios.

5 SDM with random endowments

In order to remedy the negative consequences of Proposition 2, we introduce a
randomized extension of the SDM in this section.

Definition 5 (Randomized mechanism [Nisan and Ronen, 2001]). A random-
ized mechanism is a probability distribution over a family {Φr } of deterministic
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mechanisms. A randomized mechanism is called truthful ( Pareto-optimal), if
each deterministic mechanism in its support is truthful (Pareto-optimal).

Let us modify the SDM such that it starts with a random (feasible) allo-
cation µ(0), and in each step k it makes a Pareto-improvement on it, resulting
in allocation µ(k). This randomized mechanism can be interpreted as follows:
given an r random allocation, the Φr is a deterministic mechanism that exe-
cutes Pareto-improvements on the allocation r according to the given priority
ordering. Then the SDM with random endowments (SDMRE) is a probability
distribution over {Φr }.

Algorithm 3 Computing a random allocation

for ` = 1 to q do
for ρ ∈ R do

while bρ` > 0 do
Let j be a random job such that aρj > 0
Let µρj` = min{ aρj , bρ` }
Decrease aρj and bρ` with the allocated quantity min{ aρj , bρ` }

end while
end for

end for

The initial allocation can be computed for example with Algorithm 3. Note
that this algorithm cannot result in all possible feasible allocations: whenever a
supply and a demand is chosen, either the whole demand will be covered with
the allocation or the whole supply will be allocated for that demand. It is easy
to see however, that any allocation can be transformed into an allocation that
can be the output of Algorithm 3 and they both result in the same schedule
(start times). Therefore this method does not exclude any significant solutions.

The allocation µ(k) can be computed with a modified version of the SDM

algorithm, where in step k we use the following γ
(k)
`j :

γ
(k)
`j =


γ′`j , j ∈ Jpk
∞, j ∈ Jpk′ ∧ k

′ 6= k ∧ γ′`j > T ′
(µ(k−1))
pk′

0 otherwise

. (8)

For project pk, this takes the lower bounds of the tardiness, while for any
other job it is either zero or infinity. For projects other than pk, any allocation
that would result in larger tardiness for them than in the previous step, infinite
tardiness is considered, these are therefore excluded from an optimal solution.
Any other allocation is allowed, thus they cause no tardiness in this step. This
means that the algorithm minimizes the tardiness of project pk, while enforces
an upper bound on the other projects’ tardinesses.

Similarly to the SDM, we are looking for the smallest γ(k), such that ∀ρ, ` :∑
j∈J{ aρj | γ(k) < γ

(k)
`j } ≤ Bρ(u`−1), see Algorithm 4.
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Algorithm 4 SDM with Random Endowments (SDMRE)

Require: p1, . . . , pn: an arbitrary ordering of the projects
Let µ(0) be a random (feasible) allocation
The projects announce their due dates to the central inventory
for k = 1 to n do

for ` = 1 to q do

Compute the γ
(k)
`j values

γ
(k)∗
` := min

{
γ(k) | ∀ρ :

∑
j∈J{ aρj | γ(k) < γ

(k)
`j } ≤ Bρ(u`−1)

}
end for
γ(k)∗ := max` γ

(k)∗
`

Compute µ(k)

end for
Allocate the resources according to µ(n)

Theorem 3. The SDMRE is truthful.

Proof. Let us consider an arbitrary step k of the mechanism. Since the algorithm
minimizes the tardiness of pk in this step, it cannot benefit from a false d′pk .

For any other k′ 6= k, the T ′
(µ(k−1))
pk′

tardiness serves only as a constraint on

the T ′
(µ(k))
pk′

, which both change similarly depending on dp′k . Therefore also pk′

cannot benefit from reporting a false due date.

Note that the proof of truthfulness requires that the agents can influence
neither the priority ordering nor the initial allocation. It is easy to see that
the SDMRE is also Pareto-optimal, and in addition, since the initial alloca-
tion is arbitrary (any Pareto-optimal allocation can be generated with positive
probability), the following theorem is true:

Theorem 4. An allocation is Pareto-optimal if and only if it can be resulted by
an SDMRE.

Note however, that since every Pareto-optimal solution can be the output
of the SDMRE, the claim of Proposition 3 is still valid for this mechanism.
Furthermore, the numerical studies have shown that the resulted relative errors
of the SDMRE are similar to those of the SDM presented in Table 2, therefore
the average performance of the two approaches are not significantly different.

6 Conclusions

In this paper we introduced the non-renewable resource allocation problem for
project scheduling and examined the properties of the SDM and SDMRE in
this setting. We proved their truthfulness and Pareto-optimality, and identified
some of their limitations considering optimality.
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It would be interesting to investigate realistic special cases for the scheduling
problem. For example, the supply of resources is usually not random, but
follows some pattern resulted from the applied ordering policy, such as the fixed
order quantity or fixed time period. Another possibility is to consider similar
projects, which occurs when the products with different features define almost
identical projects with slightly different resource requirements. The model also
could be extended, e.g., with renewable resource constraints, for which case the
computational complexity introduces additional challenges.
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J. Carlier. Problèmes d’ordonnancements à contraintes de ressources: algo-
rithmes et complexité. Thèse d’état. Université Paris 6, 1984.

J. Carlier and A.H.G. Rinnooy Kan. Scheduling subject to nonrenewable-
resource constraints. Operations Research Letters, 1(2):52–55, April 1982.
ISSN 0167-6377. doi: 10.1016/0167-6377(82)90045-1. URL http://dx.doi.

org/10.1016/0167-6377(82)90045-1.

19

http://www.jstor.org/stable/2998580
http://www.jstor.org/stable/2998580
http://www.sciencedirect.com/science/article/pii/S0165489616000226
http://www.sciencedirect.com/science/article/pii/S0165489616000226
http://www.sciencedirect.com/science/article/pii/S0165489614000584
http://www.sciencedirect.com/science/article/pii/S0165489614000584
http://dx.doi.org/10.1016/0167-6377(82)90045-1
http://dx.doi.org/10.1016/0167-6377(82)90045-1


K. Cechlárová and T. Fleiner. Pareto optimal matchings with lower quo-
tas. Mathematical Social Sciences, 88:3 – 10, 2017. ISSN 0165-4896.
doi: http://dx.doi.org/10.1016/j.mathsocsci.2017.03.007. URL http://www.

sciencedirect.com/science/article/pii/S0165489617300641.
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A Modification of the Carlier – Rinnooy Kan al-
gorithm

In Carlier and Rinnooy Kan [1982], the following inequalities can be found
(considering only a single resource): ∀` :

∑
j∈J{ aj | γ ≤ γ`j } ≤ B(u`), and

“for fixed `, the smallest value γ∗` for which [the inequality] is satisfied can be
found by a median finding procedure [. . . ]”. However, such smallest value γ∗`
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may not exist. Consider the following simple example with a single job j and
one resource only. There are two supplies at times u1 = 0, and u2 = 1 with
supplied quantities b1,1 = 1 and b1,2 = 1, respectively, and demand aj = 2.
Hence, the cumulative supplies are B(u1) = 1 and B(u2) = 2, respectively, and
job j can start only at u2. Then for ` = 1, with γ = γ1,1 the inequality does
not hold, but for any ε > 0, with γ = γ1,1 + ε the inequality is satisfied, since
the left-hand-side is 0.

Thus we use ∀ρ, ` :
∑
j∈J{ aρj | γ < γ`j } ≤ Bρ(u`−1) instead. We now

show that if these inequalities are satisfied, then the resulted maximal tardiness
cannot be greater than γ in an optimal schedule. Let us indirectly assume that

for an optimal µ allocation there exists a project p with T
(µ)
p > γ. This means

that ∃j∗ ∈ Jp : fj∗(e
(µ)
j∗ ) > γ. Let us consider a chain (j1, . . . , jlmax = j∗), where

(jl, jl+1) ∈ Ap and e
(µ)
jl

= s
(µ)
jl+1

, but there exists no job k with (k, j1) ∈ Ap and

e
(µ)
k = s

(µ)
j1

. Then s
(µ)
j1

= u` must hold for some `. But then, by definition,

γ`j1 = fj∗(e
(µ)
j∗ ) > γ, and neither the precedence constraints (by the choice

of j1), nor resource availability (since
∑
j∈J{ aρj | γ < γ`j } ≤ Bρ(u`−1) by

assumption) blocks j1, which contradicts the assumption that j1 starts at the
earliest start time permitted by the resource and the precedence constraints.
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