
Exact methods for the Strip Packing problem

Research Report∗

Péter Madarasi
ELTE, Pázmány Péter Sétány 1/c, Budapest

supervised by
Tamás Kis

MTA SZTAKI, Kende str. 13-17, Budapest

1 Introduction

In this work, the two-dimensional Strip Packing problem is considered, which
consists in packing n rectangles on a strip with a given width, and an in�nite
height. The rectangles must be placed in a non-overlapping, orthogonal way
respecting the width of the strip, and the objective is to minimize the height
of the strip.

Let R be the set of the given rectangles, and let W be the width of the
strip. The width and the height of the i-th item is denoted by ai and bi,
respectively. Both W and the dimensions of the items are supposed to be
integers.

The bottom left corner of the strip is designated to be the origin of a
plane with axes x and y corresponding to the width and the height of the
strip, respectively. A given packing can be represented by the location of the
bottom left corner of each rectangle i, denoted by (xi, yi).

∗This work was supported by the K112881 research grant of the National Research,

Development and Innovation O�ce � NKFIH.

1

1.1 Notation

Table 1: Constants

n number of rectangles
i = 1..n the i-th rectangle
ai width of rectangle i
bi height of rectangle i
W width of the strip
Hlb best known lower bound on the height of the strip
Hub best known upper bound on the height of the strip
Hinc incumbent height of the strip found so far

Table 2: Variables

h variable for the height of the strip
xi horizontal position of the left bottom corner of rectangle i
yi vertical position of the left bottom corner of rectangle i
zlij, i 6= j indicates if rectangle i is on the left of rectangle j
zdij, i 6= j indicates if rectangle i is under rectangle j
slij, i 6= j indicates if rectangle i is on the semi left of rectangle j
srij, i 6= j indicates if rectangle i is on the semi right of rectangle j
sdij, i 6= j indicates if rectangle i is semi under rectangle j
suij, i 6= j indicates if rectangle i is semi above rectangle j
hbij, i 6= j indicates if rectangle j is in the row of rectangle i
vbij, i 6= j indicates if rectangle j is in the column of rectangle i

Table 3: Functions, abbreviations

g̃(Z)
∑

z∈Z g(z), where g : Z −→ R
i = 1..n the i-th rectangle

2

2 MIP model

In this section a MIP model is described for the proposed problem.

minimize h
subject to xi + ai ≤ W, i = 1..n

yi + bi ≤ h, i = 1..n
xi, yi ≥ 0, i = 1..n
xi + ai ≤ xj OR xj + aj ≤ xi OR
yi + bi ≤ yj OR yj + bj ≤ yi, i = 1..n, j = 1..n

The last set of constraints force the rectangles to be disjoint, and can be
incorporated to the model by using binary variables as follows.

minimize h
subject to xi + ai ≤ W, i = 1..n

yi + bi ≤ h, i = 1..n
xi + ai ≤ xj +W (1− zlij) i = 1..n, j = 1..n, (i 6= j)
yi + bi ≤ yj +Hub(1− zdij) i = 1..n, j = 1..n (i 6= j)
zlij + zlji + zdji + zdij ≥ 1 i = 1..n, j = i+ 1..n (i 6= j)
xi, yi ≥ 0, i = 1..n
zdij, zlij ∈ {0, 1}, i = 1..n, j = i+ 1..n (i 6= j)

where Hub is an upper bound of the height of the strip (e.g. Hub =
∑

i∈R bi
is clearly a proper choice).

3 Heuristics

To gain a valid tighter upper bound of the height of the strip than the one
mentioned above, a few packings are generated using heuristic algorithms im-
plemented by Balu. Note that no warm start solution is provided to CPLEX,
but only the height of the best solution found preliminary. Not only does a
tight upper bound provide an upper bound on variable h, but is allows the
"BigM's" to be set smaller (see section 4.2.3).

4 Speeding up CPLEX

This section summarizes the current and some of the attempted improve-
ments implemented to speed up the B&B procedure of CPLEX.

3

4.1 Initial lower bounds

4.1.1 Area lower bound

Obviously, Hlb := d
∑
i∈R

aibi/W e is an easy to calculate lower bound.

4.1.2 Covering lower bound

Let K be the (arbitrarily ordered) set of the rectangle subsets having cumu-
lative width at most W . Let χi (i = 1..|K|) denote the incidence vector of
the i-th set of K, and let b := (b1, b2, .., bn) be the vector of heights of the
rectangles. The nearest rounded up value of the optimum of the following
linear program provides a lower bound of the optimal strip height.

minimize 1α

subject to
|K|∑
i=1

αiχi ≥ b, α ≥ 0

This problem can be considered as a column generation problem, in which
the subproblem to be solved is the knapsack problem. In the recent imple-
mentation, a dual cutting plane method is used, and the separation problems
are solved with CPLEX. Based on preliminary tests, this approach provides a
much tighter lower bound than the Area lower bound does (see section 4.1.1).
Furthermore, it consistently excels the lower bound CPLEX can reach in a
few seconds. In some lucky cases, the found lower bound is the optimum
itself.

4.2 Tightening the relaxation

In each node of the B&B tree, an LP-relaxation of the current (restricted)
problem is solved, and thus a lower bound of the best solution of the current
branching is found, which might ensure that no better solution can be found
on the current branch than the incumbent one. In this case, the current
branch can be pruned without further investigation. Clearly, the tighter
the LP relaxation is, the better lower bound is found, which is crucial to
recognize the unfruitful branches immediately. Thus in the following, an
extended model and some methods (i.e. valid cuts) strengthening the LP
relaxation are described.

4.2.1 Extended MIP model

The model described in section 2 is extended with new variables to have
the opportunity to introduce further cuts. Rectangle i is said to be on the

4

semi left of rectangle j i� xi + ai ≤ xj + bj. The other semi directions are
de�ned similarly. Let slij, srij, sdij, suij indicate whether rectangle i is on
the semi left, right, down, up of rectangle j, respectively. To express these
connections, the following inequalities are added.

xi + ai ≤ xj + aj +W (1− slij), i = 1..n, j = 1..n, (i 6= j)
xj ≤ xi +W (1− srij), i = 1..n, j = 1..n, (i 6= j)
yi + bi ≤ yj + bj +Hub(1− sdij), i = 1..n, j = 1..n, (i 6= j)
yj ≤ yi +Hub(1− suij), i = 1..n, j = 1..n, (i 6= j)
slij, srij, sdij, suij ∈ {0, 1} i = 1..n, j = 1..n, (i 6= j)

Furthermore, hbij and vbij indicate whether rectangle j is in the row of rect-
angle i, and whether rectangle j is in the column of rectangle i, respectively.
Clearly hbij = sujisdji and vbij = sljisrji, which are easy to linearize.

4.2.2 Compelling the decision variables to be positive

So far binary variables have been introduced to force certain equalities if set,
e.g. setting zlij to 1 ensures that rectangle i is on the left side of j. To
strengthen the relaxation, the reverse should be prescribed as well, that is all
these variables should be one if possible. For instance, if i is located on the
left of j, then zlij should be one, i.e. xi + ai ≤ xj + aj =⇒ zlij = 1, which
just the same as zlij = 0 =⇒ xi+ai > xj +ai. With all the dimensions of the
rectangles being integers, the latter is the same asWzlij+xi+ai ≥ xj+ai+1.
Applying the same idea to each and every binary variable, the following
equalities are gained.

xj + 1 ≤ xi + ai +Wzlij, i = 1..n, j = 1..n, (i 6= j)
yj + 1 ≤ yi + bi +Hub ∗ zdij, i = 1..n, j = 1..n, (i 6= j)
yj + bj + 1 ≤ yi + bi +Hubsdij, i = 1..n, j = 1..n, (i 6= j)
yi + 1 ≤ yj +Hubsuij, i = 1..n, j = 1..n, (i 6= j)
xj + aj + 1 ≤ xi + ai +Wslij, i = 1..n, j = 1..n, (i 6= j)
xi + 1 ≤ xj +Wsrij, i = 1..n, j = 1..n, (i 6= j)

4.2.3 Adjustment of BigM's

To tighten the relaxed polytope, BigM's should be chosen as small as possible.
For instance, xj + 1 ≤ xi + ai + Wzlij, i = 1..n, j = 1..n, (i 6= j) could be
replaced by the following inequality.

xj + 1 ≤ xi + ai + (W − aj − ai + 1)zlij, i = 1..n, j = 1..n, (i 6= j)

The same idea can be applied to all inequalities by using �ag -adjM.

5

4.2.4 Row cuts

In the relaxed solution, there might exist a set S consisting of rectangles
sharing the same row and having too large cumulative width. With S not
respecting the width of the strip, no packing exists in which the items of S
are located in the same row, i.e. at least one of the zdij variables among the

rectangles of S must be one. Similarly, at most
(|S|

2

)
− 1 of the zlij variables

among rectangles of S can be one. That is, the following cuts are valid.∑
i,j∈S
i 6=j

zdij ≥ 1

∑
i,j∈S
i 6=j

zlij ≤
(
|S|
2

)
− 1

4.2.5 Column cuts

If the relaxed solution contains an item set S having larger cumulative height
than the best upper bound of the necessary height of the strip, and the
rectangles in S share the same column, no packing can include S in a column,
i.e. the following holds for each and every packing.∑

i,j∈S
i 6=j

zlij ≥ 1

∑
i,j∈S
i 6=j

zdij ≤
(
|S|
2

)
− 1

4.2.6 Area cuts

Let i ∈ R be a �xed item. Clearly, the sum of areas of rectangles located
under rectangle i can not be larger than the area under i. That is,

∀i ∈ R :
∑
j∈R
i 6=j

ajbjzdji ≤ Wyi

is a valid cut. The same holds for the area above item i, and what is
more, analogue equalities can be parsed on the rectangles located on the left
and on the right of i.

6

∀i ∈ R :
∑
j∈R
i 6=j

ajbjzdij ≤ W (h− yi − bi)

∀i ∈ R :
∑
j∈R
i 6=j

ajbjzlji ≤ Hincxi

∀i ∈ R :
∑
j∈R
i 6=j

ajbjzlij ≤ Hinc(W − xi − ai)

Where Hinc denotes the height of the incumbent solution, or the best
upper bound on the height of the optimal packing.

4.2.7 How to �nd row cuts

Suppose that S is a set of rectangles sharing the same row, and ã(S) > W .
The following equality described in Section 4.2.4 holds for every admissible
rectangle packing. ∑

i,j∈S
i 6=j

zdij ≥ 1

Observe, that for any S ′ ⊆ S : ã(S ′) > W =⇒
∑

i,j∈S′

i 6=j

zdij ≥ 1 holds for

any admissible packing.
This section addresses the selection of such an S ′.
To gain the strongest row cut, a set S ′ ⊆ S should be determined, for

which ã(S ′) > W and
∑

i,j∈S′

i 6=j

zdij is as small as possible. This problem can be

modelled as an integer program. To solve this integer program at each and
every row cut generation, use the -cut exCuts �ag.

This approach generates indeed strong cuts, but it is time-consuming. To
balance the strength of the cut and the necessary time to �nd it, a heuristic
method is presented. Let S ′ denote the already selected rectangles.

De�nition 4.2.1. The e�ciency of a rectangle i ∈ S\S ′ is

eS′(i)=

ai/
∑
j∈S′

(zdij + zdji) if
∑
j∈S′

(zdij + zdji) 6= 0,

∞ otherwise.

7

Algorithm 1 E�cient Subset

1: procedure efficientSubset
2: Γzd(j) :=

∑
i=1..n, i6=j

zdij + zdji

3: j∗ ∈ arg max{Γzd(j) : j = 1..n}
4: S ′ := {j∗}
5: while ã(S ′) ≤ W do
6: j∗ ∈ arg max{eS′(j) : j = 1..n}
7: S ′ := S ′ ∪ {j∗}
8: Output S ′

Algorithm 2 Local search

1: procedure localSearch
2: ΓS′

zd(j) :=
∑

i∈S′\{j}
zdij + zdji

3: δS
′

zd(i, j) := ΓS′

zd(j)− ΓS′

zd(i)− zdij − zdji
4: while min{δS′

zd(i, j) : i ∈ S ′, j /∈ S ′, ã(S ′)− a(i) + a(j) > W} < 0 do
5: (i∗, j∗) ∈ arg min{δS′

zd(i, j) : i∈S ′, j /∈S ′, ã(S ′)−a(i)+a(j)>W} < 0
6: S ′ := S ′ ∪ {j∗}\{i∗}
7: Output S ′

The designed method generates a set S ′ using Algorithm 1, and runs
Algorithm 2 on this S ′. To apply this cut generation procedure, use �ag -cut

mostE�.

4.2.8 Semi area cuts

Let i ∈ R be a �xed item. Clearly, the sum of areas of rectangles located
semi under rectangle i can not be larger than the area under the top of i.
That is,

∀i ∈ R :
∑
j∈R
i 6=j

ajbjsdji ≤ W (yi + bi)− aibi

is a valid cut. Similar considerations hold for the area semi above, left,
right of item i.

∀i ∈ R :
∑
j∈R
i 6=j

ajbjsuji ≤ W (h− yi)− aibi

8

∀i ∈ R :
∑
j∈R
i 6=j

ajbjslji ≤ Hinc(xi + ai)− aibi

∀i ∈ R :
∑
j∈R
i 6=j

ajbjsrji ≤ Hinc(W − xi)− aibi

Where Hinc denotes the height of the incumbent solution, or the best
upper bound on the height of the optimal packing.

4.2.9 Belt cuts

Clearly, the sum of areas of rectangles located completely in the row of rect-
angle i can not be larger than Wbi−aibi, i.e. the area of the row of rectangle
i minus the area of rectangle i. That is, the following inequation, called
horizontal belt cut, holds for any admissible packing.

∀i ∈ R :
∑
j∈R
i 6=j

ajbj vbij ≤ Wbi − aibi

Similar observation leads to the following cut, called vertical belt cut.

∀i ∈ R :
∑
j∈R
i 6=j

ajbj hbij ≤ hai − aibi

4.3 Branching rules

If the current branching could not be proved to include no better solution
than the incumbent one, then new branches are constructed.

4.3.1 Braching priority

Intuition suggests that the e�ciency of a packing is crucially in�uenced by
the relative position of the largest rectangles, thus it seems to be reasonable
to branch �rst on variables belonging to rectangles with large areas. CPLEX
provides an interface to assign branching priorities to each non continuous
variable, thus the above idea can be easily added to the B&B method by
properly setting the priorities. Developing further this idea leads to a way
more e�cient custom branching rule detailed in the next section.

9

4.3.2 Custom branching based on the relaxed solution

To invalidate the current relaxed solution as much as possible, the branching
is done on a variable between two rectangles having the largest intersecting
area. After choosing the two mentioned rectangles i, j, two branchings are
made. In the �rst one, a relative position of i, j is �xed, while in the other
one the same position is forbidden. The positions are enumerated in the
following order: zlij, zlji, zdij, zdji. That is, we try to avoid forcing one of the
rectangles above another one. To apply this method, use �ag -bt maxInters.

4.3.3 Custom weighted branching based on the relaxed solution

The Custom branching based on the relaxed solution described is section 4.3.2
is modi�ed as follows. So far the order of zlij, zlji was determined without any
consideration, this time let's prefer the one forcing less shifting. Furthermore,
the branching where a variable is �xed gives a more restricted subproblem,
so it should be preferred to the branching forbidding a relative position. To
gain this, the estimated objective value (which is the optimum value of the
current relaxed problem) of the �xing branch is increased by a small ε. Just
the same method is applied to the zdij, zdji variables. To apply this method,
use �ag -bt maxIntersW.

5 Further ideas, observations, and experiments

5.1 On lifting

In this section, the tightening of the Row cuts of section 4.2.4 is attempted.
Solely the �rst Row cut type has been considered so far, i.e. that∑

i,j∈S
i 6=j

zdij ≥ 1,

where S ⊆ R is too wide rectangle set.
Choose a too wide S ⊆ R rectangle set such that |S| ≥ 3 and S\{k3} is

still too wide, where k3 denotes the third widest rectangle in S. Let k1 and
k2 denote the widest, and the second widest rectangle of S, respectively. We
claim that the following equality holds for any integer solution.∑

i,j∈S
i 6=j

zdij − zlk1k2 − zlk2k1 ≥ 1

10

Proof: Case 1: zlk1k2 = 1 or zlk2k1 = 1, i.e. k1 is forced to be on the left of k2
or k2 is forced to be on the left of k1. It's su�cient to see that in this case
at least two of the zd variables can be set to one in every integer solution.
Assume - on the contrary - that at most one zd variable can be set to zero.
This means that the width of S shrinks at most with the width of k3. But
S\{k3} was supposed to be too wide. Contradiction. [Since in any two wide
set, in an integer solution there is a rectangle pair with zd = 1.]
Case 2: zlk1k2 = 0 and zlk2k1 = 0. The equation is the basic row cut, see
Section 4.2.4.

5.2 On semi relaxation

Based on preliminary tests, the problem arising by relaxing the zl variables
is easy to solve. What if in the nodes of the B&B tree not the LP-relaxed is
solved, but we relax the zl variables only?

5.3 On non-LP-based lower bounds

A sketchy idea is to relax the problem to a parallel scheduling problem by
splitting all the rectangles vertically into smaller rectangles having width one.
Let these small rectangles be associated with jobs, and let the processing time
the height of the corresponding original rectangle. After that, the optimum
value of scheduling all the jobs on W identical parallel machines provides a
lower bound to the Strip Packing problem. Furthermore, in each branching
some precedence constraints are given, which can be incorporated to the
scheduling problem too.

6 Practical evaluation on random instances

This section present the practical e�ciency of the designed methods on two
type of random instances. In all cases, the width of the strip was 100 units
and the runtime limit was set to 600 seconds.

6.1 Thinner problemset

15 problem instances were generated, each consists of 13 rectangles having
unique random integer widths and heights between 1 and 50. Table 4 shows
the runtime results and the numbers of generated nodes, while Table 5 shows
the lower bounds found using di�erent methods.

11

6.2 Wider problemset

15 problem instances were generated, each consists of 14 rectangles having
unique random integer widths and heights between 1 and 25. Table 6 shows
the runtime results and the numbers of generated nodes, while Table 7 shows
the lower bounds found using di�erent methods. Note that no Scheduling
lower bounds have been calculated, since the scheduling problems were harder
to solve than the original one.

12

Table 4: Results on thinner rectangles

CPLEX def.
[-imprsO�]

-bt maxIntersW
-cut cplexDef

-bt maxIntersW
-cut mostE�

-bt maxIntersW
-cut exCuts

-bt maxIntersW
-cut mostE�
-semiVarsOn

-bt maxIntersW
-cut mostE�
-semiVarsOn

-adjM

-bt maxIntersW
-cut cplexDef
-semiVarsOn

-adjM
Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)
1938233 598.34 960710 598.31 98 0.39 177 33.95 131000 597.95 64 0.86 413990 598.3

51533 21.45 3905 2.69 254 0.6 105 11.72 209 2.08 583 3.99 1689 5.19

355622 108.96 23330 11.51 3590 6.34 83 19.05 13970 58.64 403 3.34 20439 32.83

202171 78.39 40602 23.94 10166 17.72 6267 2583.86 4107 21.9 42203 200.72 360409 598.68

0 0.02 0 0.05 0 0.04 0 0.04 0 0.13 0 0.2 0 0.19

0 0.02 0 0.12 0 0.07 10 3.14 0 0.21 50 0.86 20 0.59

92021 45.01 1049 0.92 521 1.59 167 31.46 514 4.69 1652 9.54 1790 5.24

0 0.04 30 0.12 0 0.06 50 16.09 30 0.68 140 1.9 0 0.41

272580 133.66 28869 26.15 58821 113.22 7408 2233 38995 207.57 22366 134 23295 59.59

39849 19.18 6725 5.8 3956 11.12 2873 850.19 7397 57.55 6536 46.4 5254 15.52

1610 0.47 120 0.2 85 0.34 40 17.29 140 1.75 20 0.68 270 1.85

0 0.02 0 0.08 47 0.25 49 19.01 130 1.45 140 1.78 0 0.46

0 0.04 20 0.12 50 0.39 40 17.48 50 0.81 70 1 30 0.8

0 0.04 190 0.29 110 0.47 91 32.4 440 4.32 209 2.23 720 3.34

137074 83.83 4147 2.68 2207 5.83 185 44.13 1097 7.75 740 5.78 2068 6.01

3090693 1089.47 1069697 672.98 79905 158.43 17545 5912.81 198079 967.48 75176 413.28 829974 1329

13

Table 5: Thinner LB

Opt. val. Scheduling LB Covering LB Area LB
LB Time (s) LB Time (s) LB Time (s)

31 30 21.6305 24 0.0791763 22 1.89E-07
35 35 124.832 28 0.455894 28 1.07E-07
26 26 20.4104 23 0.0887163 20 1.50E-07
28 26 23.9832 26 0.112041 24 1.90E-07
23 23 0.262276 23 0.0690082 14 1.36E-07
25 25 0.482481 25 0.0422273 15 1.23E-07
31 31 30.8373 26 0.421025 26 9.80E-08
25 25 0.4399 25 0.034967 19 1.23E-07
28 28 89.3987 26 0.408643 26 9.00E-08
23 22 93.2168 23 0.185502 22 1.63E-07
23 23 0.451309 23 0.0768258 20 1.51E-07
23 23 0.384421 23 0.0662252 19 1.22E-07
25 25 0.505587 25 0.062263 18 1.45E-07
21 21 0.477406 21 0.0618319 18 1.23E-07
34 34 28.8298 29 0.37802 29 1.76E-07

14

Table 6: Results on wider rectangles

CPLEX def.
[-imprsO�]

-bt maxIntersW
-cut cplexDef

-bt maxIntersW
-cut mostE�

-bt maxIntersW
-cut exCuts

-bt maxIntersW
-cut mostE�
-semiVarsOn

-bt maxIntersW
-cut mostE�
-semiVarsOn

-adjM

-bt maxIntersW
-cut cplexDef
-semiVarsOn

-adjM
Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)
111183 169.12 15412 35.23 43738 103.82 12192 1605.88 39937 301.52 44356 308.62 42181 274.76

1874 0.64 578 0.54 180 0.64 195 47.18 180 2.02 202 2.41 164 1.31

88584 34.88 7870 5.58 6071 9.27 5533 601.7 11862 51.4 11640 48.95 12986 26.25

138755 171.25 28560 61.24 29604 77.18 11510 1965.85 43793 329.01 58080 544.27 47803 262.32

14302 9.56 3629 5.35 2704 7.29 2258 347.15 5532 46.74 5977 46.21 5178 29.4

46845 40.54 10380 16.68 7743 18.37 5530 926.78 8166 57.7 9186 67.94 12173 49.6

8519 6.29 5858 7.66 12078 26.1 8756 669.77 10864 69.84 9480 64.98 9259 37.07

4474 3.68 826 1.54 499 1.7 497 72.64 784 7.84 1134 10.91 1504 8.16

386058 598.66 312338 598.73 267800 598.19 14076 1817.48 76507 582.36 78800 593.46 137286 597.91

577070 598.67 319559 598.7 230687 598.12 11821 2102.21 69144 590.41 74498 597 133223 597.97

392011 472.95 29137 45.35 29459 60.65 10747 1997.67 31795 237.57 36630 308.18 41661 197.35

940 0.42 329 0.42 291 0.79 243 57.04 267 2.83 201 2.24 380 2.19

70961 66.48 32939 55.62 48079 98.03 11078 1967.32 74503 418.71 94503 521.93 91815 354.8

3352 1.55 202 0.48 235 0.71 171 25.22 214 2.33 249 2.68 262 1.61

20530 21.13 14809 19.71 16851 34.98 8467 1665.95 18969 137 17841 126.37 31380 102.03

1865458 2195.82 782426 1452.83 696019 1635.84 103074 15869.84 392517 2837.28 442777 3246.15 567255 2542.73

15

Table 7: Wide LB

Opt. val. Covering LB Area LB
LB Time (s) LB Time (s)

105 100 0.271037 99 1.25E-07
67 58 0.353536 57 1.23E-07
76 71 0.27374 71 1.27E-07
106 104 0.35181 103 1.35E-07
85 83 0.129346 82 2.35E-07
84 81 0.182686 80 2.79E-07
107 99 0.231393 95 1.32E-07
97 97 0.101953 89 1.22E-07
? 109 0.512909 108 1.24E-07
? 70 0.492993 70 1.58E-07
104 99 0.291328 98 1.46E-07
62 57 0.512773 57 1.29E-07
108 98 0.257797 96 1.22E-07
82 77 0.386635 76 1.05E-07
81 81 0.136615 77 9.70E-08

16

