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Abstract— We investigated different dense multirotor UAV
traffic simulation scenarios in open 2D and 3D space, under
realistic environments with the presence of sensor noise, com-
munication delay, limited communication range, limited sensor
update rate and finite inertia. We implemented two fundamental
self-organized algorithms: one with constant direction and one
with constant velocity preference to reach a desired target.
We performed evolutionary optimization on both algorithms in
five basic traffic scenarios and tested the optimized algorithms
under different vehicle densities. We provide optimal algorithm
and parameter selection criteria and compare the maximal flux
and collision risk of each solution and situation. We found that
i) different scenarios and densities require different algorithmic
approaches, i.e., UAVs have to behave differently in sparse and
dense environments or when they have common or different
targets; ii) a slower-is-faster effect is implicitly present in our
models, i.e., the maximal flux is achieved at densities where the
average speed is far from maximal; iii) communication delay is
the most severe destabilizing environmental condition that has
a fundamental effect on performance and needs to be taken
into account when designing algorithms to be used in real life.

I. INTRODUCTION

As more and more individual UAVs are present in the
common airspace, there is an urgent need for both centralized
and decentralized solutions that assure the safety of flying
objects when they meet each other in the air. In the long term,
three-dimensional air traffic might be as populated and dense
as current road traffic. However, current working solutions
for road and air traffic control are not designed and neither
are suitable for handling a large amount of vehicles in 3D
open space. Road traffic control handles millions of vehicles
but is highly constrained by one-dimensional lanes that are
evident and visible for all cars using them. Centralized traffic
control elements (traffic lights, traffic signs etc.) are also
of great help to assure safe and maximal autonomous flow
of cars with or without drivers in every possible (fixed)
junction. However, the air is free from any traffic signs or
visible road markers and is three dimensional, which results
in fundamentally different and more complex situations when
interference of trajectories occurs. Moreover, dense UAV

*This work was supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences BO/00219/15/6

1Cs.V. is with the Biological Physics Department, Eötvös University,
Budapest, Hungary viraghcs@hal.elte.hu

2M.N. and G.V. Authors are with MTA-ELTE Statistical
and Biological Physics Research Group, Budapest, Hungary
nagymate@hal.elte.hu, vasarhelyi@hal.elte.hu

3M.N. is with Max Planck Institute for Ornithology, Department of
Collective Behaviour & Chair of Biodiversity and Collective Behaviour,
University of Konstanz, Konstanz, Germany mnagy@orn.mpg.de

4C.G is with IIMAS & C3, UNAM, Mexico City, Mexico; SENSEable
City Lab, MIT, Cambridge, USA; MOBSLab, Northeastern University,
Boston, USA & ITMO University, St. Petersburg, Russian Federation
cgg@unam.mx

traffic opens new possibilities for vehicle coordination that
have not been explored, as most traffic research is constrained
to roads [1], [2], while air traffic control is focused mainly
on aircraft with high velocity and inertia at low spatial
density [3], [4], [5], [6].

Current air traffic control is overwhelmingly centralized
and thus limited in terms of scalability [7], [8]. With the
current structure of air traffic control we will most probably
not be able to handle hundred or thousand times more UAVs.
Therefore, decentralized algorithms will be necessary to han-
dle local encounters and collision avoidance [9], [10]. There
are more and more UAVs equipped with individual collision
avoidance mechanisms but if these are not harmonized and
not tested in dense traffic situations, they will surely fail,
such as even people in panic situations [11] or cars in delay-
induced ghost traffic jams and road accidents [12].

Self-organizing strategies have proven to be useful in
simulations to coordinate road traffic [13], [14], [15]. In
general, traffic flow changes constantly thus it is more
efficient to regulate it with distributed adaptation of current
flow instead of the centralized optimization of an averaged
flow.

In this paper we present decentralized, self-organized
solutions for dense UAV traffic under realistic conditions.
By decentralization we mean that every agent (UAV in
the simulation) calculates its own desired outputs locally,
based on the local information available to it at a given
moment, without central processing of any dynamic global
information. Note that our interactions between agents are
always local - they are limited both by finite communication
range and localised interaction terms, which enables the
scalability of the system. By self-organization we mean that
any global “what” (fleet-level task) is solved by local “how”.
Note that for this we use the same global dynamic equations
by all agents; however, locality will be provided by the
non-uniform spatial distribution of information available to
agents.

We present two distinct models, basically for multirotor
type agents that can go in any direction freely and are also
capable of hovering in the air. However, one model is based
on a constant velocity assumption which can be extended
to be used also with fixed-wing aircraft later on. These
algorithms have been developed and tested in a simulation
framework [16] which is capable of taking into account
several specific features of autonomous UAVs, such as in-
accuracy of the sensors, time delay of the communication
between the robots, outer noises or inertial effects. It is
often a very hard task to develop and fine-tune an algorithm
under these “realistic” conditions, therefore, in contrast to

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 1645



simple physical models, such as the Vicsek-model [17] that
we incorporate into our solution to some extent, our traffic
algorithms contain a larger number of parameters.

In the next section, we introduce the reader to the scenarios
which have been studied, the interaction terms which are
common in the two traffic algorithms, then, we summarize
the unique terms of each algorithm. Note that in the con-
text of this paper, “algorithm” only means that we define
specific rules of motion (more precisely: specific desired
output velocities) for specific situations and environmental
conditions. For more details of the simulation framework
and the underlying differential equations, see [16].

II. THE MODEL

A. Basic Traffic Scenarios

In our test cases we simulate traffic by assigning a target
point to each agent in a common open space, without
any obstacles (if needed, simple obstacles or walls can be
modelled as virtual/shill agents, as in [18] or [16]; however,
handling obstacles is not our goal in this context). Every
time a target point is reached by an agent, a new target point
is assigned. The term “scenario” refers to the actual spatial
distribution of the target points. We investigated five basic
traffic scenarios with the following target point locations:

• RANDOM – random distribution inside a square (2D)
/ cube (3D) (Fig. 1a);

• LINE – endpoints of a single line, with each agent
alternating on the two endpoints (Fig. 1b);

• CROSS – endpoints of two identical, perpendicular lines
crossing each other at the middle, with each agent
alternating on endpoints of only one line (Fig. 1c);

• STAR – targets are alternating between a fixed point and
randomly chosen points inside a square / cube (Fig. 1d);

• EDGE – random distribution over the edge of a square
(2D) / surface of a cube (3D), with new targets always
being on a different edge (2D) / face (3D) (Fig. 1e);

Tim
e

(a) (b) (c)
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Fig. 1. Illustration of the time evolution of the five basic traffic scenarios
in 2D: a) random; b) line; c) cross; d) star; e) edge. The red and blue lines
correspond to the idealized trajectories of two independent agents between
their target points which are shown by circles. The brightness, the size
of the target circles and line width of the trajectories indicate time. Each
black frame represents a time instant when a target is reached. Note that
the random, star and edge scenarios are different in 2D and 3D, while the
line and cross remain the same, with an extra degree of freedom for motion
in 3D.

These scenarios can also be treated as test cases of popular
applications of UAVs: random and edge scenarios are models
of simple open space traffic, line and cross scenarios can be
imagined as narrow streets surrounded by urban buildings,
while the star scenario is a useful test for drone delivery from
a central area to multiple clients at different locations.

B. General Interaction Terms

Throughout our paper we assume the following realistic
conditions [19], which highly increase the complexity of the
treated problem and makes our work unique even among
decentralized approaches:

• agents calculate their position information with noise
that resembles typical GPS noise;

• agents broadcast their position and velocity to other
agents at a given framerate f s, within a given commu-
nication range rc, with a certain communication delay
tdel;

• agents have maximum velocity vmax and inertia, i.e.,
maximal acceleration amax.

In our agent-based model we use two general interaction
terms: a linear force law for short-range repulsion and a
viscous-friction like term for velocity alignment. Repulsion
and alignment was first used to establish and maintain cor-
related collective motion [20], [17], but they have also been
used to increase stability of collision-free formation flights
and collective target tracking [19]. In the current model,
agents might have individual target points, thus using align-
ment to increase velocity correlation could seem counter-
intuitive. However, besides synchronizing motion, viscous
friction also dampens delay-induced oscillations and relaxes
high-speed frontal encounters which are necessary features
of collision-free self-organization under realistic conditions.

Our current repulsion term defining a desired output
velocity component at a given time instant is as follows:

ṽrep
i = vrep

∑
j∈Ji

S(|xj − xi|, r0, γrep) · xj − xi

|xj − xi|
, (1)

where xi denotes the position vector of the ith agent, Ji
represents the set of indices where |xj − xi| < rc, vrep

is the strength of the interaction, r0 and γrep are the range
and decay length of the interaction. The spatial part of the
interaction S(∆x, r0, γ) is based on a sigmoid function with
a smooth sinusoidal decay from r0 − γ to r0:

S(∆x, r, γ) =
1 if ∆x < r − γ,
1
2

(
1− cos

(
π
γ (∆x− r)

))
if r − γ < ∆x < r,

0 otherwise.

(2)

The alignment term is as follows:
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ṽfrict
i = C frict

∑
j∈Ji

(
S(|xj − xi|, r0 + d, γfrict)·

·
(
|vj − vi|
vref

)αfrict

· (vj − vi)
)
, (3)

where vi denotes the velocity vector of the ith agent, the
interaction is parametrized with γfrict decay length and d
relative interaction range. The overall strength of the term
is defined by C frict, αfrict sets the dependence on the velocity
difference between agents i and j, and vref is a velocity
scaling parameter which guarantees that the quantity inside
the power function is dimensionless. Note that the term
kind of resembles viscous friction if α = 0, however, here
we allow for a more general dependence on the velocity
difference.

Both interaction terms have a maximum threshold velocity
magnitude (vrep

max and vfrict
max):

vrep/frict
i =

ṽrep/frict
i if |ṽrep/frict

i | < vrep/frict
max ,

vrep/frict
max

ṽrep/frict
i

|ṽrep/frict
i |

otherwise.
(4)
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Fig. 2. Distance-dependence of the general pairwise interaction terms with
specific interaction ranges and decay shapes characterized by γrep, r0, γfrict

and d.

Since our goal is to reach a target point, we need a driving
velocity term always pointing towards our current target
point:

ṽtarget
i = v0

xtarget
i − xi

|xtarget
i − xi|

, (5)

where v0 is the preferred common travelling speed of all
agents and xtarget

i is the actual target point of agent i. For
multirotor-type aircraft we implement a velocity decay in
the vicinity of the target:

vtarget
i = ṽtarget

i D
(
|xtarget

i − xi|, a, p, v0
)
, (6)

where the p gain determines the crossover point between
the two phases of deceleration, a is the preferred acceleration
and D(.) is a smooth velocity decay function in space,

with constant acceleration at high speeds and exponential
approach in space at low speeds [21]:

D(x, a, p, v0) ={
min(xp, v0) if xp < a/p,

min(
√
2ax− a2/p2, v0) otherwise.

(7)

In our constant velocity model we cannot slow agents
down near a target point thus we simply set vtarget

i = ṽtarget
i .

C. Constant Velocity Algorithm

The Constant Velocity (CV) Algorithm keeps the desired
speed of agents at all times and prevents collisions by using
the repulsion and alignment terms only:

vdesired
i = v0

vrep
i + vfrict

i + vtarget
i

|vrep
i + vfrict

i + vtarget
i |

(8)

D. First-in First-out Algorithm

The First-in First-out (FIFO) algorithm tends to keep the
direction of agents more and prevents collisions by slowing
down agents that seem to arrive to a future impact zone later
than others (Fig. 3). The algorithm consists of the following
steps for a given agent i:

1) For every agent j we calculate the angle sinαij =
|vi×vj |
|vi||vj | , the closest points and the distance dij between
the linearly extrapolated trajectories of i and j, and
check if we reach these closest points within a trajec-
tory extrapolation time τfifo. In 2D, the closest point
is the intersection point and dij = 0, in 3D dij can
be positive and thus there are separate closest points
on the two trajectories. We let the general interaction
terms handle parallel trajectory cases (sinαij = 0) and
exclude them here.

2) We define the impact zone radius rzone
ij around the

closest points as the largest distance inside which
agents i and j could be closer to each other than a
predefined distance rfifo:

rzone
ij =

√
rfifo2 − d2ij

sinαij
, (9)

assuming that dij ≤ rfifo (otherwise we do not use
FIFO interaction).

3) We calculate the time needed to arrive to (τ ini ) and
leave (τouti ) the impact zone. If there is any agent j
for which τ ini ∈ [τ inj , τoutj ], we reduce our actual target
velocity to v̂target

i = αfifovtarget
i , where αfifo ∈ [0, 1],

otherwise v̂target
i = vtarget

i .
The final desired velocity of the FIFO algorithm is as

follows:

vdesired
i = vrep

i + vfrict
i + v̂target

i (10)

Note that the FIFO algorithm can possibly slow down
agents way before they reach a repulsive zone thus it can
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Fig. 3. Illustration of the FIFO algorithm. We give yield, i.e. reduce our
speed if we assume to arrive to a trajectory cross section (impact zone) after
the other agent enters, but before it leaves the impact zone.

keep original trajectories unchanged. On the other hand, this
model also allows for the case when vdesired

i > vtarget
i , when

repulsive forces are present.

E. Realistic conditions

Both algorithms were tested in our simulation framework
under realistic conditions, with fixed environmental parame-
ters. Noise and delay were artificially added to the position
and velocity of other agents an agent obtained at a given time
instant. Interactions were spatially localized with limited
communication range (agents outside ones communication
range were excluded from any local calculations at every mo-
ment). Finally, finite acceleration and a general exponential
PID-model determined the real velocities of agents from the
desired output velocity vdesired calculated by the algorithms
and fed to the main differential equation of the framework.
The environmental parameters are summarized in Table I.

TABLE I
PARAMETERS OF THE REALISTIC SETUP

parameter value unit
v0 4 m/s
vmax 8 m/s
amax 6 m/s2
p 0.5 1/s
tdel 1 s
rc 80 m
f s 5 Hz

III. EVOLUTIONARY OPTIMIZATION

As we saw in the last section, the necessity of several
interaction terms under realistic conditions resulted in a
substantial number of parameters which might have to be
varied optimally for each specific situation. Our intention was
to provide very generic models and then perform heuristic
optimization on the models to find stable and optimal solu-
tions. We used the CMA-ES algorithm [22] as a state-of-the-
art evolution strategy for continuous parameter optimization
to fine-tune our models in all scenarios. Note that the
evolutionary optimization was performed at a meta level,
i.e., the population consisted of simulations with different
parameters, not agents themselves. To decide whether a
selected parameter setup works well, we defined a single
fitness function, consisting of two main parts:

• Agents should not collide with each other. Collision
occurs if two agents are closer to each other than rcoll.

• Agents should have high effective velocity, i.e., their
velocity vector must point towards their target points as
much as possible.

To take the first part into account, we define the collision
risk:

ψcoll(t) =
1

N(N − 1)

N∑
i=1

∑
j ̸=i

θ(rcoll−|xi(t)−xj(t)|), (11)

where θ(.) is the Heaviside step function. The collision
risk is non-zero if any collision occurs at time t.

To take the second part into account, we define the
effective velocity as a signed projection of the velocity vector
onto the line which connects the last (xtarget,last

i ) and next
(xtarget,next

i ) target points:

veff(t) = vi(t)

(
xtarget,next
i − xtarget,last

i

|xtarget,next
i − xtarget,last

i |

)
·

·

{
1 if (xi − xtarget,next

i )(xtarget,next
i − xtarget,last

i ) > 0,
−1 otherwise.

(12)

The second part of this product provides an additional
negative sign if the projected position of the agent passes
the projected position of its target point.

With the time average of these two parameters, we can
define a fitness function:

F =
A2

(< ψcoll >t +A)2
θ

(
< veff >t

v0

)
< veff >t

v0
, (13)

where A sets the tolerance level of the collisions. We aim
for low collision risk and high effective velocity simultane-
ously: in that case, the value of F is near 1. For declaring
a very harsh fitness criterion guaranteeing a significant drop
of F even if a single collision occurs with N = 100, we
choose now A = 0.000002. Note that our intention in the
first round was not to eliminate collisions with zero-tolerance
but to compare the risk of collisions in different scenarios
and densities. However, the collision risk tolerance can be
further reduced with smaller A or with executing evolution
using larger rcoll.

The optimization was performed using our realistic sim-
ulation framework [16] on the Atlasz supercomputer cluster
of the Eötvös University, Budapest, Hungary [23], with
a population size of 100 simulations and maximum 100
generations (which turned out to be sufficient in all cases).
Length of simulations was defined as the time needed for
an agent to travel 10 times the characteristic size L of the
scenario. Simulations were executed with 100 agents, with
random initial placement, agents not being closer to each
other than 6 m. In the case of cross and line scenarios,
initial placement was limited to 20 m distance from the lines
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defined by the target points to eliminate false transient free
motion in open space at the beginning. Statistical outputs of
the first 30 s were also neglected in each scenario to exclude
initial transients. Execution time of a single simulation was
typically 2 times faster than real time.

Since evolutionary optimization takes a long time, we have
chosen typical densities subjectively for each scenario where
the mean free path of the agents was neither too short nor
too long (i.e. there were many trajectory-conflicts but the
system did not yet get jammed). Our definition of the mean
free path is defined as the average linear distance between N
evenly distributed agents in a Dim-dimensional arena with
linear size L:

MFP = L/N
1

Dim (14)

Note that for the line and cross scenarios agents typically
do not spread out in the whole space available, therefore,
this mean free path definition results there in a locally
denser situation along the lines of motion (that is why
we have chosen larger MFP values for the evolution in
these scenarios). However, to be able to compare results in
different scenarios, we decided to keep this universal density
definition at all times.

The optimized parameter values for each scenario are
summarized in Fig. 4.

min

max

250 25 0.42

250 25 0.60

250 25 0.16

550 55 0.34

1100 110 0.45

116 25 0.71

116 25 0.82

116 25 0.09

550 118 0.36

1100 237 0.32

250 25 0.49

250 25 0.62

250 25 0.21

550 55 0.64

1100 110 0.72

116 25 0.75
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Fig. 4. Parameter setup of all models in all scenarios in 2D and 3D as
a best-fitness result of the CMA-ES optimization. Color coding from green
through yellow to red represents the relative value of a given parameter
within its defined maximal range.

Note that we performed only one evolution for each
scenario with 10k fitness-evaluations each, but running the
same evolution many times could lead to different results,

i.e., different local optima. However, we can gain significant
knowledge even from this single evaluation.

• In general flocking models, the typical range of align-
ment is usually larger than the typical range of repul-
sion, i.e., alignment functions at a distance where there
are already no hard-core repulsive forces. Contrarily,
in these traffic models the same alignment term has
an effective range that is always below the range of
repulsion. As a consequence, alignment here serves
as an additional helper to reduce collisions and, more
significantly, delay induced oscillations.

• In the FIFO model, the slow-down and alignment terms
have overlapping function. In the random and edge
scenarios, where each agent has different target points,
the alignment and the slow-down terms are basically not
existing or very small, collisions are mostly handled by
repulsion. In the other scenarios, where jammed states
around a common target point occur, which is a typical
excitation for oscillations when delays are present, both
terms are significant and are definitely needed.

IV. COMPARISON OF MODELS

We measured the effective velocity and the collision risk
of each optimized model in each scenario in 2D and 3D
environment as a function of agent density. We used the
following flux definition to evaluate the overall throughput
of the models:

Φ =
veff

MFP
. (15)

All density-scan results are visualized in Fig. 5. It is
clear in all cases that increasing the agent density decreases
the effective velocity and also increases the probability of
collisions. However, the flux also increases with density even
up to the stage where the effective velocity is significantly
reduced, and then, for some models it eventually drops. The
transition from the dynamic to the jammed state as a function
of density seems to be a smooth one in all models; however,
typical transition diagrams between the two states with a
maximal flux around a mid-way critical density can only
be observed in the random and edge cases. In the other
scenarios, according to the visual observation of the actual
simulations, the jammed state around common target points
are never really eliminated thus no true transition can occur
there.

The fact that the maximal flux increases with reduced
effective velocity at higher densities reflects the so called
slower-is-faster (SIF) effect [24]. Even though we do not
explicitly reduce the target velocity here to increase the flux,
in the FIFO model, we do reduce the average speed implicitly
by increasing the number of trajectory interferences and thus
the amount of the slowdown behaviour. However, for a clear
investigation of the SIF effect more simulations would be
needed with changing vtarget.

In general, each situation has its own challenges, and none
of the algorithms was capable of solving all problems with
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Fig. 5. Performance of the FIFO and CV algorithm in different densities in 2D (left column) and 3D (right column) space. a-b) effective velocity, as a
function of mean free path. Decreasing the MFP (i.e. increasing density) also decreases veff. Ratio of the effective velocities of the two models indicates
that in general the constant velocity model can yield higher efficiency; however, results are scenario-specific; c-d) collision risk as a function of mean
free path. Collision risk nearly always increases with density. Ratio of the collision risk of the two models indicates that best model selection depends
on density and scenario; e-f) average flux as a function of mean free path. The random and edge models show a typical flux distribution, where flux is
maximal at the critical density point between free motion and the jammed state.

the same efficiency. In fact, there are three main challenges
in the used scenarios:

• handle conflicting trajectories in general (random, edge,
and all models to some extent)

• handle fixed junction points and kind-of-fixed lanes
with self-organization and possibly emergent behaviour
(cross, line);

• handle queuing at a common target point (cross, line,
star).

In fact, the third problem is not treated explicitly in any

of the presented models and thus resolving these situations
is the least efficient in all cases. An explicit solution would
require additional communication between agents to, e.g.,
discuss an order and patiently stand in a queue and give
yield accordingly.

The FIFO algorithm was designed and is most suitable
for random/edge situations where individuals have different
targets, i.e., in open space general traffic. However, with
the currently evolved parameters it fails with high collision
risk at high densities, since oscillations emerge due to the
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communication delay and the strong repulsion. It also fails
at situations with a common target, since agents with reduced
speed are not able to decide on an appropriate order and get
completely jammed. Note that using, e.g., the star-evolved
parameters with large friction and slowdown effect for the
random/edge situations gives significantly better results in
terms of collision risk but reduce the overall effective ve-
locity. A further investigation would be to evolve the model
using all scenarios simultaneously to find a globally optimal
parameter selection.

The CV algorithm can handle those situations significantly
better (in terms of effective velocity or flux), where multiple
agents have the same target point, since the constant velocity
constraint works against jamming, however its solution is
still in the jammed phase and could be further enhanced
with explicit queuing rules. Regarding collision risk there is
no clear global best model - performance depends on both
density and selected scenario.

Interestingly the 2D and 3D scenarios give very similar
outcome in terms of the effective velocity, flux and number
of collisions, which means that the three dimensional models
are capable of handling a lot more UAVs in the air above a
given area.

V. DISCUSSION
One interesting aspect of the used models is that they can

produce different emergent phenomena in special situations:
• Self-organized lane formation is present in the line and

cross scenarios for both models. This structure with
optimal parameter space selection for maximizing traffic
flux has already been observed in army ants [25] and
pedestrians [26];

• self-excited oscillations as a result of communication
delay, such as in ghost traffic jams on highways, are
very common in all cases, especially at high densities
and with common targets.

In fact, delay turns out to be the most important environ-
mental constraint, with a fundamental effect on the overall
flux and more especially on the number of collisions (through
exciting oscillations). We performed further simulations to
reveal the effects of the communication delay (see Table II).
Removing the 1s communication delay from the environment
resulted in an average 90% of reduction of collisions and over
20% increase in the effective velocity based on simulations
executed with the parameters used for evolutionary optimiza-
tion in each situation. This has two different messages; in one
hand, decreasing communication delays in real life robotic
systems should be a main technological improvement, and, in
the other hand, performing simulations without the presence
of delays could lead to false and unstable results in real
environments.

The finite communication range as an environmental lim-
itation does not seem to be a severe bottleneck at all, since
all interactions are local and decay quickly with distance
anyway. Using unlimited communication did not result in
better solutions in general, but of course, communication
range has to be scaled with speed, for example. The fact that

general 3D traffic can be based on pure local interactions is
highly advantageous when we need to scale up system size
for global air-traffic control without increasing complexity
or costs of infrastructure.

In summary, we have shown two distinct models which
are tunable to handle realistic dense UAV traffic scenarios
in two and three dimensions. The FIFO model is mostly
successful for open space traffic, while the CV model is
more efficient to handle situations with a common target
point. The models were tested in realistic situations, where
communication delay turned out to be the most important
factor regarding the number of induced collisions and thus
destabilization of motion. Further investigations would be
needed to generalize the models to higher and heterogeneous
preferred velocity ranges and to provide a global optimiza-
tion that includes selective behaviour for more than one
scenarios simultaneously that could possibly occur naturally
on the way in a self-organized common airspace.

The scenarios studied were simplistic. Still, they show
the potential of developing self-organizing air traffic man-
agement systems, where only local, real-time information is
required to solve potential navigational conflicts. Certainly,
a structured environment can contribute to coordinate air
traffic, e.g., with dedicated lanes. However, we envision
efficient air traffic scenarios without a central repository of
UAV data.
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