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Ffactal models for the autocatalytic growth of amorphous thin films
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Fractal models are proposcd for the autocatalytic growth of amorphous thin films. The models
give good agreement with the growth kinetics measurcd for clectroless deposited films of
amorphous nickel-phosphorus. A universal result obtained from the modlels is discussed, and
only self-similarity is found to be important; randomness is effectively eliminated in the model.

INTRODUCTION

Electroless deposition is a useful technique for the prep-
aration of amorphous (glassy) thin films and for studying
their growth kinetics. The growth is slow, by contrast for
cxample to superquenching, and it is relatively casy to follow
and to investigate the buildup of the film. Morcover, many
important physical and chemical processes are involved: nu-
cleation, autocatalysis, metastable states, ctc., =% and a study
of the growth provides a valuable key to our understanding
ol these.

For a study of autocatalytic growth, we bave chosen
clectroless  deposited  amorphous  nickel-phosphorus
{a:Ni-I) as a model system. This material is a typical binary
metal-metalloid glass and has been widely investigated.
Bascd on the results of experimental investigations, two frac-
tal maodels nre proposed to explain the growth kinetics,

EXPERIMENTAL OBSERVATIONS

From our reported measurements' of slow electroless
deposition of @:Ni-P films, it was concluded that the growth
has three stages: In stage I, a slow process of nucleation takes
place, followed by a buildup of layers to a thickness of about
0.1 yem. The nucleation oceurs at some sensitive points on
the substrate, but the real growth starts only after the num-
ber of these points has reached a critical limit.” Because the
amorphous state is known to require homogencous and iso-
(ropic growth, the shape of the growing nuclei must be
spherical. This is confirmed by microscopic examination. '

In stage 11 of the growth, which is a consequence of the
globular (spherical) growth in stage T and of the whole sur-
face of the initial globules being sensitive for new nucleation
(autocaltalysis), the growth network becomes three dimen-
sional. Provided the growing hemispheres remain large, the
deposition ratc incrcases with increasing arca of surface.
During growth, gas bubbles—hydrogen, for example—are
liberated frecly from solution. Thus, when two growing
spheres become close and are about to make contact, a gasc-
ous interface is formed between them. This interface and the
high surface tension in its region will prevent further nuclea-
tion. The growth is halted in such regions (a “sclf-stopping”
behavior) and the spheres arc prevented by the occluded gas
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from ultimately touching. Consequently the volume of space
for the necessary isotropic growth becomes more and more
limited, and the new spheres formed become smaller and
smaller.

The final stage of growth, stage 111, involves the forma-
tion of spheres so small that cffectively a two-dimensional
network of sensitive points is produced. The deposition rate
becomes slower and finally the growth tends to saturate.

The three stages of growth can be clearly scen from the
measured kinetics, Figure | shows the results obtained by
monitoring the decrease in intensity of a given x-ray diffrac-
tion linc of the substrate. Since the mass of the deposited film
is proportional to its average thickness, the mass-versus-{
curves will have the same shape as d-vs-f curves.

THE SIMPLE FRACTAL MODEL

Based on the experimental results, we propose a simple
fractal model for the clectroless growth of a:Ni-P thin films.
Mathematically, the buildup by sequential spherical growth
(Fig. 2) can be regarded as [ractal.” Since the amorphous
structure is homogencous and isotrapic, the fractal must be
self-similar. We assume it to be a Cantor-block fractal® [ Fig.
3(a)];i.c., a hemispherical nucleation cluster is simplified to
a regular block cluster.

Supposc in the first step of growth there are @ cquivalent
blocks nucleated on the substrate, whose arca is A,,. In the
second steps, the surface of cach deposited block (area A)
scrves as a new substrate surface on which @ equivalent
blocks are again deposited, and so on. 1f 4, is the arca of such
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FI1G. 1. The growth kinctigs of a:Ni-P thin films by clectroless deposition
(see Ref, 1) showing three stages of growth. dis the average thicknessof the
growing film and £ is the time of growth.
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FIG. 2. A simulated sequential spherical fractal growth,

a substrate for the (i ++ )th growth step, and &, = (4,/0
— A; ) is the surrounding empty arca around each block
deposited on A; [shown in Fig. 3(b)], then

A, A, Qé:)
Ay, =——&=—[1 -1
TS Q( 4,

As the fractal is self-similar, Q&, /4, = & should be constant,
thus

A1 =AU/ =) =4[ (1 =670 '] (1

Suppose that in each growth step one layer of blocks is built
up, then

k
M, = Z poQ'4;b;,

i

in which M, is the total mass of deposited film after & layers
are deposited, &, is the height of the blocks that form the ith
layer, and p, (a constant) is the density of the deposited film.

Weassume s, = (A,)'7% where o is s shape Taetor de-
lined by a = v(i)/{A; )", in which v({) is the volume of a
block formed in the ith step of growth. For example, « is 1
for cubic blocks, and is 1/[3(27)"?) for hemispheres. Then

M, =ap, Ay x[(1 —x*) /(1 —x)], (2)
in which x = (1 — £)Y3/Q 2 ‘

Let us consider the growth shown in Fig. 4. We proposc
that nucleation and growth halt at points of “contact” such

as B are approachced (i.c., the self-stopping behavior alrcady
described ). Mathematically, if there were not such points of

A, Zl /

A,

by

NN -
(b)

FiG. 3. (a) A Cantor-block fractal with Q = 4, where @ is the number of
equivalent fractal blocks initially nucleating on the substrate. (b) The sur-
rounding emiply arca of this fractal, dushed areais £, |, A, is the area of
suhslr:‘nc‘, A Ay are the arcas of the fiest- nond second-step blocks, and oy, 0y
ure the heights of the first- and second-step blocks.
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FI1G. 4. The Cantor-block fractal with a three-dimensional growth, B is the
point of “contact.”

contact, then for a total external area A | of a growing block
at the ith step defined by 4 | = 84, in which #is a further
shape factor (3 = 3 for a semicube for example), we would
have

Aigr =4[ =/Q 1 =A,[B/ (1= £)*1/Q1+ 1], (1)
and v (1), the volume of cach block formed in the ith step of
growtly, is given by

(i) = A;h; = a(A/BY P BY2(1 — £)2/Q2) (3)

so that the total volume of the blocks grown in the ith step
would be

Vi=Qv(i). (4)
In practice, when points of “contact” do exist (in every step
of the growth), we assume that their existence has an effect
only on the value of ¥;. We average the eflect by defining a
new parameter uF, which represents the mean volume of a

block prown at the fith siep.
Thus we lind (in reality), on introducing a lactor

Si=[ur/v(i)] <,
where, for all /> 0, resulting from similarity, f;, | = f; =/,
that

V= Q¥ =/Qui), (4)
and we can wrile

M, zaf/)()/‘i‘)/zx[(l—)’A.)/(l_}’)]y (2)
in which

¥ :-1/}"/2.\‘.

Q is the number of (equivalent) blocks at the commence-
ment of growth and, in the fractal model, remains constant
during growth.

Since > 1, and 0 < & < 1, x < 1. Thus, for semispherical
blocks of radius R (Fig. 5) the surfacearca A ! = 27R 2. Ifa
simulated block has a height ~ R, then for this block to have
the same external surface arca A, becausc A, ~4R?2,
B=A[/A,~w/2. Thusin gencral we have (3%x) < 1, i.c.,
y<l.

Both Eys. (2) and (2') can be written
M, =c(1 —ab), (5)
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FIG. 5. Lateral cross section of the hemispherical block, in relation to the
sitnulated block, R is the indins of the hemispherieal block; tie dnshied nren
is the range in which the sizes of the simulated block can vary.
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FFIG. 6. Calculated kinetics, i.c., M, vs k.

where ¢ and ¢ are constants, with a < 1. [@ = x in Eq. (2),
and g = yin Eq. (2).]

We find the curve of M, vs k to have a gencral shape,
shown in Fig. 6, and if we assumec that k = rt "'(where rand /
are positive constants), then the M, -vs-t curve will be simi-
lar, only compressed or extended linearly in the ¢ direction
(measured logarithmically—sce Appendix A). We note
agreement with the experimental curve (Fig. 1) except for
the first stage, which is beeause fractal growth comimences in
the sccond stage.

On the other hand, it is necessary for self-similarity in
our model that the first-step substrate ol arca A, should be
the same as in the sccond, third, and subsequent steps, of
areas A, (i > 0). This requires that the entire area (A4,) of the
substrate be covered by the deposited film before true fractal
growth can begin. For example, in the clectroless deposition
of a:Ni-P, the substrate must be homogencously covered by a
very thin layer of a:Ni-P before the {ractal growth com-
mences.

The formation of this first monolayer requires surfuce
nucleation and is nonfractal (stage 1): It usually results in an
incubation period before a homogencous layer can be
formed.” Growth of this monolayer only commences after
the number of sensitive nucleation sites on the substrates has
reached a given threshold.

THE RANDOM FRACTAL MODEL

We now consider a random fractal model, using the siin-
ple fractal model as a basis. A random growth process is
assumed, in order to account for unknown random growth
factors, but self-similarity is maintained. Thus, if we choose
a growth parameter, for example, the thickness of the film
deposited in the ith growth step ¢; then the relation

[ =ol,
with @ constant, remains valid for all steps. We still have a
Cantor-block picture for the growth [ Fig. 3(a) |, but growth
randomness is taken into account, resulting from surface in-
homogeneity and from sites on the substrate (and subse-
quently the surface of growing blocks) being nonactive and
thercfore not completely covered by blocks as in the simple
fractal model. The formation of nuclei, before the growth of
blocks, can depend on several factors: e.g., gas bubbles, con-
tamination, and surface defects

Growth occurs layer by layer, and overall is vertical to
the substrate; i.c., in a direction perpendicular to the x-y
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FF1G. 7. Space limitation of the growth: A is the direction of growth vertical
on a basie block of surface area A4,; no limit in vertical growth for arca 4,. B
is the parallel direction of growth of blocks grown on arca B[, C is the
vertical direction of growth of the blocks grown on arca C}*,

planc (sce A in Fig. 7). This thercfore is the important diree-
tion in our model, and all parameters concerning this direc-
tion are given the subscript 1.

As in the simple fractal model, we define Q, as the frac-
tal magnification factor in the L direction.” Initially there
must be a substrale surface in, or parallel to, the x-p plane,
with arca A,,. In the first step, there would be at most Q,
blocks forming on A, cach with area A, (also parallel to the
x-p plane). In our random model, there will be only Q, p,
blocks growing on 4, where p, is the probability for “occu-
pation.” This lcaves @, (1 — p, ) sites on A, empty. In the
second step of the vertical growth either each area 4, or
each empty site of A, serves as a new substrate where again
only @, p, blocks can form.

V{7 is the volume of all the blocks formed in the ith
layer, and if the height of each block is h; = a(4,)'/?, as
before, with the shape factor a = v'"/(4,)*?, where v
= the volume of a simple block formed in the ith step, then

VAN e Qupyeed (7 (0)
Remembering that in the simple fractal model, before ran-
domness is introduced [Eq. (1')], 4, A, (1 — £,)7(Q, )",
we can see that this expression remains valid, where £, is the
percentage of the “emply’ region of the substrate, and there-
fore

’/(l” = aA 3/21)[ [(1 _ é_l )3/2/(Q1)I/2]|
giving, in the general case (sce also Appendix B),
VY =ad i {p (1 = £727(Q0) P10, N
in which

yo=[po (= £ (1= p)]2(@)YE

clearly y, < 1,sinceO<p, <1,0<é, <l,and @, > 1.

Now we can consider growth parallel to the x-y plane
(sce B in Figs. 7 and 8). This we also regard as one dimen-
sional, because growth occurs equally for all directions par-
allel to the x-p plane. All parameters concerning this direc-
tion are given the subscript ||. Let the fractal magnification in
this dircction be @y, and the probability for occupation be
2y~ Then il ¥ % is the volume of all the blocks formed in the
jth step of parallel growth (blocks that originale from the
blocks formed in the ith step of vertical growth) and if we
assumc that the height of these blocks h (" = y[Bj‘“]"2
(where 9 is a shape factor in the || direclion, corresponding
o a in the 1 direction), with 8§ = uA; (where g is a

(6")
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FIG. 8. Growth parallel to the x-p plane. The larger block is an ith step
block, grown in the z direction with a top face of arca A, and total external
area A,. The dashed areais #1]') . Dashed plus hatched areas is B,

further shape factor; e.g., 1 is 4 for cubic blocks, see Appen-
dix C), then fori = I,

=60

('J — ,( A )1/2
Qipr(p (Q")”z b
p(1—=£ )‘/2/)"(1—-_.‘,"
=t RE Q' J'fl L)

in which .

pyp =1 oy =604 (L =pp) ],

where 7 is a further shape factor (Appendix C), and g” is the

percentage of empty area on the substrate for the || direction

of growth (when randomuness is not considered). In Appen-

dix C we illustrate why y; < 1. Finally we find

(1—¢ )’”y,. 1 — &)
(Q| ) 1/2 | I

V('.}) — 7,/I‘WIZ l V 1

(9)
and, if V(k) is the total volume of blocks for the initial k
“layers,” we have as a first approximation,

k
Yk = 3 (V4 Vi)

— i, U8 m(( NS 10
=400 - (o7 z)ﬁ (10)
. v P (V=67 .

0(j) =a+ 7’#"“(—"—(—@"“)7"5— ;Y’u g

The Z; covers all possible values for j for i<k.

In the second approximation, the growth originating
from C (" surfaces parallel to the x-y plane (Fig. 8) is taken
into account.

Suppose C§¥? = ¢eB ", with €= shape factor like z,
then

13/21‘ (1-4¢ )1/2[(1 -4 a(j) —

Vik) = Ly + ae?

(@) )17 ¥
AT )V -
o ,Zf ) (o

In the third approximation, the growth originating from
the surfaces (those vertical to the x-y plane and those belong-
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ing to the blocks grown on C "’ surfaces) is taken into ac-
count. We find similarly

p=E"T  0()) —a
ZI(Q)';2 [a+ 14
Pt(l—éx)yz
(Q )Ill

We see in Fig. 7 that the space for growth on C§¥ is
much more limited than for growth on B"’, while this
growth is also severely limited in comparison with the
growth on A;. Noting the self-stopping behavior of growth
we can assume that for i Sk, the possible values forj, I, m, ...,
elc., go to infinity. This assumption is acceptable because as
the space for growth becomes limited, the growing blocks
become very small, and the range of summation affects the
result by very little. Equation (12) then becomes

14

Vik) =AY

(140

)Ey"')]Zy"‘. (12)

i=1

viky = a2l

(Ql)lll
ANl TR V() )]
(QL)I/Z (\)/21)1 l ___é-l )3/2(Q1)~|/2
k
XY (129
i=1

When k- w0, v(w) can be found by solving (12').
V() is a constant. Lastly, (12') can be written

Viky =D [ (1 =p)/(1—y) ], (13)
and

My = paV (k) =p, D1 = y})/7(1 —p)), (13

where Dis a function of 4y, p,, py, @y, Qs €0, €@ Vo s €,

and 7 which can all be regarded as constants.
In the simplest case, we assume p, = p,

self-similarity is  conserved in  three

Q=0 =0¢ = = anda=y.
Also, if 4] =3 A,;,as shown by Fig. 4, then (1') is still
valid. Following the process used to derive (7), we find
VO =ady[p(1 = £/Q"* Y"1,
in which
Vs [ppt2(1

and then

= p, and the
dimensions:

— &) (L =—p)I7Q V3,

k ) 1 _4)1/2 ] — y
M, = P = ap, a3 2L :
k ,’)niz,l Ting Q2 1—y
(14)

This is the random case of the growth shown in Fig. 4.
Note both Egs. (13') and (14) have the same form as (5).

DISCUSSION -

Despite randomness, our fractal model gives the same
growth kinetics. Both models agree well with the measured
kinetics exceptin the first stage of growth, where a process of
slow nucleation occurs that can be simulated by a two-di-
mensional growth. In our view, although the fractal growth
actually starts during the second stage, it determines the
mode of growth in the first stage, because to ensure fractal
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amilarity it is necessary that the substrate for the first
.age of fractal growth be the same as becomes available for
the sceond, third, and subscquent stages. This is why the
substrate must first be covered by a deposited layer. Thus,
first there is an incubation time, during which the substrale
becames homogencously covered by a very thin layer; and
sccond, as soon as the substrate is covered, the fractal growth
and no other growth, occurs. This continues until the space
limitation causes onset of stage three, which gives rise again
to a two-dimensional surface that is only stable”'® as long as
local inhomogeneitics do not cause a further fractal growth.
The universal property displayed by the two fractal
models is the result of the scif-similarity. Because of self-
similarity the growth does not depend strongly on the specif-
ic chemical nature of the growth process and, regardless of
inhomogeneity of the actual shape of growing units
(blocks), the growth kinetics and the structure of the film
will always be of the same form. We believe that these models
will remain valid in general for the autocatalytic growth of
amorphous films; the governing factor being always the self—
similarity, which can thus be regarded also as the scaling in
the growth.

CONCLUSION

We have proposed two mathematical models for the au-
tocatalytic growth of amorphous thin films. They explain
well the growth kinetics measured for electroless deposited
a:Ni-P films. The importance of self-similarity in growth
units has been demonstrated by the universal result obtained
in our models.

APPENDIX A

Say wedefine Y =In M, X=Ink,andancw .Y’ = In 1.
ThendY /dXwillhavethesameshapeasd ¥ /dX ", if K = &t .
This we can show as [ollows;

AY_dYdM 1k aM D
dX  dM dk dX /dk M dk

and
dY' M dt

Supposc k = 61", with § and 1 constant (not necessarily -

integers), and substitute in (1), _
dY _&t" 1 dM _ 1 tdM 1 dY

= WM d X

dX M dk/dt &t 0 M dt
from which we conclude that the M, -vs-k curve, in loga-
rithm axes (Fig. 6), will have the sume general shape as an
M -vs-t curve in logarithm axes [compressed by a factor of

(1/n)].

Thus the agreement shown by Figs. 1 and 6 indicates .

that & — 61 " is satisficd in the growth.

APPENDIX B

In the first step of deposition there are Q, sites for
growth, on arca A, and Q, p, blocks that form, each with
growing upper arca A, (parallel to A,). There remain g,
(1 — p,) sites on A, emtpy, each of arca Ay/Q, . In the scc-
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iy 32 P1
ViP=adjy

ond step, each of @, p, areas 4, and every cmpty site of A, is
available substrate—on which p, Q, blocks can form. Thus
the total volume of blocks found in the second stepof growth
is

Vi3 = QpoyA) -+ QI —p ) F i (empty),
where v,(4,) is the volume of the block growing on cach 4,
in this step, and V3 (empty) is the volume of the block
growing on each empty site of A,,.

Clearly, for the second step of growth,
v (A)) = Q\p, a{ [An/(Ql )2] (1-¢ )2}3/2

and

vy {empty) = Q,p, a{(A()/Ql (1 =£,)/0, ]}3/21

so that .

Y AL U E LN
CRE Q)"

We define A 3 as the arca of each block formed in the
sccond step on A, (parallel Lo surface A4,,), and A v as the
arca of each block formed in the second step on A, then

Vf” = (@, p, )? Uy (A ;') +Op Q1 —py)
XU::' (empty) + @, (1 —p,) Q.0 v3(A5)

+ [Q (L —p) ]2 ui (empty).

Now, if v,(A 7") and v,(A $") arc the volumes of the
blocks growing, respectively, on each A $rand A5 in the
third step; and v §* (empty) and v (empty) are the vol-
umes of the blocks forming on cach empty site of A, and A, in
the third step, respectively, then

Uy (A 3") = Q\p, (1{ [AO/(QI )J] (1 —¢£ )3}3/1,
vy (A 3"' =0p a{(A()/\Ql )[(l - £ )2/(Ql. )z]}.\/z'

{ 1 (I=£))\"?
A (empty) = a(ﬂ(l——_é' 2 ) ,
vyt (empty p, 0, 1 ) )

and
vi" (empty) = Q,p, a{(4,/Q,) [(M—=£)/7Q, 1}~

Thus

vl = ad

v PU = £ p (L= )Y 4 (1 —p, ))2
T\ Q)"
Giving, in general, »
' (1—£)2
'
x(l’l(' — &) (1 —/"))l )
(QI )1/2~

APPENDIX C

We show the parallel growth in Fig. 8. B " is defined as
(4] —4;) and thus can be written as B{? = ud,, p=a

shape factor. If we assume B (7', =78 (where 7 = an-
j=1 j=1 7

_other shape factor) then, because of sclf-similarity, we have

B[?" =B " for all j. For the rcason shown in Fig. 5, we
know that y; <1 is generally satisficd.
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