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The square-lattice-gas model is caleulated exactly by a special process. This model previously
had no exact solution because it requires a general solution of the square-lattice-Ising model with
external magnetic field, which also to-date does not have an exact solution. In the present cal-
culation an exact solution to the square-lattice-model is obtained in a form that does not require
the solution of the external field contained in the Ising model.

Mittels eines speziellen Verfahrens wird das Rechteckgitter-Gasmodell exakt berechnet. Dieses
Modell hat bisher keine exakte Losung, weil es eine allgemeine Losung des Rechteckgitter-Ising-
Modells mit duflerem Magnetfeld erfordert, das bis heute keine exakte Loésung hat. In der angege-
benen Berechnung wird eine exakte Lésung des Rechteckgitter-Modells in einer Form erhalten,
die nicht die Losung des Ising-Modells mit &uBerem Feld erfordert.

1. Introduction

In this paper some results are presented for the exact solution of a square-lattice-gas
system, which was introduced by Yang and Lee [1] and is based on the Ising model.

The present model is based on Onsager’s pioneering calculation of a square Tsing
lattice [2] and uses the matrix formalism introduced by Kaufman [3]. For simplicity
we can adopt the Onsager-Kaufman procedure, interpreted by Huang [4] and using
Huang’s symbols throughout.

The well-known Hamiltonian of the Onsager problem in the isotropic homogene-
ous case without the external magnetic field, is

N

H = —J 2 8lSis1; + Syal, 1)
17

where J is the interaction energy of nearest-neighbour pairs of spins, Sy; gives the
state of the particle at site (7, j), and NV is the number of spins in the lattice.

The partition function, yielding all physical thermodynamic information, etc., is
determined by

H y '
2= exp (=g ) = T e (@ (i 4 Sy 84, @
ksT) G i
where kg is the Boltzmann constant, @ a parameter characterising Z(® = J/kgT),
and (ij) denotes a summation for all the states. In the siinplest- form S = + %
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and the boundary conditions are Born-von Karman boundary conditions.

Sixe1 =S, Sy =Sy - (3)

2. The Onsager Solution

In the following the Onsager’s solution is examined briefly, indicating the steps,
relevant to our caleulation. A 2% x 2% transfer matrix P is defined with matrix
elements

Sty e s Sixl P1Sis1,1 s Siqan)y =exp[@ X Sii(Siy1y + Syl - (4)
j
Thus we have
% = Tv [PY].

1t can be shown that the largest eigenvalue of P is sufficient for a solution of the
problem in the infinite limit of N, reducing the task to finding the largest eigenvalue
of P.

The transfer matrix P may be expressed as the product of tractable matrices, Vi
and Vs; thus

P = Ty(®P) V1(P) (5)
and '
i\T

VD) = (Sity s Sivl Vil8ig1,1 oo Sigrn) = II esp (PSSi415) »
N j=1

V(@) = Ssysiaj -+ Osivsivin _HleXP (DSjSij41) -
o

Clearly V3 is a direct product of N identical matrices,

V@) =a X a X ... X &, (6)
where
a4 = [ e? e‘“"’] = ]/2 sinh 20 e”¥ (7)
e-l]» ev])
and
0 1
X = [ ] , 8a
10 (8a)
tanh (%) = e—2%. (8b)

The two matrices V(D) and V,(D) may be described by X,, Y, and Z, guaternic
matrices, defined by X, Y, and Z Pauli matrices {4]. Then

¥y
V,(0%) = [l exp (0*X.), (9a)
a==1
N
Vo(D) = TI exp (PZoZo11) 9h)
a=1

with ¥, of diagonal form and where
V(@) = V,(0%) [2 sinh 201¥? (10)
for which we can again use Born-von Karman houndary conditions

Zysr=12. (11)
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Bxpressions (9a) and (9b) make possible a description of I} and V, with I', spinors
(following Huang [4]). Thus

N
V.(0%) = TT exp (—i* a2 1) , (12)
a=1
N-1
Vy(®) = exp ((QUITsoy) T1 exp (—iDI o, 111 %0) . (13)
a=1

Equation (13) involves the Born-von Karman houndary conditions in the matrix U.
The form of V, and T, represented in (12) and (13) are useful for extending from
2¥._dimensional space to 2N space from the spin representative of rotations to normal
rotations.
By diagonalization of matrices, in the 2/N-dimensional space of rotations, Onsager
finds the largest eigenvalue of P, which leads to the solution of our problem

7T

InZ =

Lo —

In (2 sinh 29) -+ 51- “ arcosh ¢(x) da (14)
2a
&
and
(X)) = cosh 20%* cosh 2@ — sinh 20* sinh 2 cos X ;
tanh 0% = e—2% therefore sinh 20* ginh 2@ =1, (15)

The anisotropic case of the square lattice shows @; and @, to be independent of
each other, and thus the mathematical transformation (8b) can be used. We then
introduce @, and 6, as interaction variables for one direction and @, 0, for the other.
In all cases

tanh f; = e—2%i (t=1,2)
which can be used independently for the matrices V; (i =1, 2).
The Kramer-Wannier equation for dual transformation (5] gives a condition for the
varviables 0; and @, (1 == 7. 4,5 =1, 2),
sinh 26; sinh 2@; =1

represented in (15) by the variables 0*(= 0,) and @(= @,).

3. The Lattice-Gas Model Solution
The crucial step of the construction of the lattice-gas model, that the transformation

from the magnet-like set of spins (S' = {"*_ 1)‘00 the gas-like spin, o; = Il is given
by the transformation —1 lo

i = (8 +1) (16)

which gives an external-field-like term in the Hamiltonian [6], corresponding to the
chemical potential (u) for the lattice-gas system.

The square-lattice gas (SQ) with external field has no exact solution, so the lattice
gas with the transformation represented in (16) is not solvable. We therefore examine
another transformation.

The symmetrical, isotropic Hamiltonian was built with particle states S; = {+1 .
Let us introduce the states for particles —1

A | 6—{—8
s={t, =0 ke




418 A. Szisz

°

In this system there are

P3(@y) =4 x A X .. X 4, (17)
where
fevar o] Dy (B2 (aF—a'®) o(d[2) (2aa’ —at—a’?)
4= [e, e,] =expg (@ e )[ewn/zf@m’—"'—'—n'ﬂ) (P @ =)
and
eD eB @ 2 ) 9
4=y [eE e_D]; y = exp [51« (62 + 672 4 2e(0 + 071 + 28"):' ,
D
D =S8 —67% + 26(0 — 1],
D.
B :71[2 — 62— 677
Accordingly

e? ef el el
7 N2
]1 _yL/ [eB oD X ... X [BB e-D|"

Trom the mathematical and physical symmetry of the system described by (1) it
is evident that the vectors o™ = [a, a’Jand a® = [a', a] are equivalent, so the parti-
tion function in absence of an external magnetic field is the same at & and &, i.e.
Z(oV) = Z(x®). Hence we may write®)

Z() = H126") + Z®)].
Thus

(o) — ,, |cosh D exp B
4 4 [exp B coshD

with the simple transformation

A0 =1 cosh D [cosh f, sinh 01] ’

p |
cosh 6, [sinh 6, cosh 6,

where

exp [% 2 —0— 6‘2)]

tanh 0; =

cosh [?2—1 (62 — 072 + 2600 — 6‘1))]

The matrices V,(6%) (6) and V$(f;) (17) correspond formally; only the mathe-
matical transformations 0% < @ and 6, - @, are different functions.

The V, matrices, on simple calculation, (finding the largest eigenvalue) can be
written in the original form

N

V, = [T exp (DoZuZin 1) - (18)

a=1

3) This symmetry follows from the absence of external magnetic field, Z(M) = Z(— M), where
M is the magnetisation (the parameter of order) of the system.
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This is essentially the same problem as the square-lattice Ising model (see (5)),

. 1
7 = 7, 7. R =y —:
T OV (Ds) V1(6y); U=y cosh 0, (19)
so Onsager’s solution can be used,
lin ! InZ| lim lln ¢+ ! [ ‘cosh ¢"(X) dX 20
AL; N N—oo | N 27 arcosh ¢'(&) ’ (20)
0

where
q¢'(X) = cosh 20, cosh 20, — sinh 2, sinh 26, cos X

with the condition

exp [22)—1 (2 — 8% — 6“2)J

tanh §, =

5 - 1)
cosh [—2—1 (62 — 672 + 2¢(6 — 5“1))]

The steps in this calculation are subject to the conditions ¢ — § (#* = —1)and ¢ = 0.
Here the set of «; are the same ag for S, so the Hamiltonian includes a square-Ising-
lattice term and yields the well-known Onsager solution. Boundary conditions follow

from (21) in the isotropic case of D, = @,, and with the Kramer-Wannier dual
transformation @, = 0, corresponding to

tanh @, = e—2%
at the Curie temperature giving

sinh?2¢; =1 (22)
as in the Onsager solution. The largest eigenvalue of P to be at

cos X =1 and ¢ =1 (23)
in the lattice-gas model is required in the limit § — co and @; = 4@, [4]. Normalisation
gives

Iy = %« and g =dm . (24)
Thus
exp [2k,(—1 + 2572 — %))

9
cosh [2701 (1 4+ 2m — _(;;—Z —_ l)]

tanh 0, =

54

and, for § — co (the lattice-gas limit),
e 2k
cosh [2k, (1 + 2m)] (

tanh 0, = 25)

with m = 1/2, this corresponds exactly to the Onsager solution because 4 — 1 and
A" — 0, so that @ = 1/2 and o' = —1/2, where 4 and A’ are the § and ¢! terms,
respectively, used the normalisation indicated in (24).
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4. Discussion

The exact grand canonical partition function, originating the thermodynamic fune-
tions for a real lattice-gas model {6], in our model is

= ¥ exp [K Z A dy -+ 2u + Iunq) d; + (& NEm?q + 2u)], (26)
i

where ¢ is the coordination number, K = &, = kr., 4 {‘_IJ,, and N is the number

of sites.
In our model m is a free parameter and it can be chosen as m = —2u/Kq so the

logarithmic partition function ((20) and (‘75)) i

Z = lim ! InZ —-lim L arcosh dX (27)

_—.N-—.\oo N __N—.»co 27 osh ¢'( ) ’ -

where

q'(X) = cosh 2@, cosh 20, — sinh 26, sinh 2&, cos X (28)
and

o—2k
tanh 20, = (29)

cosh [2k,(1 + 2m)]"
This solution (as assumed in [7]) has the same critical temperature as the Onsager
solution but the details of the partition function are different.
From the analysis of the above results we can calculate the important characteristic
of the solution.
The critical chemical potential at m = 1/2 is

Mo
W, = 2k
as required, [6].

An inflection point is found in the coexistence curve at K = 0.3979 at m ~
~ —1/2 4 0.3843. We could define this as the triple-point isotherm. The curve
above this temperature can be approximated by a parabola corresponding well to
the Van-der-Waals-type solution [8].

The model can be applied not only to the particle-vacancy-type binary lattice gas

(A = {(1)) but to gas lattices involving different interactions in which § does not have

an infinite limit.
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