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In cluster approximation of coherent potential method the density of electron states of transitional
element alloys with short-range order is obtained. On the base of these calculations the configura-
tional part of the total energy is determined and the equilibrium value caleulated of the short-
range order parameter on the first co-ordination sphere. The obtained parameter of orderliness
in most of the considered systems agrees by sign with the experimental data and qualitatively
they depend on the concentration on the right way.

In der Clusterniiherung der Methode des kohdrenten Potentials wird die Elektronenzustandsdichte
von Ubergangsmetallegierungen mit Nahordnung berechnet. Auf der Grundlage dieser Rechnungen
wird der Konfigurationsanteil der Gesamtenergie bestimmt und der Gleichgewichtswert des Nah-
ordnungsparameters auf der ersten Koordinationssphire berechnet. Der erhaltene Ordnungs-
parameter in den meisten der betrachteten Systeme stimmt im Vorzeichen mit den experimentellen
Werten iiberein und hingt qualitativ in richtiger Weise von der Konzentration ab.

1. Introduection

In certain transition metals the character of atomic order can be described to a great
extent by means of cluster effects. It could be demonstrated with the help of the diffuse
scattering method [1] that in CuPt alloys the reduction of the platinum concentration
will lead to a transition from short-range order of the type CuPt (Ll,) to that of
Cu,Pt (L1,).

In the study of the phenomenon of order in these systems the cluster model of binary
alloys was used which had been applied with success to non-ordered magnetic alloys
[2, 3]. The main feature of this model is the dependence of the electron state of all
atoms in the alloy upon the electron structure of Z; nearest neighbours. The detailed
description of the method, which is essentially a variation of the molecular field approx-
imation, can be found in our earlier communications [4, 5].

In the present work only the finally obtained equations are given which are compar-
ed to the results of calculations using the density of electron states.

2. Caleulations

Let us consider the model of a one-band transition metal binary alloy whose state
density is approximated by the density of the d-states. The composition of the alloy
should be A;B;_, where ¢ is the concentration of the component A. The system should
be characterized by a Hamiltonian describing intense interaction and neglecting the

1) Muzeum krt. 6-8, H-1088 Budapest, Hungary.
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states degenerated in d
H =73 |n) Ey;{n|l + X 20 by <m| (1)
n

n MmEN
where E, is the d-level energy of the atom n whose value can be either £, or Hjy,
depending upon the occupation of the lattice site n by atom A or B, respectively.
By is the element s, n of the transition matrix which differs from zero only for the
nearest neighbours and can thus have the values k4, ks, or hgp, depending upon the
oceupation of the lattice sites by atoms A and A, A and B, or B and B. For the approxi-
mation of hyp the following expression is accepted:

hap = (hashpp)?, (2)
and it is further supposed that B, depends upon the nearest neighbours as follows:
En = En() + U(nﬂ - 7I/‘IIO) 3 (3)

where E, is the d-level energy of the pure metal atom, %, and n, are the numbers of
electrons of the atoms in the alloy or metal, and U is the energy integral characteristic
of the effective electron—electron interaction within the atom.

Table 1
Characteristic parameters of pure transition elements [2, 3]

[ eY — epg 204 N0
(eV) (eV) (electron/atoms)
Ni 2 4.0 9.45
Cu 1 3.5 9.95
Pt 0 7.0 9.55

Let us now suppose that the different bandwidths of pure metals (Table 1)
Wy = ZlhAA s wy = ZlhBB (4)

cause the structure dependence of the off-diagonal elements of the Hamiltonian of the
alloy. .

A cluster consisting of a central atom n and of Z; nearest neighbours can be character-
ized by the type of the central atom and the number of neighbouring atoms of types A
and B. The effective medium is determined by the one-electron approximation of the
alloy. This medium can be calculated by means of the coherent electron scattering
on the cluster within the medium. Determination of the effective medium leads to
that of the coherent potential, X, or, in other words, to that of the off-diagonal dis-
order of the resolvent operator

h=(z—2)". (5)

The diagonal matrix elements G5 of the configurational cluster of the Green function in
site representation depend both upon the type of the atom n in central position and
upon the number of the neighbouring atoms A and B, that is upon 7, and nyg. Accord-
ingly, Gy, depends upon the matrix elements of the Green function of the medium A%,
and this dependence is perturbed only by the first coordination sphere

2 ko, 2
Gk _ Yn Amﬂ/n
nn =

1 , 6
— En{ + [1 — (ya(z — Ba)™t — h) A5] (z — En)} ©)
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where
Aﬁn = UO -+ Uz(R) T,

(T =Z;Gd (L — 2y &y )Y, 2= E 10, (7

and the average value of () is
1 N/AtA ﬂ'BtB
= _ 8

N2 Z1(1+TtA+1+FtB ®)
and

tn = [ya(z — Bo)™ — R][1 + (yia(z — Bn)™* — h) U] (9)
In these expressions y; is proportional to the bandwidth

Fopm, = ')’nh)’m » (10)

where & is the structure-independent transition integral of the pure metal, while
Us, U(R), and I' can be expressed by the matrix elements of the Green function

G = (z LRI YD) (17> R (m|>’1,

n Mm=En

Gun = [ 0o(E) (71 — E)1 dE,

where g, (&) is the density of state of the cubic metal crystal with a bandwidth w = Z%
and

Uy, = h2Gu—nht, UWR)="nr10,, I'=[UR)"WZ —Guh2] (z;—1)71.

If the density of electron states of a face-centred cubic (f.c.c.) lattice is go(#) which
can be obtained from the calculation of the band structure [6], then this can be the
analytical model of the density of states

2 S
) =— 3 Fi'/D;—(E — B, (11)

T i=1,2

where the constants F,, D;, E; determining go(¥) correspond to the density of states
shown in Fig. 1 of [9].

The effective resolvent can be determined by the introduction of the following
conditions:

Gulh) = 3 ¥ P(k)Gy.C , (12)
n=A,Bk

where P(k) is the probability that a given cluster configuration is realized and depends
upon the short-range order parameter of nearest-neighbour interaction as follows:

P(E) = {c[c + (1 —eyoq]™[(1 —¢) (1 —oy)]2~"4; atom A isin the centre,
[(1 —¢) (L — ¢+ coy)2"4 [¢(l — &x;)]"; atom B is in the centre .
(13)
(' is the number of identical n;-configurations, which is equal to
C =2y [y (Zy — my)!]7 2. (14)
Equation (12) can be solved by iteration
W= b1 [ 33 P(k) G 0]’1 — Ga(b) (15)

where b is the value of % used in the calculations of the preceding step.
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By means of the calculated effective resolvent / it is possible to determine the elec-
tron density of the alloy

5 5 .
oB)=—="3 "3 P(k)GLC. (16)
T p=A,B k

In the first approximation of the effective resolvent the limit energy of the spectrum
was calculated from the results obtained for virtual crystals. Next, & was calculated
for all the energies for which the pertaining densities of states were not zero. For the
determination of the configurational part of the energy o(#) was calculated as above

Er
E,=N {2 [ Eo(E) dE — Uleni + (1 — c) nB] + Ee}, (17)
where Ep is the Fermi energy of the metal determined by

Ey

2 [o(E)dE = cnyo 4+ (1 —¢) np, (18)

N the number of atoms of the crystal, and E, the configurational part of the electro-
static energy,

Ep Er
ny =2 [os(B)dE, ng=2 [gy(B)dE, (19)
and g,(E) and gg(F) are components of the density of states of the alloy
5 2
oa(l) = — ;Im [Gu + (2 — By) px* — 71171,
: (20)
en(B) = — —Im [Go + (2 — By) y7* — 17170

According to [7] the part of B, in By, taking into consideration the nearest neigh-
bours only, is
__q=

2 i I
By ——ou(l — o) c(AZ*)Zzlf ¢ %QR—) o dg, (21)

where

AZ* = 75 — 7; (22)
Z, and Zj are the effective valencies [8], R the radius of the first coordination sphere
which can be defined by Vegard’s rule, and 7 the Ewald parameter.

3. Discussion

Within the framework of the statistical theory of short-range order the calculated values
of o(E) and E\ made the determination of x, possible by means of the equation

oy = (1 —oy)2e(l —c) exp {——%L [NkpTc(l — ¢) 2]t — 1}, (23)
1

where ky is the Boltzmann constant and 7' the temperature.

With the help of the psendopotential approximation, originally developed for solid
solutions, it is possible to calculate the type of atomic order and to determine the value
of &, for a number of alloys. By, is assumed to be a linear function of «; and the solution
of (2) is traced back to finding the roots of an equation of second order. In the present
paper Ey is not a linear function of «;, thus the determination of oy from (2) requires
a numerical method where it has to be added that 0E,/8x, has a substantial influence
on the convergence of iteration.

P o T = . T N S R
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The numerical values obtained with the EVM BESM-6 computer are shown in
Table 2 together with the values of v, obtained by the diffuse scattering method [1].

In the majority of the investigated systems, among which there are some short-range
ordered alloys and plane-ordered ones, the signs of ay o and X1exp agree, though the
calculated absolute values of short-range order parameters are considerably higher
than the experimentally obtained data.

Table 2

Comparison of the calculated and experimentally determined values of &,

alloy CuPt CuPt CuNi NiPt NiPt
concentration 29 50 50 11 31
(at%)

&1 eale —0.18 —0.05 0.36 —0.12 —0.20
&1 exp —0.1 0.00 0.12 —0.13 —0.133
T (°C) 500 890 1021 1050 1050

This discrepancy is quite understandable : the first approximation used for theapprox-
imate calculation of «; is due to the rather coarse model, but at the same time it is
characteristic that it was possible to calculate the appropriate signs of «, and to obtain
a qualitatively correct relationship for the concentration dependence of short-range
order. The results obtained for CuPt alloys are of theoretical importance. At relatively
low Pt concentrations (up to 30 at%, Pt) the alloy is ordered according to the type
Cu,Pt (L1,), at equivalent (50-50 at%,) concentration an order of the type CuPt (L1,)
develops. This transition distinguishes the alloy of equivalent composition from the
other ordered alloys. Consequently, in the neighbourhood of Cu,Pt the short-range
order parameter has a high absolute value and is negative, and almost zero in the alloy
of equivalent composition.

Thus, thex,-values calculated in the present paper reflect the concentration changes,
which means that our cluster model is in fairly good agreement with the experiments.

The essence of the model is, therefore, based on the assumption that the electron
structure of the nearest-neighbour atoms in the alloy determines the fundamental
properties of the density of states of a solid solution. It was taken into consideration
that in the pseudopotential theory (which, when all is said and done, is a perturbation
calculation of second order) the concentration dependence deviates only slightly from
the parabolic rule. The results achieved in this work are based on the fact that it was
tried to approach the realistic electron structure of the alloy.

At the same time, the go(E) used by us with a sharp maximum below the Fermi
energy is a rather rough approximation of the density of states of transition metals
having a face-centred cubic structure.

In the studies of x; of a wider range of alloys it seems therefore advisable to use an
appropriate initial density of states from which a better agreement of the calculated
and experimentally obtained data might be expected.
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