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exist to ensure the maintenance of PACAP activity in PACAP 
knockout (KO) mice. Thus, we investigated the vasomotor 
effects of vasoactive intestinal peptide (VIP) and PACAP iso-
forms in PACAP wild-type (WT) and PACAP-deficient (KO) 
male mice.  Methods:  Carotid and femoral arteries were iso-
lated from 8- to 12-week-old WT and KO mice. Vasomotor 
responses were measured with isometric myography.  Re-

sults:  In the arteries of WT mice the peptides induced relax-
ations, which were significantly greater to PACAP1–38 than 
to PACAP1–27 and VIP. In KO mice, PACAP1–38 did not elic-
it relaxation, whereas PACAP1–27 and VIP elicited signifi-
cantly greater relaxation in KO mice than in WT mice. The 
specific PAC1R and VPAC1R antagonist completely blocked 
the PACAP-induced relaxations.  Conclusion:  Our data sug-
gest that in the absence of the PACAP peptide, backup 
mechanisms maintain arterial relaxations, indicating an im-
portant physiological role for the PACAP pathway in the reg-
ulation of vascular tone.  © 2017 S. Karger AG, Basel 
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 Abstract 

  Background:  Pituitary adenylate cyclase-activating poly-
peptide (PACAP) is a multifunctional neuropeptide in the 
VIP/secretin/glucagon peptide superfamily. Two active 
forms, PACAP1–38 and PACAP1–27, act through G protein-
coupled receptors, the PAC1 and VPAC1/2 receptors. Effects 
of PACAP include potent vasomotor activity. Vasomotor ac-
tivity and organ-specific vasomotor effects of PACAP-defi-
cient mice have not yet been investigated; thus, the assess-
ment of its physiological importance in vasomotor functions 
is still missing. We hypothesized that backup mechanisms 
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 Introduction 

 Pituitary adenylate cyclase-activating polypeptide 
(PACAP) is a neuropeptide with a diverse array of bio-
logical functions in many tissues and organs  [1] . PACAP 
occurs in 2 biologically active forms, PACAP1–38 and 
PACAP1–27, with the former being the dominant form 
in mammalian tissues  [1] . PACAP1–27 shares 68% iden-
tity with vasoactive intestinal peptide (VIP), which iden-
tifies PACAP as a member of the VIP-secretin-GHRH-
glucagon superfamily  [2–4] . PACAP acts through G pro-
tein-coupled receptors, the specific PAC1 receptor 
(PAC1R), and the VPAC1/VPAC2 receptors (VPAC1R 
and VPAC2R). VPAC receptors also bind VIP and PA-
CAP with similar affinity  [1, 5–7] . The PACAP isoforms 
and their receptors are widely expressed in the central 
nervous system  [8, 9]  and in peripheral organs, including 
blood vessels  [1, 10] . Numerous different functions have 
been described, such as the control of neurotransmitter 
release, activation of intestinal motility, influence on
hormonal secretion, immune modulation, and stimula-
tion of cell proliferation/differentiation/survival  [1] . The 
widespread occurrence and the involvement in phylo-
genetically conserved processes suggest that this peptide 
exerts essential biological functions  [11–13] . The PACAP 
polypeptides have multifaceted roles in the vascular sys-
tem: their vasodilator activity and antioxidant properties 
have already been recognized  [1] . In addition, PACAP 
exerts an important angiogenic capacity, as shown in
cerebromicrovascular endothelial cells, which seems to 
decline with age  [14] , further underlying important
physiological roles of PACAP signaling.

  Although some data show that PACAP is able to exert 
a hypertensive action through the systemic release of cat-
echolamines  [15, 16] , PACAP, similarly to VIP, is consid-
ered a potent vasorelaxant peptide  [17, 18] , causing a de-
crease in the mean arterial blood pressure  [17, 19] . The 
vasodilator activity of PACAP has been recorded in ves-
sels of various organs in vitro in mice  [20] , rats  [21–23] , 
cats  [15, 24] , rabbits  [25] , dogs  [21] , pigs  [18] , and hu-
mans  [26] . This action is mediated through all 3 PACAP 
receptors, which are highly expressed (alone/combined 
or all together) in the aorta  [27] , mesenteric  [25] , coro-
nary  [28] , cranial arteries  [10] , pulmonary vascular bed 
 [15] , and many other blood vessels  [1, 29] . They are local-
ized mainly in arteries and arterioles  [25, 30] .

  The endogenous role of PACAP has been studied us-
ing PACAP-deficient mice (knockout; KO). It has been 
shown that PACAP-deficient mice have biochemical and 
metabolic abnormalities, behavioral alterations, and in-

creased sensitivity to oxidative stress or in combination 
with other injuries (kidney and retinal ischemia, reduced 
immune response) resulting in a higher mortality rate 
 [31] . The cardiovascular system is also altered in PACAP-
deficient mice, as indicated by decreased cardiac function 
(measured with echocardiography), increased fibrosis, 
and myocardial degenerative changes (abnormal cardio-
myocytes)  [31, 32] . Markovics et al.  [20]  reported a re-
duced dilatator ability of meningeal arteries. However, it 
has not yet been demonstrated whether lack of PACAP 
leads to changes in vasomotor responses, so the assess-
ment of its physiological importance is still missing.

  Thus, in the present study we hypothesized that the 
vasomotor responses of isolated arteries will be altered in 
the absence of the PACAP protein in PACAP KO mice. 
Therefore, we aimed at investigating the relaxations of 
carotid (CA) and femoral (FA) arteries of PACAP wild-
type (WT) and KO mice in response to cumulative doses 
of PACAP1–38, PACAP1–27, and VIP.

  Methods 

 Animals 
 Experiments were performed on 8- to 12-week-old male KO 

mice on a CD-1 background and their WT littermates  [33] . A total 
of 45 animals were studied. At the time of the experiments, the av-
erage weight of WT mice was 36.89 ± 0.76 g and that of KO mice 
was 35.45 ± 0.43 g (the difference was not significant,  p  < 0.06). 
Animal breeding, housing, and care, and the application of exper-
imental procedures were conducted under approved protocols in 
accordance with ethical guidelines (University of Pecs; BA02/2000-
15024/2011).

  Surgery 
 The common CA and the proximal part of the FA were isolated 

using an Olympus surgical microscope (model SZX7; Olympus 
Inc., Tokyo, Japan) under anesthesia induced by the intraperito-
neal injection of a ketamine (Gedeon Richter Plc., Budapest, Hun-
gary) and xylazine (Eurovet Animal Health B.V., Bladel, The Neth-
erlands) mixture (81.7 and 9.3 mg/kg, respectively). The proximal 
and distal ends of the isolated segment were ligated, the vessel was 
excised between the ligations and then transferred to refrigerated 
Krebs solution. Both sides of the CA and FA arteries were used. 
After the removal of the arteries, the animal was euthanized with 
an intraperitoneal injection of pentobarbital (100 mg/kg; Ceva 
Sante Animale, Libourna, France).

  Pharmacological Agents 
 The vasomotor function of vessels was studied in response to 

cumulative doses of PACAP1–38 and PACAP1–27 (from 10 –9  to 
10 –6   M ), which were synthesized as previously described  [34] , and 
VIP from 10 –9  to 10 –6   M  (Bachem, Bubendorf, Switzerland). Fur-
thermore, selective agonists for PAC1R (maxadilan; Tocris Bio-
science, Bristol, UK), VPAC1R (Ala 11,22,28 VIP; Bachem), and VP-
AC2R (Bay55–9837; Bachem) receptors were also used from 10 –10  
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to 10 –7   M . Antagonists of PAC1R/VPAC2R (PACAP6–38, 10 –7   M ), 
selective PAC1R (M65, 10 –7   M ), and selective VPAC1R (VIP6–28, 
10 –7   M ) were also used (Bachem). To test endothelium-dependent 
and endothelium-independent reactions, ACh and SNP (sodium 
nitroprusside) were administrated (10 –9  to 10 –6   M ). The adminis-
tration of polypeptides was performed as follows: diluted polypep-
tides were added into a chamber containing 5 mL of Krebs solution 
with a micropipette to the intended final concentration (50 μL of 
10 –8  to 10 –4   M  of peptide added to the 5-mL chamber, resulting in 
a 10 –10  to 10 –6   M  concentration of polypeptide).

  All drugs were dissolved in distilled water, with the exception 
of Ala 11,22,28 VIP, which was dissolved in 0.1  M  of acetic acid. When 
only the solvent (distilled water or acetic acid) was applied, there 
was no change in isometric force. Changes in the vasomotor activ-
ity were measured by the difference compared to the maximal con-
traction induced by 60 m M  of KCl (in graphs marked as baseline, 
10 –0   M ) for each administered drug, artery, and genotype of mice.

  Measurement of the Isometric Force of Isolated Arteries 
 The preparation and measurement of the isometric force of 

isolated CA and FA was performed according to Mulvany’s group 
 [23, 35] . After removal of the CA and FA they were quickly trans-
ferred into cold oxygenated (95% O 2 /5% CO 2 ; Linde, Repcelak, 
Hungary) physiological Krebs solution (NaCl 119 m M , KCl 4.7 
m M , KH 2 PO 4  1.2 m M , NaHCO 3  25 m M , Mg 2 SO 4  1.2 m M , CaCl 2  × 
2H 2 O 1.6 m M , EDTA 0.026 m M , glucose 11.1 m M ). NaCl and KCl 
were purchased from VWR International (Radnor, PA, USA). All 

other chemicals and drugs were obtained from Sigma-Aldrich (St. 
Louis, MO, USA), unless specified otherwise. The arteries were 
dissected into 2-mm-long rings. Each ring was positioned between 
2 tungsten wires (wire diameters were 0.04 mm for CA and 0.02 
mm for FA) in a 5-mL Krebs bath solution. The bath solution was 
continuously oxygenated with a gas mixture of 95% O 2  and 5% 
CO 2 , and maintained at 36.9 ± 0.1   °   C.

  Isometric contraction forces were measured with a DMT 610 
M Wire Myograph (Danish Myo Technology, Aarhus, Denmark). 
Normalization was performed according to Mulvany and Halpern 
 [35] . LabChart 8 (AD Instruments, Dunedin, New Zealand) and 
Myodaq 2.01 (Danish Myo Technology) software were used for 
data acquisition and display, as described previously  [23] . After 
normalization, vessels were allowed to stabilize for 60 min, then 60 
m M  of KCl was administered to establish a tone  [23, 36] . Once the 
vessel reached the plateau phase, the chosen drug was tested.

  RT-PCR Analysis 
 Tissues were cryoground in liquid nitrogen and dissolved in 

Trizol (Applied Biosystems, Foster City, CA, USA), and after the 
addition of 20% RNase-free chloroform the samples were centri-
fuged at 4   °   C at 10,000  g  for 15 min. The samples were incubated 
in 500 μL of RNase-free isopropanol at –20   °   C for 1 h then total 
RNA was harvested in RNase-free water and stored at –20   °   C. The 
assay mixture for reverse transcriptase reaction contained 2 μg of 
RNA, 0.112 μ M  of oligo(dT), 0.5 m M  of dNTP, and 200 units of 
high-capacity RT (Applied Biosystems) in 1 × RT buffer.  Table 1   

 Table 1.  Nucleotide sequences, amplification sites, GenBank accession numbers, amplimer sizes, and PCR reaction conditions for each 
primer pair

Gene Primer Nucleotide sequence (5′→3′) GenBank ID Annealing 
temperature, °C

Amplimer 
size, bp

antisense GCT GTA TTG CTC CTC CCT (518 – 535)

Actin (Actb) sense GCC AAC CGT GAA AAG ATG A (419 – 437) NM_007393.5 54 462
antisense CAA GAA GGA AGG CTG GAA AA (861–880)

PAC1 (ADCYAP1R1) sense TAT TAC TAC CTG TCG GTG AAG (912 – 932) NM_016989.2 49 213
antisense ATG ACT GCT GTC CTG CTC (1107 – 1124)

VPAC1 (VIPR1) sense TTT GAG GAT TTC GGG TGC (974 – 991) NM_001097523 52 266
antisense TGG GCC TTA AAG TTG TCG (1222 – 1239)

VPAC2 (VIPR2) sense CTC CTG GTA GCC ATC CTT (805 – 822) NM_001014970 48 149
antisense ATG CTG TGG TCG TTT GTG (936 – 953)

 Table 2.  Tables of antibodies used in the experiments

Antibody Host animal Dilution Distributor

Anti-PAC1 rabbit,  polyclonal 1:600 Sigma-Aldrich (St. Louis, MO, USA) SAB2900695
Anti-VPAC1 rabbit,  polyclonal 1:800 Alomone Labs (Jerusalem, Israel) AVR-001
Anti-VPAC2 rabbit,  polyclonal 1:600 Abcam (Cambridge, UK) ab28624
Anti-actin mouse,  monoclonal 1:10,000 Sigma-Aldrich A2228
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details the sequences of primer pairs and polymerase chain reac-
tions. Amplifications were performed in a thermal cycler (Labnet 
MultiGene TM  96-well Gradient Thermal Cycler; Labnet Interna-
tional, Edison, NJ, USA) in a final volume of 21 μL (containing 1 
μL of forward and reverse primers [0.4 μ M ], 0.5 μL of dNTP [200 
μ M ], and 5 units of Promega GoTaq ®  DNA polymerase in 1 × reac-
tion buffer) as follows: 95   °   C, 2 min, followed by 35 cycles (dena-
turation, 94   °   C, 1 min; annealing at optimized temperatures as giv-
en in  Table 1  for 1 min; extension, 72   °   C, 90 s) and then 72   °   C, 10 
min. PCR products were analyzed by electrophoresis in 1.2% aga-
rose gel containing ethidium bromide. Actin was used as the inter-
nal control. Signals were developed with a gel documentary system 
(FluorChem E; ProteinSimple, San Jose, CA, USA). The optical 
density of signals was measured using ImageJ 1.40 g freeware and 
the results were normalized to the optical density of control tissue.

  Western Blot Analysis 
 Isolated FA and CA were washed in physiological NaCl solu-

tion then collected in 100 μL of homogenization RIPA (radio im-
munoprecipitation assay) buffer (150 m M  sodium chloride, 1.0% 
NP40, 0.5% sodium deoxycholate, 50 m M  Tris, pH 8.0) containing 
protease inhibitors (Aprotinin, 10 μg/mL), benzamidine (5 m M ), 
leupeptin (10 μg/mL), trypsine inhibitor (10 μg/mL), PMSF (1 
m M ), EDTA (5 m M ), EGTA (1 m M ), Na-fluoride (8 m M ), and Na-
orthovanadate (1 m M ). The samples were stored at –70   °   C. Mea-
surements were repeated 3 times for each vessel, isolated from WT 
and KO mice ( n  = 3/group). Artery samples were first mechani-
cally ground, then the suspensions were sonicated by a pulsing 

burst for 30 s at 40 A (Cole-Parmer, Vernon Hills, IL, USA). For 
Western blotting, total tissue lysates were used. Samples for SDS-
PAGE were prepared by the addition of Laemmli electrophoresis 
sample buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 
0.004% bromophenol blue, 0.125  M  Tris HCl pH 6.8) to tissue ly-
sates to set an equal protein concentration of samples, and boiled 
for 10 min.

  A total of 20 μg of protein was separated by 10% SDS-PAGE gel 
for the detection of PAC1, VPAC1, and VPAC2. Proteins were 
transferred electrophoretically to nitrocellulose membranes. After 
blocking in 5% nonfat dry milk in PBST (phosphate-buffered sa-
line with 0.1% Tween 20; 20 m M  Na 2 HPO 4 , 115 m M  NaCl, pH 7.4), 
the membranes were washed and exposed to the primary antibod-
ies overnight at 4   °   C. Polyclonal anti-PAC1 antibody (Sigma-Al-
drich) in 1:   500, polyclonal anti-VPAC1 antibody (Alomone Labs, 
Jerusalem, Israel) in 1:   1,000, and polyclonal anti-VPAC2 antibody 
(Abcam, Cambridge, UK) in 1:   800 dilutions were used ( Table 2 ). 
After washing 3 times for 10 min with PBST, the membranes were 
incubated with the secondary antibody, anti-rabbit IgG (Bio-Rad 
Laboratories, Hercules, CA, USA) in a 1:   1,500 dilution in PBST 
containing 1% nonfat dry milk for 2 h at room temperature. Signals 
were detected by enhanced chemiluminescence (Advansta Inc., 
Menlo Park, CA, USA) according to the instructions of the manu-
facturer. Actin was used as the internal control. The optical den-
sity of signals was measured using ImageJ 1.40 g freeware and the 
results were normalized to the optical density of control tissue. 
Signals were developed with a gel documentary system (Fluor-
chem E; ProteinSimple).
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  Fig. 1.  Original records showing the effect of a cumulative dose-dependent response of PACAP1–38, PACAP1–27, 
and VIP in CA of WT (PACAP +/+ ;  a ) and KO (PACAP –/– ;  b ) mice. At the end of the experiment, SNP (10 –5   M ) 
was administrated to check vessel viability. 
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  Statistical Analysis 
 All data collected as time series were compared across geno-

types and dose points by 2-way ANOVA (Tukey post hoc). All data 
were collected as single-point measurements. For Western blot 
analysis, the Student  t  test was used. Analyses were performed us-
ing Sigma Plot 12.5 (Systat, Chicago, IL, USA). Differences were 
considered significant at  p  < 0.05. Data are reported as the mean ± 
SE. Additional information can be found in the online supplemen-
tary material (see www.karger.com/doi/10.1159/000457798 for all 
online suppl. material).

  Results 

 Effect of Cumulative Doses of PACAP1–38, 
PACAP1–27, and VIP on the Isometric Force 
Development of Isolated Arteries 
 First, we obtained the responses of arteries to PA-

CAP1–38, PACAP1–27, and VIP in WT and KO mice. 
Original records ( Fig. 1 ) and summary data ( Fig. 2 ) show 
the vasomotor effects to the cumulative doses of PA-
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  Fig. 2.  Effect on vasomotor response of cu-
mulative dose-dependent administration 
of PACAP1–38 ( a ,  d ), PACAP1–27 ( b ,  e ), 
and VIP ( c ,  f ) in CA ( a–c ) and FA ( d–f ) of 
WT and PACAP KO mice. Arterial relax-
ation is marked as a negative change in 
force. Data are expressed as means ± SE
( n  = 6/group).  *  p   < 0.05, WT versus KO 
mice;  +   p  < 0.05, WT mice versus baseline; 
°  p  < 0.05, KO mice versus baseline. 
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CAP1–38, PACAP1–27, and VIP in the isolated CA 
( Fig. 2 a–c) of WT and KO mice. In the arteries of WT 
mice, PACAP1–38 (10 –8  to 10 –6   M ) elicited a significantly 
greater dose-dependent relaxation than PACAP1–27 and 
VIP. In contrast, PACAP1–27 and VIP ( Fig. 2 b, c) elic-
ited significantly greater dose-dependent relaxations of 
arteries from KO mice that of WT mice, whereas in arter-

ies from KO mice, PACAP1–38-induced relaxations were 
significantly reduced (only the highest dose resulted in 
relaxation;  Fig. 2 a). In FA of WT and KO mice, PACAP- 
and VIP-induced responses were similar to those of CA 
( Fig. 2 d–f).
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  Fig. 3.  Effect on vasomotor response of
cumulative dose-dependent administration
of maxadilan ( a ,  d ), Ala                   11,22,28 VIP ( b ,  e ), 
and Bay55–9837 ( c ,  f ) in CA ( a–c ) and FA 
( d–f ) of WT and PACAP KO mice, and 
their effect in the presence of M65 (PAC1R 
agonist;  a ,  d ) and VIP6–28 (VPAC1R ago-
nist;  b ,  e ). A negative change in force is 
marked as arterial relaxation. Data are
expressed as means ± SE ( n  = 3–6/group). 
 *   p  < 0.05, WT versus KO;  +   p  < 0.05, WT 
versus baseline; °  p  < 0.05, KO versus base-
line;  †   p  < 0.05, WT + M65 versus baseline; 
 Δ    p  < 0.05, KO + M65 versus baseline;
 ‡   p  < 0.05, Ala 11,22,28 VIP versus Ala 11,22,28 VIP 
+ VIP6–28 (in WT mice). 
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  Effect of Cumulative Doses of Maxadilan, 
Ala 11,22,28 VIP, and Bay55–9837 on the Isometric Force 
Development of Isolated Arteries in the Presence of 
M65 and VIP6–28 
 Summary data show the vasomotor effects of cumula-

tive doses of receptor agonists in the CA ( Fig. 3 a–c) and 
FA ( Fig. 3 d–f) of WT and KO mice and their responses in 

the presence of selective blockers. Maxadilan induced sig-
nificant and similar relaxations of CA (10 –7   M ) and FA 
(10 –8  to 10 –7   M ) isolated from WT and KO mice ( Fig. 3 a, 
d). However, the presence of M65 had no effect on vaso-
motor response to maxadilan-induced relaxation in ei-
ther CA or FA. Ala 11,22,28 VIP elicited a significant relax-
ation in the arteries of WT mice (10 –7   M ), whereas it elic-
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  Fig. 4.  Effect on vasomotor response of
cumulative dose-dependent administration
of PACAP1–38 ( a ,  d ), PACAP1–27 ( b ,  e ), 
and VIP ( c ,  f ) in CA ( a–c ) and FA ( d–f ) of 
WT and PACAP KO mice in the presence 
of M65. A negative change in force is 
marked as arterial dilatation. Data are ex-
pressed as means ± SE ( n  = 3–6/group).
 *    p  < 0.05, WT versus WT + M65 mice;
 +                       p  < 0.05, KO versus KO+M65 mice; °  p  < 
0.05, WT + M65 versus baseline;      †     p  < 0.05, 
KO + M65 versus baseline.                   
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ited no response in arteries from KO mice ( Fig. 3 b, e). A 
significant difference in the response between WT and 
KO mice was found at the 2 highest doses (10 –8  to 10 –7   M ). 
Moreover, the selective blocker VIP6–28 blocked the 
Ala 11,22,28 VIP-induced relaxation, which was significant 
at the 2 highest doses of Ala 11,22,28 VIP (10 –8  to 10 –7   M ). 
Bay55–9837 did not elicit a significant vasomotor re-
sponse in the arteries from WT or KO mice ( Fig. 3 c, f).

  Effect of Cumulative Doses of PACAP1–38, 
PACAP1–27, and VIP on the Isometric Force 
Development of Isolated Arteries in the
Presence of M65 
 Summary data show the effect of cumulative doses of 

PACAP1–38, PACAP1–27, and VIP in the presence of 
M65 in the CA ( Fig. 4 a–c) and FA ( Fig. 4 d–f) of WT and 
KO mice. The presence of M65 significantly reduced PA-
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  Fig. 5.  Effect on vasomotor response of
cumulative dose-dependent administration
of PACAP1–38 ( a ,  d ), PACAP1–27 ( b ,  e ), 
and VIP ( c ,  f ) in CA ( a–c ) and FA ( d–f ) of 
WT and PACAP KO mice in the presence 
of VIP6–28. A negative change in force is 
marked as arterial dilatation. Data are ex-
pressed as means ± SE ( n  = 3–6/group).
 *   p  < 0.05, WT versus WT + VIP6–28 mice; 
 +                       p  < 0.05, KO versus KO + VIP6–28 mice; 
°  p  < 0.05, WT + VIP6–28 versus baseline.                             
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CAP1–38-induced relaxations of arteries from WT mice 
(up to 10 –6   M ), whereas it did not affect the arterial re-
sponses of KO mice ( Fig.  4 a, d). M65 significantly re-
duced PACAP1–27-induced relaxations of arteries from 
WT mice, and also eliminated the increased arterial re-
sponses of KO mice ( Fig.  4 b, e). M65 significantly re-
duced VIP-induced relaxations of arteries from KO mice 
(10 –8  to 10 –6   M ), whereas it did not significantly affect the 
arterial responses of WT mice ( Fig. 4 c, f).

  Effect of Cumulative Doses of PACAP1–38, 
PACAP1–27, and VIP on the Isometric Force 
Development of Isolated Arteries in the
Presence of VIP6–28 
 Summary data show the effect of cumulative doses of 

PACAP1–38, PACAP1–27, and VIP in the presence of 
VIP6–28 in the CA ( Fig. 5 a, c) and FA ( Fig. 5 c, f) of WT 
and KO mice. The presence of VIP6–28 significantly re-
duced PACAP1–38-induced relaxations of arteries from 

WT mice, whereas it did not affect the already reduced 
arterial responses of KO mice ( Fig. 5 a, d). VIP6–28 sig-
nificantly reduced PACAP1–27-induced relaxations of 
arteries from WT mice, and also eliminated the increased 
arterial responses of KO mice ( Fig. 5 b, e). VIP6–28 sig-
nificantly blocked VIP-induced relaxations of arteries 
from KO mice (10 –9  to 10 –6   M ), whereas it did not signifi-
cantly affect the arterial responses of WT mice ( Fig. 5 c, f).

  Expression Levels of PAC1, VPAC1, and VPAC2 in 
the Arteries of WT and KO Mice 
 The protein and mRNA expressions of PAC1, VPAC1, 

and VPAC2 were measured in CA and FA of WT and KO 
mice. We detected a weak mRNA signal of PAC1 in the 
arteries in both groups. Statistical analysis ( t  test,  *    p  < 
0.05 vs. control) showed significantly reduced PAC1 ex-
pression levels in the arteries of KO mice, in both CA and 
FA. The expression of VPAC1R was shown in all groups 
of arteries in WT and KO mice, whereas the expression 
of VPAC2R was not detected in either group ( Fig. 6 ). Pro-
tein levels, as detected by Western blot, corresponded 
with the mRNA levels – a significant reduction of PAC1R 
was found in KO mice (CA 0.2, and FA 0.6;  p  < 0.05 vs. 
WT), whereas VPAC1 did not change, and VPAC2 was 
not detected in either group.

  Effect of Cumulative Doses of PACAP1–38, 
PACAP1–27, and VIP on the Isometric Force 
Development of Isolated Arteries in the Presence of 
Cumulative Pharmacological Blockade of PAC1R, 
VPAC1R, and VPAC2R (PACAP6–38) 
 Cumulative doses of PACAP1–38, PACAP1–27, and 

VIP did not elicit changes in the vasomotor tone of arter-
ies in the presence of antagonist PACAP6–38 (online 
suppl. Fig. 1).

  KCl-Induced Constrictions of Arteries 
 KCl (60 m M ) elicited contractions of arteries, which 

were significantly greater in the arteries of KO mice (on-
line suppl. Fig. 2a).

  Relaxations Induced by Endothelium-Dependent and 
-Independent Agonists 
 ACh (an endothelium-dependent agent) and SNP (an 

endothelium-independent agent) elicited relaxations of 
arteries isolated from WT and KO mice. The SNP-
induced relaxations were significantly greater in both ar-
teries of WT mice compared to the KO mice (at 10 –7   M  
and 10 –6   M ), whereas the magnitude of ACh-induced re-
sponses were not different (online suppl. Fig. 2b, c).
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  Fig. 6.  mRNA expression of PAC1, VPAC1, and VPAC2 in FA and 
CA of WT and PACAP KO mice. Actin was used as a control. The 
numbers below the signals represent integrated densities of signals 
determined by ImageJ software. mRNA expression of representa-
tive data for 2 independent arterial/animal samples.                    *   p  < 0.05 ver-
sus control.                                                       
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  Discussion 

 The novel findings of the present study are: (1) PA-
CAP1–38 elicited significantly greater relaxations in the 
arteries of WT mice than PACAP1–27 and VIP; (2) in 
contrast, PACAP1–38 did not induce relaxation in the 
arteries of KO mice, whereas PACAP1–27 and VIP in-
duced significantly greater relaxations compared to the 
arterial responses of WT mice; (3) maxadilan, a selective 
PAC1R agonist, elicited arterial relaxations in both WT 
and KO mice, whereas Ala 11,22,28 VIP, a selective VPAC1R 
agonist, elicited arterial relaxations only in WT mice; and 
(4) in the arteries of WT mice, both selective antagonists 
(PAC1R and VPAC1R) reduced the relaxations to PA-
CAP and VIP, whereas, in the arteries of KO mice, PAC1R 
antagonist reduced the relaxations and VPAC1R antago-
nist blocked the relaxations induced by PACAP and VIP.

  PACAP- and VIP-Induced Vasomotor Responses in 
Arteries from WT and KO Mice 
 The polypeptide PACAP has been shown to be a multi-

functional molecule with several regulatory roles  [1, 37] . 
These diverse functions also include potent vasomotor ef-
fects  [17, 18] . There are studies showing relaxations to 
both PACAP isoforms and VIP in vessels of different ori-
gin, such as carotid  [23] , pulmonary  [24] , mesenteric and 
coronary  [38] , meningeal  [20] , cerebral and intracerebral 
 [21, 22] , and middle cerebral arteries  [10]  of various spe-
cies. Similarly, we also observed relaxation, but the relax-
ation was significantly greater in response to PACAP1–38 
as compared to PACAP1–27 and VIP in both arteries of 
WT mice. These findings confirmed the observation of 
Huang et al.  [38] , who showed that PACAP1–38 elicited 
the greatest dilator response in rat mesenteric arteries. 
However, the same authors also found that PACAP1–38 
was less potent than VIP or PACAP1–27 in porcine coro-
nary arteries, suggesting region-specific PACAP signaling 
in vasomotor responses. Indeed, vessels originating from 
different regions can respond to the same stimulus with 
different magnitudes  [23] , or react differently even if ves-
sels are from the same organ, such as the brain  [10] . Al-
though different in origin, CA and FA are considered to be 
“large arteries” as compared to “small” brain arteries, for 
example. Region-specific responses have also been ob-
served by others  [22, 23, 38, 39] , which may be due to dif-
ferent/similar sensitivities to PACAP isoforms showing an 
important region specificity  [39]  of arteries, reflecting dif-
ferent requirements of blood supply to different regions.

  The genetic modification allows the assessment of
endogenous regulatory functions of PACAP isoforms by 

PACAP-induced responses of KO mice. Like in WT, PA-
CAP and VIP induce relaxation in KO mice, but in a dif-
ferent pattern. We found a “biological switch” between 
PACAP1–38 and PACAP1–27/VIP, meaning that PA-
CAP1–27/VIP took over the physiological response, i.e., 
relaxation from PACAP1–38. Although PACAP is not 
presented in KO mice, the identical responses of PA-
CAP1–27 (artificially administrated) and VIP (since their 
structure is 68% identical  [1] ) indicate the importance of 
backup mechanisms tending toward the VIP system.

  Only recent reports address the cardiovascular conse-
quences of PACAP deficiency  [20, 32] , showing that lack 
of PACAP causes developmental defects and impaired 
protection against harmful stimuli. In contrast, there are 
no reports yet regarding the effects of PACAP in the
peripheral vasculature of PACAP-deficient mice. 

 Role of PAC1, VPAC1, and VPAC2Rs in Vasomotor 
Responses 
 The distribution of PACAP/VIP receptors can vary 

greatly in different organs and even within the same organ 
 [1] . Vessel walls are highly innervated by PACAP-con-
taining nerve fibers, and a high density of PACAP/VIP 
binding sites has been reported in the arteries or humans 
and rats  [1, 10, 22, 40, 41] . However, the presence of PAC1, 
VPAC1, and VPAC2 in peripheral arteries of mice and 
their roles in the vasomotor response are less known.

  In the present study, using maxadilan, we showed the 
involvement of PAC1R in mediating the vasomotor activ-
ity of PACAP, confirming the findings of many others  [1, 
23] . Relaxations elicited by maxadilan were similar in the 
arteries of WT and KO mice, despite the differences in 
mRNA and protein levels of PAC1Rs. It is unclear why 
maxadilan induced a similar magnitude of response, but 
it could be due to its greater potency  [1] . This is not un-
expected since Otto et al.  [42]  have already shown the 
crucial importance of PAC1R in maintaining vascular 
tone, indicating the presence of PAC1Rs. In addition, PA-
CAP regulates PAC1R expression  [43, 44] , and absence 
of PACAP protein could be the reason for the differences 
in mRNA expression and protein levels between the ar-
teries of WT and KO mice (and also for the different re-
sponses to PACAP1–38, but not to maxadilan). Hoover 
et al.  [45]  showed that both maxadilan and PACAP1–27 
activate PAC1R located on cardiac neurons; however, 
they differ in downstream signaling, indicating their im-
portance. This suggests that PAC1R could be modified 
with its potency preserved. Interestingly, maxadilan-in-
duced relaxations were not affected by M65, an inhibitor 
of PAC1R, possibly because maxadilan is several thou-
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sand-fold more potent than M65, or due to the existence 
of splice variants  [1]  with different affinities for maxadi-
lan and M65. One can also assume that maxadilan may 
not be selective enough  [46] .

  The arteries of WT mice also responded with relax-
ations to a selective VPAC1R agonist, confirming the 
presence of a receptor. Another study also reported the 
presence of a receptor in mice in different tissues of the 
central nervous system  [47] , indicating the importance
of VPAC1R. Although the mRNA and protein levels
revealed no difference between the arteries of WT
and KO mice, the vasomotor response to the agonist 
(Ala 11,22,28 VIP) was absent in KO mice. We propose that 
the absence of PACAP protein elicited alternations in ei-
ther the function or signaling pathway of VPAC1R, which 
is reflected in different responses to agonists and, conse-
quently, in different responses of arteries of WT and KO 
mice. Importantly, PACAP, compared to VIP, has great-
er potential for regulation of the expression of PACAP/
VIP receptors  [43] , which can be altered by lack of PA-
CAP in favor of VIP. It seems, however, that VPAC2R 
does not play a role in PACAP- and VIP-induced vaso-
motor responses of peripheral arteries.

  We made an interesting observation with PACAP iso-
forms and VIP in the presence of PAC1R and VPAC1R 
antagonists, indicating that in WT mice the PACAP- and 
VIP-induced relaxations of arteries most likely need both 
PAC1R and VPAC1R to achieve a maximal response. 
When PACAP protein is not presented (KO mice), the 
VPAC1R may undergo conformational changes, allow-
ing the more effective binding of VIP ( Fig. 7 ), which may 
explain why the blockade of PAC1R results in the reduc-
tion of relaxation and the blockade of VPAC1R results in 
the abolishment of relaxation. Nevertheless, these find-
ings indicate that arterial relaxations in WT mice are me-
diated primarily via VPAC1R, as was shown previously 
 [10] .

  KCl-Induced Tone of Arteries of WT and KO Mice 
 We used KCl to test the contractile abilities of arteries 

because it elicits responses without receptor mediation, 
which may change in various conditions and animals 
 [36] . KCl induced greater arterial tone, which could be 
due to increased oxidative stress  [48] , shown to be present 
in KO mice  [31] , and/or due to the absence of PACAP, 
which can interfere with the vasomotor properties of ar-
teries by reducing cAMP activity, which is normally acti-
vated by PACAP  [49] . The increased tone elicited by KCl 
and/or oxidative stress could also be responsible for re-
duced responses of arteries of KO mice to the NO donor 

SNP. These findings could have physiological importance 
since PACAP can provide a counterbalance mechanism 
for vasoconstriction, as manifested by many pathological 
conditions  [31] , such as the presence of hypertension in 
PAC1R –/–  mice  [42] .

Receptor activation in arteries of PACAP (WT) mice

Receptor activation in arteries of PACAP-deficient (KO) mice

PACAP
peptide

PACAP
peptide

VIP
peptide

VIP
peptide

PACAP1–38 +

PACAP1–38 –

PACAP1–27 –

VIP +

PKA

Vasodilation SMC

PACAP1–27 +

VIP +PAC1 VPAC1

PAC1 VPAC1

PKA

Vasodilation SMC

  Fig. 7.  Proposed mechanisms of PACAP-induced relaxation in PA-
CAP WT and KO mice. Upper panel: as described by Koide et al. 
 [50] , PACAP and VIP bind to PAC1R/VPAC1R, the G protein-
coupled receptors, and stimulate cAMP/PKA, promoting vasodila-
tation. PACAP isoforms bind to both receptors, while VIP binds 
only to VPAC1R (or VIP to PAC1 at >500 n M )  [1] . Increased and 
reduced relaxations to polypeptides are marked with thicker and 
thinner arrows, respectively, as compared to PACAP1–38. Lower 
panel: in PACAP-deficient mice, PACAP1–38 does not elicit relax-
ations, whereas PACAP1–27 and VIP elicit relaxations. This could 
be explained by previous findings  [2–4]  that the molecular struc-
ture of PACAP1–27 and VIP are 68% similar, thus PACAP1–27 can 
mimic VIP (and thus induces relaxation), and exogenous polypep-
tides can elicit relaxation in PACAP deficiency. Our data suggest 
that endogenous VIP can bind not only to VPAC1R, but also to 
PAC1R. Increased, reduced, or absent relaxations to polypeptides 
are marked with thicker, thinner, or dashed arrows, respectively (as 
compared to the PACAP WT mice). “+” indicates polypeptides pre-
sented in the cell and added exogenously; “ – ” indicates exogenous-
ly added polypeptides (in PACAP-deficient mice only).                                                                           
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  Conclusions 

 This study is the first to show the vasomotor effects of 
exogenous PACAP1–38, PACAP1–27, and VIP polypep-
tides in peripheral arteries isolated from PACAP-defi-
cient mice, in which relaxations of arteries to PACAP1–38 
were absent, whereas relaxations to PACAP1–27 and VIP 
were augmented. The vasomotor responses to these poly-
peptides were mediated by PAC1 and VPAC1Rs, the
activities of which were dependent on the presence of
endogenous PACAP. In PACAP deficiency, alternative 
pathways maintained the relaxations of arteries, under-
lining the physiological importance of PACAP vascular 
signaling.
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