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In this paper we study a dynamic and stochastic pickup and delivery problem proposed recently by Srour,

Agatz and Oppen. We demonstrate that the cost structure of the problem permits an effective solution

method without generating multiple scenarios. Instead, our method is based on a careful analysis of the

transfer probability from one customer to the other. Our computational results confirm the effectiveness of

our approach on the data set of Srour et al.
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1. Introduction

In this paper we consider dynamic pickup and delivery problems with time window uncertainties

as defined recently by Srour, Agatz, and Oppen (2016). In that model there is a transportation

service provider that gets call from customers with exact pickup and drop-off locations, but with

inaccurate estimations of the time windows for the transportations. The time windows of the service

requests become known with certainty only after a second call from the customers, shortly before

the service may start.

Srour, Agatz, and Oppen (2016) describe a couple of real-world scenarios where the above uncer-

tainty is predominant. For instance, harbor pilots, who drive ships to berth, know the location

of the ship, and also where it will berth, but the arrival time of the ship is often uncertain. A

related problem is transportation of containers by tracks from pickup points to drop-off locations,

where the exact time of releasing a container at the pickup terminal is not known exactly. They

also mention transportation of patients after medical treatments from the hospital to home, where

the exact completion time of the treatments is not known with certainty. A related application is
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on-demand chaffeur services, that drive home clients in their own cars after a party. We can extend

this list by transportation tasks in a workshop, where semi-finished goods must be transported by

fork-lifts, or autonomously guided vehicles between the machining cells, and the pickup and drop-

off locations are perfectly known, but the time window of service is uncertain even if a schedule of

the manufacturing operations is broadcasted in advance.

As Srour, Agatz, and Oppen (2016) noted, in their examples the customers can request the

transportation service by giving the exact location of the pickup and drop-off locations, while

providing the time window of starting the service only approximately, e.g., around 2pm. Then,

when the customer has more information about its service requirements, it calls the service provider

again telling the time window in which it expects the transportation to be started from the pickup

to the drop-off location. Since the pickup and drop-off locations may be known well in advance, and

also some estimation of the time window of starting the service is preannounced by the customers,

the service provider may exploit this information to increase service level, and to reduce its costs.

The main result of this paper is a new algorithm that may help transportation service providers

that operate in the above context to find better vehicle tours. Our method is based on estimating

the expected operational costs, where missing a customer request is heavily penalized, and the

other component is the total deadhead cost (operating empty while going to the next pickup

location or to the depot). The novelty of our approach is that unlike Srour, Agatz, and Oppen

(2016), we do not generate scenarios, and we solve only a single minimum cost flow problem at

each decision point. Yet, our method seems to outperform their method, in which at each decision

point, multiple scenarios (realization of time windows) are generated, and a MIP model of a vehicle

routing problem over all the remaining jobs is solved for each scenario. We believe that the success

of our approach is due to the cost-structure of the problem at hand, where the penalty of rejecting

a customer request is very high compared to deadhead costs.

In Section 2 we review the related literature, and in Section 3 we give a formal description of

the problem studied. Our method is presented in Section 4, and our computational results are

summarized in Section 5, where we compare our method to that of Srour et al. We conclude the

paper in Section 6.

2. Literature review

Dynamic pickup-and-delivery is a rapidly developing field of transportation science, which is cer-

tified by a series of recent review papers, see e.g., Berbeglia, Cordeau, and Laporte (2010), Pillac

et al. (2013), Psaraftis, Wen, and Kontovas (2016). In Psaraftis (1988), a vehicle routing problem

is characterized as dynamic, if the input of the problem is received and updated concurrently with

the determination of the routes. Using the terminology of Berbeglia, Cordeau, and Laporte (2010),
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in this paper we focus on a one-to-one problem, where each request has an origin and a destination.

In a dynamic and stochastic problem, some exploitable stochastic information is available about

the dynamically revealed information (Pillac et al. 2013).

The problem studied in this paper has recently been proposed by Srour, Agatz, and Oppen

(2016). In their model, each customer first preannounces its request, then confirms it at some later

time, not much before the service actually should take place. In the preannouncement, the exact

pickup and drop-off locations are provided along with an estimation of the pickup time by means

of a time window. However, the preannounced time window can change in the future when the

customer confirms its request. On the other hand, the distribution of the difference between the

start (or end) of the preannounced and the confirmed time windows is known. The authors propose 4

methods to solve the dynamic problem. All the methods are based on solving a mixed-integer linear

program (MIP) which models a (static) pickup and delivery problem with some of the customer

requests. The MIP is similar to that of Yang, Jaillet, and Mahmassani (2004) devised for a track-

load pickup and delivery problem. In the ”Ignore” method, preannouncements are ignored and at

any time only the confirmed requests are used to determine the tours of the vehicles. In the ”Näıve”

method, preannounced time windows are used until the customers confirm their requests, from

which time on they are replaced by the confirmed ones. However, in the more advanced MTS-veh

and MTS-seq methods, first multiple scenarios are generated for the realization of preannounced,

but unconfirmed time windows, which are used along with the confirmed ones in the MIP models

to be solved. Each scenario gives a routing of the vehicles, from which a sophisticated method

synthesizes the final tours used until the next event occurs, when the entire planning procedure is

repeated with updated information. The methods MTS-veh and MTS-seq differ in the procedure

that synthesizes the final tours of the vehicles. The computational results of the authors show

that the best method is MTS-seq, and we will compare our results to the best results of Srour,

Agatz, and Oppen (2016). We emphasize that at each decision point as many MIPs have to be

solved as the number of scenarios generated, which was set to 60 by Srour et al. The scenario-

based approach finds its roots in the paper of Bent and Van Hentenryck (2004), who propose a

method for a dynamic routing problem with time windows. In their method, multiple scenarios are

generated containing the known requests, and also some possible future requests. Future requests

are obtained by sampling their probability distribution. As Bent and Van Hentenryck (2004) states,

their approach is a generalization and abstraction of that of Gendreau et al. (1999), who propose

a parallel tabu search method and adaptive memory management to accommodate new customer

requests, but without sampling. For the scenario-based approach, see also Hvattum, Løkketangen,

and Laporte (2006).
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The main novelty of the model of Srour, Agatz, and Oppen (2016) is that until the customers

confirm their requests, only stochastic information is available on the desired service time windows,

but the pickup and drop-off locations are known from the preannouncements. In contrast, in

most of the previous work on dynamic vehicle routing problems, the dynamic data consists of the

complete user requests, i.e., pickup and drop-off locations, along with the desired time windows are

revealed together. Mitrović-Minić, Krishnamurti, and Laporte (2004) consider a dynamic pickup

and delivery problem with time windows where no probabilistic information about future requests

are known. Instead, they divide the time horizon into short and long term, and apply different

objective functions for the two periods when inserting new customer requests into the tours of the

vehicles.

Günlük et al. (2006) propose a complex method for continually reoptimizing the schedule of

a fleet of vehicles and drivers to adapt it to the new or updated reservations. They maintain a

foreground schedule, which is always feasible, and it is modified either by incorporating into it

the output of the integer programming based optimization engine run periodically, or by a fast

heuristic to respond to changes since the last run of the optimization engine.

Ferrucci, Bock, and Gendreau (2013) devise a pro-active real-time control approach for a dynamic

vehicle routing problem in which dummy customer requests are generated based on historic data

to anticipate future requests. The authors classify the quality of stochastic knowledge attainable

from past request information, and they identify structural diversity as a crucial criterion.

Muñoz-Carpintero et al. (2015) propose a method based on evolutionary algorithms to solve a

dial-a-ride problem, in which future requests are not known in advance, but the average service

patterns from the past are taken into account to devise robust tours for the vehicles.

Probabilistic information is explicitly used in (Bertsimas and Van Ryzin 1991) and (Bertsimas

and Van Ryzin 1993), in which a single and respectively a multiple vehicle routing problem is

studied. Service requests arrive according to a Poisson process and are uniformly distributed in a

service region. Optimal routing strategies are identified that minimize the average waiting time of

the customers.

Ichoua, Gendreau, and Potvin (2006) study a dynamic vehicle routing problem, where the area

served is divided into geographical zones, and also the planning time horizon is divided into periods.

The requests are not known in advance, but the probability of receiving at least one customer

request in a given geographical zone and time period can be calculated. This information is used

in order to decide if a vehicle should stay in the same zone and wait for customer requests or move

to another zone in the next period. The authors adapt the method of Gendreau et al. (1999) to

determine the routing of the vehicles.
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Ho and Haugland (2011) formulate and solve a dial-a-ride problem, where each customer request

has a probability known by the service provider. For finding the routes of the vehicles, a local

search, and a tabu search procedure are proposed, in which the next solution is chosen by selecting

the best (non-tabu) neighbor of the current solution. The value of a solution is its expected cost,

and a procedure is devised for finding the best neighbor in O(n5) time. Therefore, the computation

time of a single iteration is O(n5), which is considerable if the number of customers n is large.

Albareda-Sambola, Fernández, and Laporte (2014) consider a multi-period vehicle routing prob-

lem with probabilistic information. In their model, the time horizon is divided into time periods,

and for the current as well as for the future periods, the probability that the given period is in the

time window of the customer is known. For the current period it is 0 or 1, but for future periods,

it can be any value between 0 and 1. In each time period it is decided which customers to serve,

and also the tours of the vehicles serving them are planned.

Waiting strategies constitute a very important part of a solver for dynamic pickup and delivery

problems. Briefly, a waiting strategy determines where and how long a vehicle should wait on its

tour before serving the next request. Mitrović-Minić and Laporte (2004) describe 4 distinct waiting

strategies in the context of a pickup and delivery problem of courier companies offering same-day

delivery. Besides drive-first, and wait-first, dynamic waiting, and advanced dynamic waiting are

suggested. In both of the latter strategies, the routes of the vehicles are divided (dynamically) into

service zones (defined by customers not too far away in time), and the strategies differ how they

insert waiting periods while traveling in the service zones, and between service zones. The waiting

strategies are evaluated in simulation experiments.

Branke et al. (2005) propose waiting strategies to increase the probability that a new customer

request can be inserted in the tour of one the of vehicles. The authors propose a number of simple

waiting strategies which are evaluated in a simulation framework along with a more advanced

evolutionary algorithm.

Thomas (2007) studies a dynamic and stochastic vehicle routing problem in which a single vehicle

serves a set of customers, who request service over time. No time windows are attached to the

requests, but the tour of the vehicle must end by a given time limit. Each time when the vehicle

finishes serving a client, the decision consists of whether to include the latest requests into the tour,

or reject them, and whether to wait or go to the next accepted customer. The author analyses the

single-customer case and proposes 5 distinct waiting heuristics. Anticipatory route selection is the

topic of Thomas and White III (2004), where optimal policies for a single vehicle are suggested.

Vonolfen and Affenzeller (2016) consider a pickup and delivery problem with time windows.

They use historical data to fine tune their intensity-based waiting strategy, in which the intensity

of a pair of time and location is defined as the average transition time for requests in the historical
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Figure 1 The various data attached to a request

request set that would have been not revealed yet. Previous and the proposed waiting strategies

are compared in a computational study.

3. Problem statement

In our problem description, we closely follow that of Srour, Agatz, and Oppen (2016). The trans-

portation service provider (service provider, for short) has a fleet of vehicles, V , and each vehicle

can serve only one request at a time. The vehicles are identical from the point of view of the

customers. The service provider receives a sequence of pickup and delivery requests over time from

a set of customers J .

The customers first preannounce their service requests. The preannouncement for i∈ J is made

at time ai, and it specifies the pickup and the drop-off locations, along with an estimation of the

earliest and latest pickup times, êi and ˆ̀
i, respectively. Let TWi = ˆ̀

i− êi denote the length of the

pickup time window. Then, each customer i∈ J confirms its request by calling the service provider

at some time ci >ai again, and specifying the desired pickup time window with the earliest pickup

time ei, and the latest pickup time `i = ei + TWi. The difference ei− ci is the announcement lead

time Li. The transportation service for customer i cannot start before ei, or after `i. So, if no

vehicle starts to serve customer i in the time window [ei, `i], then the request is rejected . The above

data is illustrated on a timeline in Figure 1.

The preannounced time window [êi, ˆ̀i] is only an estimation, or forecast of the desired time

window [ei, `i]. The difference of ei− êi can be seen as a random variable known only in distribution

in the course of planning until customer i confirms its request. The distribution may be empirically

learned by the service provider operating for a longer period. So, we assume that ei is uniformly

distributed in [êi−∆, êi + ∆], for some known parameter ∆, see Srour, Agatz, and Oppen (2016).

However, the announcement lead times are known in advance with certainty.

The profit earned by the service provider by serving a customer i∈ J is profit i = (f + disti× g),

where f and g are fixed amounts in some monetary unit, while disti is the distance between the

pickup and the drop-off location of i. The total cost of the service provider is the total distance of

the vehicles operating empty (moving from the depot to the first pickup location, from a drop-off

location to the next pickup location, or back to the depot) multiplied by a cost factor h, the routing
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cost , denoted subsequently by RC, plus the lost profit , which is defined as LP =
∑

i∈Jrej (f+disti×

g), where the summation is over all the rejected (unserved) customers Jrej, that is

total cost =RC +LP. (1)

The cost of serving the requests, i.e., a function of the disti, is not added to the cost function,

because that is payed by the customers, and we consider only the lost profit, and the cost of driving

empty.

The vehicles start from a depot and have to return to the depot after finishing operation. At any

moment of time, a vehicle can be in one of the following states: (i) waiting idle at some location (at

the depot, at the pickup, or drop-off location of a customer, or at some waiting area), (ii) on the

way to some target location set by the service provider, (iii) transporting a customer to its drop-off

location. The service provider can interrupt (ii), and set a new target location for a vehicle, or may

simply ask a vehicle to stop and wait at its current position until the next command. Like Srour,

Agatz, and Oppen (2016), we assume that travel times of the vehicles are deterministic and can

be calculated accurately using the distances between locations.

We want to suggest a strategy for the service provider that helps minimize the total cost (1). At

any time moment the strategy knows all the preannounced, and confirmed requests, the announce-

ment lead times along with the distribution of the possible realizations of the pickup time windows,

and the states and current positions of the vehicles.

The above problem has recently been proposed by Srour, Agatz, and Oppen (2016), and in the

next section we will describe an algorithm, which works well on their benchmark instances.

4. Algorithmic approach

In this section we describe a method that helps the transportation service provider to operate its

vehicles. Firstly, we give an overview about the entire process in Section 4.1, and then we provide

the core algorithm that has to be used repeatedly (Section 4.2).

4.1. Overview

The transportation service provider receives a sequence of pickup and delivery requests over time,

and it maintains a routing plan for each vehicle under its control. The routing plans are adjusted

time and again to take into account the new events. The vehicles get commands only for the next

action.

New commands can be issued at any moment of time, and the current target location or state

of a vehicle can be modified arbitrarily, with the exception that the transportation of a customer

cannot be interrupted. In order to decide about the possible modification of the routing plans, the

service provider has to solve an optimization problem while taking into account
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• the state and the current position of the vehicles,

• the preannounced requests (pickup and drop-off locations, [êi, ˆ̀i]), and the corresponding dis-

tribution of the possible realizations of the pickup time windows (ei is uniformly distributed in

[êi−∆, êi + ∆]),

• the desired pickup time windows [ei, `i] for the confirmed requests,

• the announcement lead times (Li).

After solving the optimization problem, a subset of vehicles may receive new commands, i.e., if

the result is that a vehicle has to change (i) its target location, or (ii) its state, then it gets a new

command. Note that (i) may occur if a vehicle is on the way to a target location, but as a result

of re-optimization, it has to go to another location, and (ii) may occur if the vehicle is waiting at

some location, and the new routing plan sets a new target location, or it is on the way to some

target location, and according to the new routing plan it has to stop at its current position and

wait for the next command. As we will see in the computation results, waiting at some position

may readily help to reduce the total distance traveled idle.

In the proposed strategy, re-optimization occurs upon any of the following events:

• a preannouncement is received from a customer,

• a customer confirms its request,

• a vehicle arrives to the target location set by the service provider (waiting area, pickup /

drop-off location).

Events are processed in chronological order, no special tie-breaking rule is applied. In the next

section we describe the optimization algorithm to determine the new routing plans for the vehicles.

4.2. Probabilistic estimation and min-cost-flows

In this section we describe the optimization problem solved by the service provider each time it

wishes to adjust the routing plans of the vehicles.

Suppose that (re)optimization occurs at time tact. We say that a customer i ∈ J is rejected at

time tact, if it has already confirmed its request (ci ≤ tact), it is not served yet, and the latest pickup

time `i < tact.

The essence of the method is to build a network with a source node s and a sink node t, one node

for each vehicle v, and two nodes, i+ and i−, for each customer (which has not started, finished,

or rejected yet) representing the pickup and drop-off locations, respectively. There are directed

arcs from the source node to the vehicle nodes, from the vehicle nodes to the pickup nodes of the

customers, from the pickup to the drop-off node of the same customer, from the drop-off nodes of

the customers to the pickup nodes of other customers, and from each vehicle node and from each

drop-off node to the sink node (see Figure 2). Each s− t path in this network represents a routing
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Figure 2 Fragment of the network

plan of a vehicle, i.e., the first node of the path after the source node is a vehicle node, then comes

a (possibly empty) alternating sequence of pickup and drop-off nodes, and finally, an arc to the

sink node representing the way back to the depot.

The cost of an arc leading to the pickup location of some customer represents the expected travel

cost from a vehicle or from the drop-off location of another customer. By expected travel cost and

expected profit we mean that with each arc there is associated a probability:

(a) the probability of an arc from some vehicle node v to a customer node i is the chance that

v can arrive to i in the desired time window [ei, `i] of i. If the request of customer i is not

confirmed yet, then knowing the distribution of ei− êi, and the actual state and position of the

vehicle, this probability can be computed. Otherwise, if customer i has confirmed its request,

this probability is 0 or 1, since a vehicle can either arrive to a customer (possibly after finishing

the current transportation service for another customer), or not.

(b) the probability of an arc from some customer i to another customer j is the chance that a

vehicle serving i can arrive to the pickup location of j after finishing i.

Note that the expected profit is subtracted from the expected travel cost, because then if we

minimize the cost of the paths (by computing a minimum cost flow in the network), we minimize

the travel costs and maximize the total profit earned, which is equivalent to (1), since
∑

i∈J(f +

g× dist i) =LP +
∑

i∈Jserved(f + g× dist i), where Jserved is the set of customers served.

Now we define the arc costs and capacities more formally. The supply of the source node s is set

to |V |, which has to be carried to the sink node t, which has a matching demand. Each arc to be

defined below has capacity 1. The source node is connected to each vehicle node by a directed arc

of cost 0, and for each customer i, there is a directed arc of cost 0 from i+ to i−. Each vehicle node

v is connected to each customer node i+ provided the probability that vehicle v can serve customer

i, denoted by P (v can serve i), is above a given threshold value. The cost of the arc (v, i+) is

P (v can serve i)× (travel cost to customer i− profit i). The travel cost to customer i depends on

the state of the vehicle v. If v is transporting a customer to its drop-off location, then it is h×(the
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distance from the drop-off location of the customer being served to the pickup location of customer

i) (recall the definition of cost factor h in Section 3). Otherwise, it is h×(the distance from the

current position of the vehicle to the pickup location of i). The probability P (v can serve i) will

be defined later in this section. Each vehicle is also connected to the sink node t with a directed

arc (v, t). The cost of this arc depends on the state of the vehicle. If v is transporting a customer

to its drop-off location, then it is h×(the distance from the drop-off location of the customer to the

depot), otherwise it is h×(the distance from the current position of v to the depot). For each pair

of customers i, j, there is a directed arc from i− to j+ in the network provided the probability that

the same vehicle can serve j after finishing i, P (j can be served after i), is above a given threshold

value. The cost of the arc is P (j can be served after i)×((travel cost from the drop-off location of

customer i to the pickup location of customer j ) - profit i). Finally, there is a directed arc from

each customer node i− to the depot with cost h×(the distance from the drop-off location of i to

the depot). For an illustration, see Figure 2.

Proposition 1. The minimum cost flow problem always admits an optimal integral (0/1) solu-

tion. Furthermore, the arcs with flow value 1 induce |V | (internally) node disjoint s− t paths and

possibly isolated directed cycles comprising only customer nodes.

Proof Since arc capacities are uniformly 1, and the network admits |V | arc disjoint s− t paths

through the vehicle nodes, there always exists an optimal, integral (0/1), minimum cost s− t flow

in the network, see e.g., Ahuja, Magnanti, and Orlin (1993). Furthermore, any feasible, integral

s− t flow can be decomposed into a set of |V | internally node disjoint s− t paths, and possibly to

some isolated cycles consisting of only customer nodes i+ and i−, because from each node i+ there

is a single outgoing arc (to node i−) of unit capacity. This decomposition immediately provides

the tours of the vehicles. Notice that an integral optimal solution cannot contain s− t walks with

loops, i.e., a sequence of consecutive edges from s to t with unit flow on each arc of the sequence

that passes through an arc at least twice, because such a walk should contain an arc (i+, i−) at

least twice for some customer i, which is impossible, because then the inflow at node i+ would be

at least two, while the outflow can only be 1 due to the unit capacity of the arc (i+, i−). Q.E.D.

Using the proposition, it is easy to determine the next action of each vehicle, we only have to

find the outgoing arc from each vehicle node v with unit flow.

It remains to determine the probabilities P (v can serve i) and P (j can be served after i). In

order to determine these quantities, we have to define a number of parameters. Firstly, the travel

time tvi of a vehicle v to customer i is the total time needed for vehicle v to arrive to the pickup

location of customer i. If v is transporting some customer j 6= i, then first it has to arrive to the

drop-off location of j, then it has to move on to the pickup location of i. Hence, this time can
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clearly be determined. Otherwise, tvi is just the travel time from the current position of v to the

pickup location of customer i. Second, the travel time tij from some customer i to some customer

j is the time needed to drive from the drop-off location of customer i to the pickup location of

customer j.

Now we determine P (v can serve i). We distinguish two cases:

1. If customer i has not confirmed its request yet, then we define the earliest finish of the pickup

time window as efi = max{tact + Li + TWi, ˆ̀i −∆}, and the latest finish of the pickup time

window as lfi = ˆ̀
i + ∆, If efi > lfi, then P (v can serve i) = 0. Likewise, if tact + tvi > lfi, then

vehicle v cannot serve customer i, and P (v can serve i) = 0. Otherwise,

P (v can serve i) =
lfi−max{tact + tvi, efi}

lfi− efi
.

Notice that if lfi = efi, then both the numerator and the denominator are 0, and

P (v can serve i) = 0.

2. If customer i has confirmed its request, then v can serve i only if tact + tvi ≤ `i. Hence,

P (v can serve i) = 1 if tact + tvi ≤ `i, and 0 otherwise.

Next, we determine P (j can be served after i). To this end, we determine the earliest and latest

finish time of serving customer i, and the earliest and latest pickup time of customer j. If i has

already confirmed its request, then the earliest finish time of serving i is efi = max{ei, tact) + ti,

and the latest possible time to finish i is lfi = `i + ti, where ti is the travel time from the pickup

location to the drop-off location of customer i. Otherwise, if i has only made the preannouncement,

then efi = max{tact +Li, êi−∆}+ ti, and lfi = ˆ̀
i + ∆ + ti.

If customer j has confirmed its request, then the earliest and also the latest time point when

the pickup time window of customer j can end is epj = lpj = `j. Otherwise, epj = max{tact +Lj +

TWj, ˆ̀j −∆}, and lpj = ˆ̀
j + ∆.

Let Xi be a random variable representing the completion time of serving customer i, and Yj

a random variable representing the value of `j. Xi and Yj are considered independent. Xi takes

values from the interval [efi, lfi], and Yj from [epj, lpj]. Moreover, unless epj = lpj, Yj is uniformly

distributed on the interval [epj, lpj] with probability density function

fYj (y) =
1

lpj − epj
.

The distribution of Xi depends on TWi. That is, let w := min{TWi, (lfi − efi)/2}. Since the

desired time window [ei, `i] is uniformly distributed in [êi−∆, ˆ̀i+∆] by assumption, the probability
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x
efi efi +w lfi−w lfi

Figure 3 An example of fXi(x)

of finishing the request of customer i is less likely in the intervals [efi, efi +w] and [lfi−w, lfi], so

we define the probability density function of Xi as follows:

fXi(x) =



x−efi
w(lfi−efi−w)

if efi ≤ x≤ efi +w,

1
lfi−efi−w

if efi +w≤ x≤ lfi−w,

lfi−x
w(lfi−efi−w)

if lfi−w≤ x≤ lfi.

(2)

It is easy to verify that
∫ lfi
efi
fXi(x)dx= 1. A possible fXi(x) function is depicted in Figure 3.

Then we have

P (j can be served after i) = P (Xi + tij ≤ Yj).

Two special cases can easily be handled. If efi + tij > lpj, then j cannot be served after i by

the same vehicle, hence, P (j can be served after i) = 0. On the other hand, if lfi + tij ≤ epj then

P (j can be served after i) = 1. Hence, in the sequel we assume that

efi + tij < lpj,

lfi + tij > epj.

In general, we have

P (Xi + tij ≤ Yj) =

∫ lfi

efi

fXi(x)P (Yj ≥ x+ tij)dx. (3)

Since fXi is piecewise linear, it is not easy to compute (3). In the appendix, we provide closed

form expressions. However, we can approximate this probability by setting w= 0. In this case Xi

is uniformly distributed on [efi, lfi], which is assumed in the rest of this section.

Let p := P (Xi ≤ lpj− tij), p̃ := P (Xi ≤ epj− tij), q := P (Yj ≥ efi + tij), and q̃ := P (Yj ≥ lfi + tij).

Then, we distinguish four cases, see Figure 4.

P (Xi + tij ≤ Yj) =


pq/2 if p < 1, q < 1
(q+ q̃)/2 if p= 1, q < 1
(p+ p̃)/2 if p < 1, q= 1
1− (1− p̃)(1− q̃)/2 if p= 1, q= 1.

(4)

The formulas in the respective cases correspond to the dotted areas in Figure 4. Notice that in the

figure, p, q, p̃, and q̃ indicate ratios of the length of line segments to the length of the corresponding

sides of the rectangles.
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efi
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lfi

Xi

Yj
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p
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epj lpj

efi

lfi

efi + tij lfi + tijq

q̃

Xi

Yj

p= 1, q < 1

epj lpj

efi

lfi

epj − tij

lpj − tij

p̃

p

Xi

Yj

p < 1, q= 1

epj lpj

efi

lfi

lfi + tij

epj − tij

q̃

p̃

Xi

Yj

p= 1, q < 1

p= 1, q= 1

Figure 4 Probability of Xi + tij ≤ Yj . Dotted areas represent the values of (Xi, Yj) with Xi + tij ≤ Yj .

4.3. Partial execution of commands

In this section we describe a simple technique to reduce the total distance traveled idle of the

vehicles.

Suppose a vehicle gets a command to go to a customer which has not confirmed its request yet.

This could be a good idea, because if the announcement lead times are short, and the time windows

are narrow, when a customer i, say, announces its time window [ei, `i] at time ci and there is no

vehicle nearby which could arrive to the pickup location of i before `i, then the customer has to

be rejected, and it is penalized in the objective function (1).

On the other hand, suppose a vehicle v is on the way to some customer i, and upon arriving

the the pickup location of i, another customer, say j, not too far away confirms its request, then v

may go to the other customer to serve it, and later some another vehicle v2 may serve i. However,

this can be a D-tour for v. To reduce the total deadhead costs, the vehicles can apply the following
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i
pickup

v waiting area

(Li +αTWi)

j

pickup

Figure 5 Partially approaching the pickup location of a customer

strategy. Instead of going to the pickup location of i, the designated vehicle v only approaches i

at a distance such that the time needed to arrive to the pickup location of i is Li + αTWi. This

guarantees that when i confirms its request at time ci, then at time ci +Li +αTWi, vehicle v can

arrive to the pickup location of i. Since Li = ei − ci by definition, this means that v can arrive

to i after an α fraction of the desired time window of i has passed. We call this strategy partial

execution with parameter α. On the other hand, if the vehicles always go to the pickup location of

the unconfirmed requests, then they follow the full execution strategy.

For an illustration, see Figure 5. In the figure, we assume that vehicle v has a unit speed, so time

is equivalent to distance traveled. Since the travel time from the pickup location of i to the pickup

location of j is larger than that from the waiting area to j, should j confirm its request before i,

the service provider could modify the routing of v at a smaller cost.

In the next section we will demonstrate that this simple strategy can reduce the total deadhead

cost.

5. Computational results

In this section we give some details of the computer implementation of our solver, describe briefly

the test data, and then summarize our results. Our test data is from Srour, Agatz, and Oppen

(2016), and in discussing our results, we closely follow their presentation to get a fair comparison.

5.1. Implementation

To assess the performance of our method, we have implemented a simple simulation environment

in C++. For solving the minimum cost flow problems, we have used Google Optimization Tools

of Google Inc. (2016). The simulation runs were very fast, the entire run took only a fraction of

a second on a modern notebook computer, so computational times are not provided. The large

computation speed is due to the efficient solvability of minimum cost flow problems, see e.g., Ahuja,

Magnanti, and Orlin (1993). Further on, at each decision point, a single run of the minimum

cost flow algorithm suffices. For computing the arc costs, we have used the formula (4) instead

of the more involved ones described in the appendix. The threshold value for the probability of

picking an arc has been set to 0.01. By default, we run our method with α= 0, i.e., the vehicles
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approach the pickup location of unconfirmed customers to a distance of Li. We call this the baseline

implementation.

We have mentioned in Section 4 that the structure of the network permits cycles in the solution

(consisting of arcs with unit flow) containing only customer nodes. We have developed a variant

of our baseline implementation in which if a cycle is detected in a solution, then we eliminate

one arc from each strongly connected component of the directed graph consisting of the arcs with

positive flow values. The method was still very fast, in 2-3 iterations we got a solution without any

cycles, but this extra work had insignificant impact on the entire simulation runs. We have also

investigated the effect of computing the probability (3) exactly using the formulas in the appendix,

but again, this had insignificant impact on the average results that we summarize in the next

sections.

Unless otherwise stated, we used the baseline implementation in obtaining the results of the

following sections.

5.2. Test data

We compared the results of our algorithm to those of Srour, Agatz, and Oppen (2016) on their input

files (https://sites.google.com/site/pdptwinstances/, accessed 31 March 2017). These test cases

are based on transport data from a dial-a-chauffeur service in The Netherlands. The parameters

that determine the total cost of the service are the same in each case: f = 6, g = 2.7 and h= 0.3

(cf. Section 3). There are 9 vehicles and 20 customers in each instance, hence, the networks to be

handled have at most 51 nodes and a few hundred of arcs. The pickup and the drop-off locations

are in a 100 square kilometer area and the depot is located at a corner of this area. The vehicles can

travel in a straight line between any two points at unit (1 km/min) speed. This latter assumption

means that travel time (in minutes) and distance traveled (in kilometers) have the same nominal

values.

The test data contains instances with different geographies, announcement lead times, time win-

dows and parameters ∆ (recall that ei is uniformly distributed in [êi−∆, êi+∆]). The preannounced

pickup times, êi, are drawn from a uniform distribution spanning a 6 hour period of operation,

while the confirmation times are determined by earliest pickup time ei and by the announcement

lead time Li, i.e. ci +Li = ei. The preannounced time windows are known from the beginning.

The default setting is the following: each announcement lead time as well as the length of the

time windows is 5 minutes, Li = TWi = 5 for each i∈ J , while the value of ∆ is 60. The geography

of the customers is based on the concept of a center region like a city center: there are 4 customers

who would like to go from an outlying region to the center, 6 customers who would like to go out

from the center and the last 10 customers have random pickup and drop-off locations (geography

BUS).
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Srour et al. developed several test cases where they varied in most cases only one of the parame-

ters while keeping the others at the default values. Notice that in any instance, all customers have

the same Li, and TWi values, respectively. There are test cases with modified announcement lead

times (0, 15, 30 and 60), modified time window lengths (10, 15, 30 and 60), modified ∆ values (30,

45, 90 and 120), and modified geographies (IO20, where each customer wants to go out from the

center and RR20, where each customer has random pickup and drop-off location). For each setting

they generated 100 different test cases.

Figure 6 depicts a sample run of our method on a single problem instance. Diamonds indicate

the pickup locations (labeled with j<id>s), and circles the drop-off locations (labeled with j<id>e),

where <id> is the job identifier between 0 and |J | − 1. The lines indicate the vehicle tours, and

they are distinguished by colors in the electronic version.

5.3. Results with varying ∆

In this set of experiments, we consider datasets with varying ∆ values (100 instace for each ∆), and

with Li = TWi = 5, and geography = BUS (the default values). In Table 1, we compare our results

to those of Srour, Agatz, and Oppen (2016). The table is divided into 6 sections. The first line is

obtained by using complete information, i.e., using the time windows [ei, `i], and solving the entire,

static problem by a MIP solver. Then there are 5 additional sections corresponding to the results

with the given ∆ values. The rows MTS-seq depict the best results of Srour, Agatz, and Oppen

(2016), and the rows ’our’ indicate the corresponding results obtained by our method. In the first

three columns, the average percent deviation to the complete information case is provided, while

in the last four columns the average rejection costs, the average number of rejections, the number

of instances without any rejections, and the average deadhead distance (over served jobs) is given.

Observe that our method constantly provides significantly better results in all aspect, except the

minimum cost, and the deadhead costs, where we are sometimes slightly worse). Of course, for

any delta, either method is worse than the perfect information case, but for instance the average

deadhead distance is close to the optimum for both methods.

5.4. Results with varying Li

In this section results with varying the announcement lead times Li are compared to those of Srour

et al, see Figure 7(a). The results are obtained using the datasets (100 instance for each Li) with

TWi = 5, ∆ = 60, and geography = BUS (the default values). In the figure the baseline is obtained

by using perfect information, and we compare the performance of MTS-seq of Srour et al. and our

method. Notice that when the announcement lead time is short, i.e., the service provider gets the

confirmed time window only shortly before the service may start, our method performs significantly

better, and our advantage decreases for the large lead times 30 and 60.
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Figure 6 Sample run of the method

5.5. Results with varying TWi

In Figure 7(b), the impact of varying the length of the time windows TWi on the performance of

various methods is depicted. Clearly, the perfect information case also benefits from larger time

windows, so its cost curve decreases as the length of the time windows increase. Our method

strongly dominates MTS-seq for short time windows, which we believe is harder to handle, it has

similar performance for TWi = 30, and it gives worse results for long time windows (TWi = 60).

Notice that in this case, our method with greater α value achieves better results, see Section 5.8.
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Table 1 Impact of varying ∆, averages are taken over 100 instances

% diff. of Perfect Info.

Avg.
Cost

Min.
Cost

Max.
Cost

Avg.
Rejec-
tion
costs

Avg.
num. of
Rejec-
tions

Num.
Inst.
with no
Rejec-
tions

Empty
Dist. per
Job
Served

Perfect information 0.0 0.0 0.0 13 0.2 82 68.8
Range60(∆ = 30)
MTS-seq 24.0 1.2 102.3 77.2 0.7 42 77.0
our 14.5 0.1 50.0 33.6 0.5 61 76.8
Range90(∆ = 45)
MTS-seq 32.9 0.0 99.5 109.2 1.0 36 79.0
our 20.7 1.2 60.8 48.5 0.8 48 79.6
Range120(∆ = 60)
MTS-seq 44.0 2.3 136.9 158.5 1.4 25 80.4
our 25.5 4.3 65.6 64.2 0.9 41 81.1
Range180(∆ = 90)
MTS-seq 60.5 7.8 183.8 226.8 1.9 9 82.7
our 38.8 7.4 94.3 122.6 1.6 19 83.7
Range240(∆ = 120)
MTS-seq 88.0 10.1 221.0 349.5 2.8 1 85.9
our 47.1 11.1 114.1 162.7 2.0 8 84.7
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Figure 7 Comparison of the methods for varying announcement lead times, and time window length

Since with large time windows, it is easier to serve all the clients, the exact solution of the routing

problem in MTS-seq is a better strategy than ours in this case.

5.6. Results with varying ∆ and TWi

Like Srour et al, we have also made experiments with varying ∆ and TWi parameters. In Figure 8

we compare our method to MTS-seq on 2 × 5 datasets, i.e., one series with datasets such that

TWi = 5 and ∆ ∈ {30,45,60,90,120} (solid lines), and another with TWi = 30 and ∆ from the
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same set (dashed lines). Notice that the range in the figure is just 2×∆, and our figure has similar

content to Figure 7 of Srour, Agatz, and Oppen (2016). Also note that the results with TWi = 5 are

already summarized in Table 1, although in the table we compare the performance of the methods

to the perfect information case. Observe than on both series of datasets, our algorithm provides

superior results to MTS-seq, and in fact as the range (∆) increases, the difference between the

performance of the two methods increases as well.
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MTS-seq – 5 min
our – 5 min

MTS-seq – 30 min
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Figure 8 Results with varying time window and range

5.7. Results with varying geography

Now Li = TWi = 5, ∆ = 60 (the default values), but the geography of the pickup and drop-off

locations is varied. Figure 9(a) shows the routing costs of the different methods on instances with

the different geographies (100 instance for each geography). The method PI stands for the perfect

information case (solved by a MIP solver), and our refers to our method and MTS-seq is that of

Srour et al. In each case the figure depicts the routing cost of the instance with the lowest, the

25th, the 50th, the 75th and highest (100th) routing cost, thus we can see roughly the distribution

of the routing costs. E.g. the first column shows that there are 25 BUS instances, where the routing

cost is between 313 and 370 in case of complete information, 25 other, where it is between 370 and

409, etc. In Figure 9(b), we can see the same in case of the rejection costs. Observe that while the

routing costs of the solution found by our method and MTS-seq are similar, our method produces

significantly lower rejection costs than MTS-seq for each geography.

5.8. The impact of partial execution

In this section we summarize the results of the method described in Section 4.3. Since the method

modifies the algorithm significantly only if the announcement lead times or the time windows of

the instance are relatively long, thus Table 2 depicts the average costs on two 100-element datasets,

one with Li = 60, where the other parameters are at default values, and another with TWi = 60,
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Figure 9 Minimum, 1st quartile, median, 3rd quartile, and maximum routing costs (a), and rejection costs (b)

for the perfect information case, and for our and MTS-seq methods, respectively

while the other parameters are at default values. The first 3 columns depict results obtained by our

method with full and partial execution strategies (see Section 4.3), while the last column depicts

the reference data of MTS-seq. On the dataset with Li = 60, full execution provides slightly weaker

results than MTS-seq, and partial execution with α= 0 or α= 0.3 are both better than MTS-seq.

On the dataset with TWi = 60 our method provides the best results with α = 0.9, which is still

weaker than MTS-seq. This is the only dataset where our method is not competitive with MTS-seq.
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Table 2 Results with full and partial execution strategies

our method MTS-seq
full execution α= 0 α= 0.3 α= 0.9

Li = 60 487.4 459.9 460.5 – 486.5
TWi = 60 458.2 454.6 438.3 419.7 391.1

6. Conclusions

In this paper we have studied a stochastic pickup and delivery problem proposed recently by Srour,

Agatz, and Oppen (2016). We demonstrate that a simple algorithm may outperform a more heavy

scenario-based approaches on several classes of problem instances. Our findings open up a number

of further directions. For instance, for the specific problem, can we make better routing decisions

in order to improve the results when large time windows allow more room for optimization? Can

a similarly simple approach be effective in other dynamic and stochastic vehicle routing problem?

Acknowledgments

The authors are indebted to F. Jordan Srour for providing a lot of help including tabular data from her

paper. This work has been supported by the OTKA grant K112881, and by the GINOP-2.3.2-15-2016-00002

grant of the Ministry of National Economy of Hungary.

Appendix A: Closed-form expressions for (3)

Below we provide some details of computing (3) when Xi is distributed according to the piecewise linear

function (2) with w > 0. Notice that if x≥ lpj − tij , then P (Yj ≥ x+ tij) = 0, and if Yj < efi + tij then no

x≥ efi exists with Yj ≥ x+ tij . So, in order to obtain a closed-form expression for (3) in the form of some

integrals, we will use conditional probabilities. That is, let p := P (Xi ≤ lpj − tij) and q := P (Yj ≥ efi + tij).

First suppose that p < 1 and q < 1. Observe that p < 1 implies lfi > lpj− tij , and q < 1 implies epj < efi+ tij .

Then

P (Xi + tij ≤ Yj) = pqP (Xi + tij ≤ Yj | Xi ≤ lpj − tij & Yj ≥ efi + tij)

= pq

∫ lpj−tij

efi

fXi|Xi≤lpj−tij (x)P (Yj ≥ x+ tij |Yj ≥ efi + tij)dx

where fXi|Xi≤lpj−tij (x) is the conditional probability density function defined as

fXi|Xi≤lpj−tij (x) =

(∫ lpj−tij

efi

fXi
(z)dz

)−1
fXi

(x).

Then we have

P (Xi + tij ≤ Yj) = pq

∫ lpj−tij

efi

fXi|Xi≤lpj−tij (x)

(∫ lpj

x+tij

fYj |Yj≥efi+tij (y)dy

)
dx, (5)

where fYj |Yj≥efi+tij (y) is the conditional probability density function

fYj |Yj≥efi+tij (y) =

(∫ lpj

efi+tij

fYj
(z)dz

)−1
fYj

(y) =
1

lpj − efi− tij
.
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Now (5) can be rewritten as

pq

∫ lpj−tij

efi

fXi|Xi≤lpj−tij (x)

(
lpj −x− tij
lpj − efi− tij

)
dx, (6)

Since fXi|Xi≤lpj−tij is piecewise linear, (6) can be expressed as the sum of three integrals:

pq

(∫ lpj−tij

efi

fXi
(z)dz

)−1(∫ min{efi+w,lpj−tij}

efi

(
x− efi

w(lfi− efi−w)

)(
lpj −x− tij
lpj − efi− tij

)
dx

+

∫ min{lfi−w,lpj−tij}

efi+w

(
1

(lfi− efi−w)

)(
lpj −x− tij
lpj − efi− tij

)
dx

+

∫ lpj−tij

lpj−w

(
lfi−x

w(lfi− efi−w)

)(
lpj −x− tij
lpj − efi− tij

)
dx

)
.

Notice that we define
∫ b
a
g(z)dz = 0 if a≥ b.

Now suppose that p < 1 and q= 1, i.e., P (Yj ≥ efi+ tij) = 1. Then epj ≥ efi+ tij , and for x∈ [efi, epj− tij ]

we have P (Yj ≥ x+ tij) = 1. Consequently,

P (Xi + tij ≤ Yj) = p

∫ lpj−tij

efi

fXi|Xi≤lpj−tij (x)P (Y ≥ x+ tij)dx

= p

(∫ epj−tij

efi

fXi|Xi≤lpj−tij (x)dx+

∫ lpj−tij

epj−tij

fXi|Xi≤lpj−tij (x)P (Y ≥ x+ tij)dx

)

= p

(∫ epj−tij

efi

fXi|Xi≤lpj−tij (x)dx+

∫ lpj−tij

epj−tij

fXi|Xi≤lpj−tij (x)

(
lpj −x− tij
lpj − epj

)
dx

)
. (7)

Using the piecewise linearity of fXi|Xi≤lpj−tij (x), the two integrals in (7) can be decomposed into the sum

of 3 elementary integrals each, the details are omitted.

The third case arises when q < 1 and p= 1, i.e., P (Xi ≤ lpj − tij) = 1. Then lpj − tij ≥ lfi. Hence,

P (Xi + tij ≤ Yj) = q

∫ lfi

efi

fXi
(x)P (Y ≥ x+ tij |Yj ≥ efi + tij)dx

= q

(∫ epj−tij

efi

fXi
(x)dx+

∫ lfi

epj−tij

fXi
(x)

(
lpj −x− tij
lpj − efi− tij

)
dx

)
. (8)

Finally, suppose p= 1 and q= 1. Then we have lpj − tij ≥ lfi and epj ≥ efi + tij . Consequently, we have

P (Xi + tij ≤ Yj) =

∫ lfi

efi

fXi
(x)P (Y ≥ x+ tij)dx

=

∫ epj−tij

efi

fXi
(x)dx+

∫ lfi

epj−tij

fXi
(x)

(
lpj −x− tij
lpj − epj

)
dx. (9)
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