Electrochemical migration of Sn and Sn solder alloys: a review

Zhong, Xiankang and Chen, Longjun and Medgyes, Bálint and Zhang, Zhi and Gaod, Shujun and Jakab, László (2017) Electrochemical migration of Sn and Sn solder alloys: a review. RSC Advances, 7 (45). pp. 28186-28206. ISSN 2046-2069


Download (10MB) | Preview


Sn and Sn solder alloys in microelectronics are the most susceptible to suffer from electrochemical migration (ECM) which significantly compromises the reliability of electronics. This topic has attracted more and more attention from researchers since the miniaturization of electronics and the explosive increase in their usage have largely increased the risk of ECM. This article first presents an introductory overview of the ECM basic processes including electrolyte layer formation, dissolution of metal, ion transport and deposition of metal ions. Then, the article provides the major development in the field of ECM of Sn and Sn solder alloys in recent decades, including the recent advances and discoveries, current debates and significant gaps. The reactions at the anode and cathode, the mechanisms of precipitates formation and dendrites growth are summarized. The influencing factors including alloy elements (Pb, Ag, Cu, Zn, etc.), contaminants (chlorides, sulfates, flux residues, etc.) and electric field (bias voltage and spacing) on the ECM of Sn and Sn alloys are highlighted. In addition, the possible strategies such as alloy elements, inhibitor and pulsed or AC voltage for the inhibition of the ECM of Sn and Sn solder alloys have also been reviewed.

Item Type: Article
Subjects: T Technology / alkalmazott, műszaki tudományok > TK Electrical engineering. Electronics Nuclear engineering / elektrotechnika, elektronika, atomtechnika
Depositing User: MTMT SWORD
Date Deposited: 20 Sep 2017 12:40
Last Modified: 20 Sep 2017 12:40

Actions (login required)

Edit Item Edit Item