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A hybrid on-line ECG segmenting system
for long-term monitoring
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This paper introduces a new hybrid ECG beat segmenting system, which can be applied
in the processing unit of single-channel, long-term ECG monitors for the on-line segmentation of
the ECG signal. Numerous ECG segmentation techniques are already existing and applied,
however sufficiently robust and reliable methods currently require more than one ECG signal
channel and quite complex computations, which are practicaly not feasible in stand-alone, low-
cost monitors. Our new system approach presents a time domain segmentation technique based on
a priori physiological and morphological information of the ECG beat. The segmentation is
carried out after classifying the ECG beat, using the linear approximation of the filtered ECG
signal and considering the pathophysiological properties as well. The proposed algorithms require
moderate computational power, allowing the practical realization in battery powered stand-alone
long-term cardiac monitors or small-sized cardiac defibrillators. The prototype version of the
system was implemented in Matlab. The test and evaluation of the system was carried out with the
help of reference signal databases.

Keywords: ECG segmentation, ECG signal processing, linear approximation, neural
networks, wavelet transformation

Importance of ECG and its segments

The first electrocardiogram (ECG) was recorded in 1887, but it wasn't until the
early 1900s, when they realized its diagnostic power. Einthoven gave names to the
waves and segments seen on the record and standardized the leads we have been using
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since then (Fig. 1). The knowledge on electrocardiography has been getting even
deeper, as well its instrumental backup. For today there are newer recording techniques
available: vectorcardiography, transoesphageal leads, surface mapping, intracardia
leads etc. The largest and newest foresteps are taken in therapy, as well, as you can cure
malignant arrhythmias eliminating their pathomorphological substrate (1).

The problem of ECG segmentation is to detect the correct position of the
individual ECG characteristic points, to find the ECG-waves (determine their time-
domain features: length, height and area) and to calculate various time interval s between
these characteristic points (Fig. 1).

If you have an ECG record in your hand, you must judge it to reveal information
about the heart (2). The summary must consist of the place the beat is set out and the
activation sequence. If there is a P-wave, its shape and axis could tell us alot about the
electrical activity of the atrias, and through this we can gain a lot about the anatomical
structure and metabolism in it. Since the sinus node, the conductor of the heart which
determines the frequency of the heart is placed in the right atrium not far from the cava
vessels, studying P-waves plays an important role in diagnosing arrhythmias and
conduction disorders.

The activation of the atrias is a bit delayed before continuing into the ventricles,
this is characterized by PQ-time. Looking thoroughly at this part of the ECG record we
can draw conclusions about the state of the heart’s conduction system and about certain
circumstances that could make effects on it: metabolic disorders, intracardial and
extracardial causes, activity of neural system etc.

The very next and most interesting part of the record is the QRS-complex that
delivers very important information. We can determine and follow the sequence and
process how the heart becomes activated, assume the conditions or even the disorders of
myocardium. We have to underline that we cannot judge from only a part of an ECG-
record, we have to have a look a the whole of it in its totality.

Fig. 1. Characteristic points and time intervals on normal ECG
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And there is another important point that you have to compare ECG-record with the
clinical findings. We can come to incorrect conclusions because for example any
changes in the QRS-complex could result in T-wave changing, which you could take for
a sign of ischaemia if you do not take a look at the preceded QRS-complex.
Cardiologists prefer examining the ECG graphs with their own eyes to taking the
diagnoses provided by machines for granted.

The ST part preceded by QRS complex characterizes the repolarisation. The ST-
T is influenced by the actual physical state of the patient in many ways such as
intraventricular conduction disorder, metabolism, ischaemia etc. If the patient is
suffering from any kind of heart diseases, it results in the declination of the process and
way of depolarisation and repolarisation as compared to the normal one. In case of
ischemic heart disease the first warning signs are usually visible here. We have to
examine the characteristic features, the position, form, quantity, axis etc. of the ST-T
waves and partsin al the leads.

During the analysis we cannot forget about the QT time that is influenced by the
condition of the myocardium, by deviations of metabolism and conduction disorders.
The QT section characterizes the ventricle revolution. Although its length can vary, still
there is an average corresponding time limit depending on heart rate, that should be kept
in adherence.

Short and long haul observing of the changes in RR-distances provides us an
insight to the function of the autonomic nervous system. We get the characteristics of
heart rate variability (HRV) by analyzing and charting the distance between RR heights,
and from the HRV we can predict the vagosympathetical distony. If the sympathetic
overweight does not let the vagal effect come alive, it leads to catecholaminaemy and to
more extensive cardiovascular risk.

Comparison of ECG records of the same patient recorded at different times and
under different clinical conditions reveals further important pieces of information.

Sate of the art ECG analysis

Nowadays ECG-machines do not only print out the curve, but also give the
analysis of it. It has the advantage to call our attention to several shady aspects, but has
the disadvantage that these machines are more expensive ones and need computers with
better capacity in order to remain quick enough. Thisiswhy it is not always available at
consulting rooms and sometimes even the lack of expertise make the proper usage
difficult or impossible. The fina output of the machines can aso contain dight
mistakes. Yet it isimportant to highlight that the different waves, time periods of certain
parts and other features of the ECG-records depend on plenty of factors and
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should be treated accordingly. To do an analysis accurate like this a computer that has
the adequate amount of programs, the ability to count properly, the reliability high level
and accuracy is essential.

With the help of long-term (Holter) monitoring the possibilities have become
much better in diagnosing myocardial ischaemia and malignant arrhythmias. From the
24-hours-long records we can get some answer to the frequency, seriousness and the
stimuli of ischemic and arrhythmic periods. Although, Holter-monitor pinpoints those
pathologic waves and periods that are previously determined by the investigator out of
several thousands of recorded beats, it is not able to diagnose other unhealthy beats.

There are so-called event monitors existing that are applied and turned on by the
patients during complaints. These can be used even for weeks if necessary. By now
Holter-monitoring have aready become a frequently used assistance in hands of
cardiology.

Electronic activity of the more sophisticated pacemakers (pacemaker-
cardioverter-defibrillator) is depending on their built-in arrhythmia recognising program
that recognises the function errors that are determined before. Considering the fact that
these are implants, their size and weight plays very important role.

The thorough introduction of existing systems and methods is far beyond the
scope of this paper. We just highlight here some ideas, which led us at the beginning of
this study:

e the total automatic computer analysis of ECG records even today is highly
impossible and unsolved, due to the frequent and widely variable arrhythmia forms,
especially in case of restricted number of ECG leads,

e the analyser programs work on a beat-by-beat basis, which means that at first they
look for the R-peaks, then in knowledge of the R-peak’s features, they continues on
examining the other parts of the record. In case of arrhythmias the frequency of
abnormal beats is high and many algorithms are not prepared enough for these
irregularities, which can result in errors,

* the correct segmentation of the individual beats is not enough robustly supported,
especially in case of single-channel ECG and on-line processing.

ECG segmentation has along history in ECG signal processing. There are various
kinds of algorithms constructed and proposed for ECG segmentation. The most robust
methods use multi-channel ECG records, deriving the required parameters from various
ECG leads by the means of complex and time-consuming computations (3, 4, 5). Some
approaches were proposed for the single-channel segmentation, however without the
required robustness and support of complex cardiac arrhythmias other than normal sinus
rhythms (6, 8). The methods (3-6) work in the time domain, either using a
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morphological or a linear approximated analysis of the ECG. The frequency domain
segmentation is practically not possible, due to the wide variations and overlaps
between the spectra of the ECG waves and in case of the spectral content of normal and
aberrated beat segments. Spectral methods can be used for the classification of various
type of ECG beats (10). The time-frequency (mainly wavelet transformation based)
analysis is another promising technique used in this field, however its practica
applicability in stand-alone, on-line monitors is limited, due to the expensive
computations (the Wavelet transforms should be calculated at 3-5 different scales)
(7-9).

In our study we would like to propose a new hybrid method, combining the
advantages of several well-known ECG signal-processing techniques. We designed and
implemented a system, whereby the following requirements were considered:

e onesingle ECG signa channel,

e on-line (beat-by-beat) segmentation,

e robust segmentation of various type of beats,
e useof physiological background knowledge,
e robustness against various noises,

e inexpensive computations,

¢ modular and expandable structure.

Basic concept

Due to the complex morphology of ECG waveforms, the obtaining of the exact
location of characteristic points requires a sophisticated method, which should be based
on the a priori information on the beat type and physiological knowledge on the
properties of ECG waves (2). This approach is very similar to that human cardiologists
are using. Various type of beats can have very different waveforms, containing even not
all characteristic points in the beat. On the other hand, the variation of the same type of
beat's shape in a patient and among various patients makes the problem even more
complicated. These considerations underline the importance of a priori information on
the beat type. Without this, it would not be possible to construct an enough robust and
reliable ECG beat segmentation, which supports multiple beat types.

In our system a beat classifier unit supports the required a priori information of
the beat type. The segmentation can be carried out based on this information, using
beat-specific  physiological-medical  background knowledge as wel (eg.
pathophysiological range of various time intervals inside a given type of beat). This
solution increases the specificity and selectivity of the ECG beat segmentation method.
Due to this considerations, we realized separated beat segmenters for each supported
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beat types, currently normal sinus rhythms (NB), premature ventricular contractions
(PVC) and aberrated atrial premature contractions (APC). The beat segmenter units use
the linearized version of the time-domain ECG signal, using time-domain measures and
metrics in the same manner as a human cardiologists does it. During the design of the
system we considered its feasibility and viability in real applications. Although the
current prototype version of the system is implemented in Matlab, we designed the
system to be portable for practical implementations. The modularity and scalability of
the system alows the flexible incorporation of further beat segmenter units for other
beat types.

M ethods

Overview

The structure of the proposed hybrid ECG classifier and segmenter system is
illustrated in Fig. 2. The signal flow is represented by numbered arrows, which will be
referred during the description in brackets.

The sampled and digitized ECG signal enters the system on the left side of the
figure. The ECG signal isfirst buffered (1) and then filtered due to the unwanted signal
spikes and noises. The filtered ECG signal (2) is fed into the R-peak detector and into
the beat isolator. The R-peak detector obtains the position of the R-peaks in the filtered
ECG signal. The beat isolator uses this R-peak information (3) and the filtered
ECG sdigna (2) to isolate the subsequent ECG beats from each other.

3 4
R-peak Beat beat type
Detector Classifier P

Beat
Isolator

Filter
8
1 5
Sample ! Beat 592?‘;“‘
ECG signal BuffFe’r PLA Segmenter details

Fig. 2. The structure of the hybrid ECG segmenter. The numbered arrows symbolize the signal flow in the
system. For their meaning, please refer to the text
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Once the beats are isolated, are first classified. This is the task of the beat classifier,
which determines the type of the ECG beat using a nhormalized version of the beat
pattern (4). Using the determined beat type, the beat classifier selects the corresponding
beat segmenter (6). On the other hand, the samples of the isolated beat (5) are fed to the
PLA module, which linearly approximates the ECG beat (7). The beat segmenter
selected by the beat classifier implements the morphological analysis and segmentation
of the isolated and linearly approximated beat. A feedback signal (8) is provided from
the beat segmenters to the beat isolator for the adaptive adjustment of the isolation. The
outputs of the system are the beat type and the beat segment details.

The following part of this section will handle each module of the illustrated
system detailed.

Sample buffer

The goa of the proposed system is to provide real-time and on-line ECG
segmentation with a maximal time delay of one heart beat. The sample buffer stage in
front of the filter unit receives 128 samples independently of the used sampling rate.
The sampling rate can be selected in the 250 Hz—1 kHz range, and this selection affects
only the timing constants of the beat segmenters described later in this paper, but not the
sample buffer size.

If the buffer gets full, the buffered samples are passed to the filter stage and the
buffer will be emptied and reset.

Filter

The filter stage provides the elimination of unwanted ECG signal components.
These signal components can be high frequency (e.g. muscle noise, power line noise,
electromagnetic interference) and low frequency (e.g. base line wandering, effect of
respiration) disturbances. The filtering is carried out on the last 128 buffered samples
D).

The literature provides a number of useful methods for the ECG filtering. Many
of them are based either on digital filter banks (11) or wavelet transform (12). Due to
our previous researchesin the field of ECG filtering, we chosen the last solution.
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The Wavelet Transform (WT) is widely used in engineering and usually devoted
to the time frequency analysis of non-stationary signals, allowing to study the temporal
evolution of the signal’s spectra. The WT of a time-continuous signal f(x) is defined by
the following convolution integral:

WF(X) = f(X)* Wy(x) = (U9)[f(t)P((x-t)/s)at

where sis a scale factor, and Wq(x) = 1/s W(x) is a scaled version of the original mother
wavelet Y(x). Calculating the WT at lower scales allows the study of the low frequency
properties of the origina signal with a rude time resolution, while the higher scale
transformations represent the high frequency components with a finer time resolution.
Theoretically the scale factor can be an arbitrary value, but in the practical applications
it is usualy chosen to be aways the integer factorial of 2. This dyadic WT can be
efficiently calculated for discrete time series f(K), using the following formulas:

A f(k) = z haAgj 1 f(k-2171n)
nZ

D; f(k) = z OnAgj-1f(k=217"n)
nZ

where A, jON is the filtered (approximated) signal component, where A, f(k) = f(k), and
D;, jON is the detail component on the jth dyadic scale. The coefficients h, and g,, are
coefficients of an equivalent low pass filter H and a high pass filter G, respectively. The
formulas produce the wavelet decomposition of the signal at the jth dyadic scale. In our
case only one previously selected A f(k) is to be calculated, so only the coefficients h,
are relevant. We chosen the coif2 wavelet as mother wavelet, which is a member of the
Coiflet wavelet family.
The used filter coefficients were (n=12):

h, = [0.0116 —0.0293 —0.0476 0.2730 0.5747 0.2949 —0.0541 —0.0420 0.0167 0.0040
—0.0013 —0.0005]

We used the third dyadic scale for the purpose of ECG filtering. This scale has
been proven to be good for noise reduction without significantly affecting the signal’s
original shape. The calculation of A;f(k) can be carried out using the formula of A f(k)
above with triple recursion.
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R-peak detector

Detecting the position of the R-peaks in the filtered ECG signal (2) is a well-
known problem. Many solutions are provided for this purpose (13). Some of them are
very robust and highly reliable. In our case we applied a fast and — in case of an enough
good filtered signa — quite robust method. This method combines a very simple
adaptive threshold value monitoring with the consideration of the difference plot (first
derivative of signal). An R-peak is detected if the signal reaches a desired threshold,
which is adaptively adjusted using the previous R-peak values. Then the detection is
verified on the first derivative of the signal, i.e. the first derivative should change its
sign around the R-peak. The output of the detector (3) r is an n-dimensional vector,
where n is the dimension of the input signal (2), and r(i)=1 if an R-peak has been
detected at the ith position and r(i) = 0 in other cases.

Beat isolator

The beat isolator receives and merges the filtered signal parts (2), isolates the
individual ECG beats (5) using the R-peak information (3), and produces a normalized
beat pattern (4) for the beat classifier. The isolator works with one beat delay, i.e. the
tempora place of the last recognized and isolated beat succeeds the last detected R-
peak. In other words. always the last complete ECG beat isisolated.

The last two R-peak positions and the end position of the last recognized ECG
segment are considered for the isolation. If two consecutive R-peaks would not be yet
available, then the beat isolator temporary buffers the signal fragments received from
the filter. The isolation starts only if two consequetive R-peaks are available. The end
position of the last recognized ECG segment (8) is returned by the beat segmenter and it
marks the start position of the new beat. At the first beat or if the beat segmenter fails
and cannot recognize any segment in the last ECG beat then — as a rule-of-thumb — the
starting point will be set 300 ms (P) before the subsequent R-peak. The end position
of the beat is determined by the second R-peak, and considered to be 200 ms before
this. (The average of P-wave length is 100-300 msin normal cases.)

Figure 3 illustrates this method, where the long-dashed lines mark the detected
R-peaks and the filled dots on the ECG signal symbolize the end points of the last
recognized ECG segment (8) (T-wave). Please note that the start of the first beat is
determined by using the P value mentioned above.
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Fig. 3. Theworking principle of the beat isolator

Beat classifier

The task of the beat classifier is to determine the type of the actual beat and then
select the corresponding ECG segmenter (6). The classifier is based on a neura
network. Neural networks were applied successfully in the field of ECG beat
classification (14, 15, 16). We used a feed-forward neura network to classify the beat
pattern. The input layer of the network receives a normalized version of the isolated
time-domain beat pattern (4) consisting of only 80 sample points, which is about the
one-fifth of the original sample number. We considered this number due to performance
considerations, resulting in a neural network with 80 input units. The normalization
takes place in the beat isolator, which four times upsample the original beat pattern and
then equidistantly resample the 80 points. The baseline and the magnitude of the signal
isnormalized as well.

Regarding this 80 points resolution it is obvious that the diagnostic meaning of
the signal (i.e. exact length, elevation, shape and area of the individual ECG waves) can
belost, but it is still appropriate for the purpose of beat classification.

We defined two hidden layers with 32 and 8 neurons, respectively. The output
layer consists of 2 neurons, encoding currently 4 possible beat classes. NB, PVC, APC
and unknown (X). The network was trained using the resilient backpropagation (rprop)
learning a gorithm. We used 32 training patterns for each beat types. The neurons of the
hidden and output layers have the traditional sigmoid as activation function. Figure 4
shows the topology of the resulted neural network of the beat classifier.
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Fig. 4. Thefeed forward neural network of the beat classifier

Although the current version of the ECG segmenter system is running on a
desktop PC, we considered the computational performance of the system during the
design. Thisled us at selecting the number of the input units.

The PLA

This unit is responsible for the piecewise linear approximation (PLA) of the
isolated beat image (5). The PLA agorithm applied in this paper is a modified version
of the PLA used in Vullings et . (4).

The idea of using PLA for the purposes of ECG beat segmentation originates in
the fact, that PLA allows the time-domain analysis and segmentation of the ECG. Thus
traditional cardiology metrics can be later incorporated and applied during the
segmentation of the signal.
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The filtered and isolated ECG beat is regarded as a vector y=[y(1) y(2) ... y(K)],
consisting of k sample points, where y(i) is the sampled amplitude of the ECG beat at
the given discrete time index (0O<i<k). The PLA version of this vector (7) is a set of
straight line sections, where each linear section is defined by the pair (d,m), where d is
the length and m is the sope of the linear section, respectively. Thus the linear
approximated ordinates of the section between the start and end abscissas (X<X<Xo) IS
given by:

i = 8(X = %) +Ys

where y; is the ordinate at the start point, s and e (O<s<e) are the indexes of the start
end points of the section, respectively.
The length and the slope of the section are given by:

d=xe=Xs

d

At the calculation of the set of linear sections (d, m) we considered the following
error metrics:

e

3 |9 = Vi
= k=s 5

m- +1

The goal of the PLA is to produce as few linear sections as possible. Of course

the less the number of sections are the bigger the approximation error € can be. The
PLA agorithm uses € to determine the length of the section. If the current
approximation error remains below a desired maximal value (£<g,,,,), then the length of
the section can be enlarged. €,,,,, means an upper limitation for the PLA. To avoid the
too low fragmentation, we considered I, ,,, too. |, is the minimal length of a section,
and the minimal step of section enlargement (i.e. each linear section approximatesill);,,
sample pointsin the original signal, wherei>0 is an integer number).
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The PLA applied in our systemis shown in Listing 1. We used the same notations
as above.

Listing 1

The PLA algorithm

e=0n=1a=s
while (b<e)
=0, 1= ]min
b =a+ L,
while (€ < €p2x)
m=(yb) -y@))/(xb)-x@))
& =max(abs( (y(k) -y(a) - m-(k-a)) /{(nf+1)) ) wherek=12..b
b=b+1lppI=1+1Iy,
end
dm) =1
m(n) = (f{b)-fla)) / d(n)
n=n+1la=b+1
end

The presented algorithm produces a PLA of signal y on the interval (s, €), using
l,yin @nd €5, The algorithm results in n piece of (d,m) pairs, arranged in vectors d and
m, respectively.

For the ECG signals we used, the values |,;,= 4 and €., = 0.01 were chosen.
These selections allowed the appropriate fine approximation of the original ECG signal
in considerable processing time.

Beat segmenters

The task of the beat segmentation is to deliver the various measures and metrics
of the ECG beat (e.g.: length and height of individual ECG-waves, length of specific
timeintervals).

Since the segmentation will take place in time domain (i.e. on the PLA produced
linear sections (7) with given lengths and slopes), it was considerable to apply a method
that uses time-domain metrics of the signal. This approach is similar that of a human
cardiologists.

We designed a fast and flexible state-driven method to analyze and segment the
ECG beats. Thus each beat segmenter is based on a finite state machine. The states
represent segmentation or checking phases (e.g.: P-wave rising, T-wave falling, check
of P-wave length, check of ST-interval). The transition between the phases happens on
the change of some signal properties, using a priori physiological information.
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The following metrics are used during the segmentation, whereby threshold
values are examined (Fig. 5):

« doperanges
¢ length of an ECG-wave
e length of aninterval

e positive or negative peak amplitude of an ECG-wave
¢ energy of an ECG-wave

P_falling

e>—>CST_checD—<T_rising>
3 5

3

T_falling

3

&T_befor
5

T_check

T_after 5

53

5 3
m—(P_check)—b@RS_befo@—bGQ_check

(a)

( Initial> &Tﬁrising>3—<TJalling )

~

T_falling

QRS _falling

Terminal

’ PQRS_ 3 PQRS_
falling .

(b) ()

Fig. 5. The state machines of the beat segmenters: (a) — NB, (b) — PVC, (c) — APC. The individual

segmentation states are displayed in rounded boxes, the state transitions are marked by numbered arrows.

The cause of transitions: 1 — unconditional transition, 2 — R-peak is reached, 3 — slopeis in expected range,
4 —length of interval is not as expected, 5 — length of interval is as expected
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The first three metrics are provided by the PLA, the latter two require additional
calculations.

As it is now clear, the PLA supports the n-dimensional vectors d and m. Let’s
suppose that an ECG-wave is approximated by the sections having the indices: s, st+1,
st2, ..., & where O<s<e<n. In this case we defined the positive and negative peaks of
the ECG-wave:

h, = max{m(k) [d(k)}
h_ = min{m(k) d(k)} ’

where s<k<e.
The energy of an ECG-wave is approximated by the term:

e e
E=" [m(k)@(k)| (k) =y [m(ko]d? (k)
k=s k=s

The segmenter to be used at the actual ECG beat is selected by the beat type (6),
provided by the beat classifier. Currently we realized three beat segmenters for NB,
PVC and APC beats. If the selected beat segmenter succeeds, it returns the end position
of the last detected ECG segment (8) to the beat isolator.

Table | contains the most interesting features of the various beat types from the
cardiologist’s point of view.

Tablel

Segment details returned by the individual beat segmenters

NB PVC APC
P-wave length, height and area QRS-length, height, area PQRS-length, height, area
PQ interval ST interval ST interval
QRS- complex length, height and area | T-wave length, height, area | T-wave length, height, area
ST interval QT interval QT interval
T-wave length, height and area RR interval RR interval
QT interval
RR interval

The developed segmenters deliver all these measures. Figure 5 illustrates the
finite state machines of the individual beat segmenter units. The numbers on the arrow
symbolize the cause of the various state transitions.
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Tablell

300 beat excerpts of these signal records were used

Rec. |Record name, | Beat Rhythms Beat |Wave [S/N QR
No. |Database types annot. |annot. S
R1 Sel103, QTDB |NB, normal sinus, Y Y G
APC supraventricular
ectopy
R2 Sell16, QTDB |NB, normal sinus, Y Y N G
PVC ventricular ectopy
R3 |Selll7, QTDB |NB normal sinus Y Y
R4 Sell123, QTDB |NB, ventricular ectopy |Y Y S S
PVC
R5  |Sell6265, NB normal sinus Y Y G G
QTDB
R6  |Sell6272, NB normal sinus Y Y G G
QTDB
R7 201, MITDB |NB, normal sinus, Y N/A S S
PVC, atrial fibrillation,
APC ventr. ectopy
R8 |202, MITDB |NB, normal sinus, Y N/A |S G
PVC, atrial fibrillation,
APC ventr. ectopy
R9 |SIp03, SLPDB |NB normal sinus Y N/A G
R10 |SIp59, SLPDB [NB normal sinus Y N/A G

Legend: S/N = signal/ noise ratio, P, QRS and T: quality of P-waves, QRS-complexes and T-waves in the

record, respectively: P— poor, S—sufficient, G — good.

Sgnal records

The ECG signal records used in this study were provided by, and are available
without cost from, PhysioNet, a public service of the Research Resource for Complex
Physiologic Signals. We used the annotated records of the MIT-BIH QT Database (18),
the MIT-BIH Arrhythmia Database and the MIT-BIH Polysomnographic(17). We
selected the first ECG-channel in case of the two-channel ECG records of the QT
Database and Arrhythmia Database. At the polysomnographic records contained only
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single-channel ECG signals. The records were taken from different patients. Table Il
contains the details of the applied signal records. We selected 10 records, and used
continuous excerpts of 300 beats from each of the records. Thus the total number of
beats was 3000.

Results

The first version of the system was implemented in Matlab. The beat classifier
and the beat segmenter units play the most important role in the system, thus we
emphasize the results of these modules.

Beat classifier

For the training of the neural network in the beat classifier we selected 32 beat
patterns of each type NB, PVC and APC from different records randomly. The network
was trained with the rprop agorithm in 1000 epochs (summed mean square error,
SSE<0.025). We used the SP specificity and the SE selectivity at the evaluation of the
beat classifier. We defined:

SP = n, /N, and SE = 1{N,—, . )/(N-N,),

where n,, is the number of correctly classified beats of type x, N, is total number of
beats of type x, and N is the total number of all beats. In our record excerpts N=3000,
Nng=2680, Npyc=252 and Napc=68. Table Il contains the test results of the beat
classifier.

Tablelll

Test results of the beat classifier for all 3000 test beats

Beat Class SP (%) SE (%)
NB 925 97.3
PVC 97.8 96.4
APC 94.1 89.3
Overall 9438 943
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Beat segmenters

For the validation of the ECG segmentation, the records R1-R6 contain special
wave annotations consisting of the onset and offset positions of the individual waves.
Within each record, only about 30—40 representative beats were manually annotated by
cardiologists, and the remaining beats were annotated by a computerized algorithm,
using a differential threshold detection algorithm (6). Due to the imprecise computer
generated annotations, especialy at the poor quality P-waves, at the onset and offset of
the QRS-complexes and in case of not normal sinus rhythms, we discarded them, and
used only the cardiologist’s annotations. In case of the other beats and at records R7-
R10 we asked a cardiologist to give us guidelines for the evaluation, and we considered
Braunwald E.: Heart Disease (1), too. The assessment of the segmentation was a semi-
automatic process, supported by a Matlab routine, which display a comprehensive
information window (Fig. 6). The window is divided into 4 subplots, displaying various
state of the signal processing chain.

During the assessment we regarded distinguishly the isolation of the P-wave, of
the QRS-complex and of the T-wave. We considered the isolation as correct if it
corresponded either to the manually annotated or to visually verified segment borders
with at least 90% precision. Table IV shows the success rate of the segmentation in case
of the individual ECG segments (P, QRS and T) and for the whol e beats, too.

Discussion

We used signals from ten records of three different ECG reference signal
databases, originating from different subjects. At the test and evaluation we considered
3000 ECG beats, consisting also noisy and rather unclear signal segments. The current
beat classifier recognized the NB, PVC and APC beats at more than 94% average
selectivity and specificity. The segmenters could properly segment the 95% of the
specific classified beats. Thus we found the overall signal performance (regarding the
full signal processing chain) higher than 89%. This result is quite considerable,
regarding that the applied signals contained noisy segments and unknown beat types of
up to 8%. If we do not consider these signal segments, the overall system performance
is above 93%.
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Fig. 6. The evaluation of segmentation. (a) — original ECG beat, (b) — Filtered signal, (c) — Normalized beat

for beat classification, (d) — the PLA’s and segmented beat. The segmented P, QRS and T waves are

highlighted on subplot (d). The dashed vertica lines showing the segment borders of the human
cardiologist’s. The detailed values calculated by Matlab are displayed in the bottom part of the window
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TablelV

Test results of the beat segmenters

P QRS T Whole beat
Rec. No. %
R1 93.6 98.3 95.4 95.8
R2 96.7 98.8 96.9 97.5
R3 97.1 98.5 87.7 94.4
R4 95.7 90.3 93.3 93.1
R5 97.3 99.3 99.1 98.6
R6 94.5 98.7 88.3 93.8
R7 92.1 95.3 97.2 94.9
R8 95.2 95.1 96.6 95.6
R9 96.9 93.3 84.1 914
R10 93.2 98.5 93.5 95.1
Total: 95.2 96.6 93.2 95.02

Figure 7 shows the segmentation result of four different ECG beats. The filtered
ECG signals can be seen in the top row of the figure. The corresponding segmentation
results are displayed in the underlying plots of the bottom row. The recognized P-
waves, QRS-complexes and T-waves are marked with darker line segments. The
individual time interval details are not displayed here due to space considerations.
Please note that Figures 7a, 7b and 7¢ show various type of ECG beats from record RS,
and Figure 7d is a norma sinus rhythm of another subject from record R6 using
different sampling rate. Figure 7 consist unproblematic and nice signals. However these
signals are most common in ECG records, real applications should handle noisy signals,
too. Thus selected the applied test records to contain rather noisy signa sections as
well.

Figure 8 shows the performance of the system in case of some problematic ECG
signals. To demonstrate how effective the segmentation system is, we shunted the filter
stage, so the beat classifier, the PLA and the beat segmenters used the unfiltered and
noisy input signals. Figures 8a and 8b consist signals with high frequency noise (muscle
noise or patient movement) on the T-wave and on the P-wave, respectively.
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Fig. 7. Segmentation of various type of ECG beats: (a) — NB, (b) —PVC, (c) —APC, (d) — NB

Figures 8c and 8d display signals with low frequency noise (baseline movement).
Asit can be seen in the figure, the segmentation system could recognize the individual
ECG waves in case of rather noisy segments, too. The P-wave of Figure 8d was not
recognized, since it was very tiny and stayed below the desired threshold for the height
and area of a P-wave. The good resultsin case of the high frequency noises (Figs 8a and
8b) can be explained with the low-pass filter characteristic of the applied PLA
algorithm. Although the filter stage was shunted, the PLA could provide enough
additional filtering to be able to remove the unwanted spikes. The low frequency noise
(Figs 8c and 8d) was cancelled by the beat segmenter. The proper selection of the
threshold values (i.e. signal slopes, individual interval lengths, wave areas) can provide
additional resistance against the baseline drifts.

In spite of the very promising results we outline some bottlenecks of the system.

However the system was designed especially for the on-line analysis and
segmentation of single-channel ECG records, we must note that one ECG channel
cannot contain all the dynamics which would be required for a complex cardiac
analysis. The single-channel ECG recording has its inherited problems of electrode
displacement or loosing of contact, which can ater the measured waveform quite
significantly.
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Fig. 8. Segmentation of unfiltered ECG signal. (a) (b) —noise, () (d) — baseline drift

The current system cannot segment the unknown beat types (classified as
category X by the beat classifier). This problem can be solved by the training of other
beat types and the incorporation of their corresponding beat segmenter units. However
the number of the hidden units in the beat classifier's neural network should not
increase significantly, due to performance considerations. On the other hand the false
classified beats are segmented with an inappropriate segmenter, eventually resulting in
faulty segments. Thus in case of practical applications the incorporation of a validation
unit after the beat segmenter units is highly desirable. The validation unit should check
the resulted segment details and should discard them in case of abnormal values.

Another problem is that the state transition threshold values used in the beat
segmenters are currently patient-independent. We tried to find wide ranges for the
individual thresholds values, which were properly worked in the selected ten signal
records from ten different patients. However in real applications these threshold values
should be selected patient specific, and they should be tuned adaptively.

Another challenging task would be to detect the P waves probably hidden in any
fractions of the ECG. This would provide essential information in connection with
certain arrhythmias. The increasing PQ distance might refer to Wenkebach-periodicity.
The incorporation of such an analysis would require the ateration of the anaysis
window, since the current analysis window of one beat is not suitable for recognition of
more complex events.
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Conclusion

The goal of the introduced system is to provide a robust, real-time and on-line
beat segmentation using one-single ECG channel. The feasibility and viability of the
system was verified by implementing a prototype in Matlab. The currently implemented
system supports the segmentation of three different types of ECG beats (NB, PVC and
APC), however other beat segmenters can be later easily integrated due to the modular
system structure. The system requires moderate computational power, allowing the
practical implementation in low-cost, stand-alone ECG monitors. The proposed new
system structure resulted in robust and very promising segmentation performance.

As the further direction of research we are working on a patient adaptive
threshold value tuner for the beat segmenter units and making studies on the detection
of the P-waves buried in other fractions of the ECG.
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