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Closed formulae to determine the angular
velocity of a body-segment
based on 3D measurements
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This paper suggests a simple method to determine the global coordinates of the angular
velocity and the angular acceleration of a body segment determined by the coordinates of
minimum three markers. There are commonly used calculations for the angular quantities basing
on the “hypothesis” of planar motion. The usage of approximate methods can result in
quantitative and qualitative errors that may completely disort the reality. The method mentioned
here is theoretically absolutely correct and can be well used for smoothing noisy data.
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In experimental research the location and the orientation of the body-segments are
determined from the spatial coordinates of markers attached to the body-segments. To
determine the correct orientation, no less than three not collinear markers must be
applied at one segment. There are methods to reduce the effect of the noise and to
determine the derivatives of the measured global coordinates, but no theoretically
correct and easily used method is known to determine the coordinates of the angular
velocity and the angular acceleration of the segment, based directly on the measured
global coordinates of the markers. Various coordinate systems are used to describe the
body position as clinical system, globographic presentation, segment coordinate system
and the joint rotation convention (7).
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Improvements in computer technology have enabled us to rapidly analyze human
movement patterns. There are a lot of professional software and hardware packages (2)
that are able to determine the spatial coordinates of the required points within a given
error rate. These systems are using active markers (ZEBRIS, Selspot) or passive ones
(video-based systems) for determining the spatial coordinates of the key points of the
body-segment. Most of the video-based systems (VICON, APAS, Mikromak, Peak,
Simi Motion, Novel) are working with 50–60 Hz, but there are also some systems that
work with 100–1000 Hz. Using smoothing algorithms the velocities and the
accelerations of the key points can be determined by the required accuracy. Nowadays
only a few systems are able to determine the problem of inverse dynamics
(determination of the forces and moments acting at the joints of the body-segments). To
be able to solve this problem, the correct values of the angular velocity and the angular
acceleration must be known. The users – reducing the errors of digitization – generally
use only two markers at each segment.

In this case, there is no possibility to determine the correct values of the angular
velocity and angular acceleration, except in case of real planar motion. Most of the
professional packages determine the angular velocity and the angular acceleration of the
segments by differentiation of the component angles obtained from the projections of
the segment on the coordinate-planes. This method is not correct. This is well known for
engineers and physicians as Budo already mentioned in his book in 1953 (3), but does
not seem to be widely known in biomechanical applications. Many researchers use the
change in position of the projection of a body segment onto a plane of interest (usually
the film plane) to determine the component of angular velocity in the plane. M. Ramey
and C. Nicodemus (4) wrote a note to illustrate that the determination of angular
velocity components in this manner leads to erroneous values except in some special
cases, but to date the simplification mentioned has been in use.

There are systems (5) where three markers are in use at each segment, and for the
determination of the angular velocity and angular acceleration the Euler angles are used.
This is a very complicated calculation and the values are determined in the local
coordinate systems connected being to the segments and the whole model must be used.
M. J. L. Alexander and J. Colbourne developed a method (1) to calculate the angular
velocity of a body segment. Their formulae is really simple, and it works well in case of
quick movements (they developed it for the calculation of a high-speed throwing
motion), but near to zero value of the angular velocity the formulae cannot be used
correctly, because in the denominator the value becomes to zero. M. C. Verstraete and
R. W. Soutas-Little (6) developed an other correct method. Their method is based on
the Method of Least Squares, and minimum 4 markers must be applied on a segment. In
case of active marker’s systems this will widely reduce the range of measurement, and
for video-based systems the manual digitalization time will be increased.
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In this paper a new method will be demonstrated to determine the correct values
of the angular velocity and angular acceleration of the segments using the velocities and
the accelerations of the markers (key points) in the global coordinate system of the
measuring unit. These data could be determined by any of the previously mentioned
systems, using arbitrary positioned “triple set” investigating the body-segment. Most of
the scientists like to post-process the measured data alone, according to the needs and
not depending on the complete biomechanical model, provided by the used software
package.

Methods

At the investigation of the human movement we generally suppose that the body-
segments are rigid bodies connecting to each other at the joints. The state of velocity of
a rigid body is known if the velocity of any point and the angular velocity of the body
are given. Let’s suppose the point is the point A, and we know its velocity νA and the
angular velocity ω.

To determine the state of acceleration the angular velocity ω, the angular
acceleration ε, and the acceleration of the point A aA must be known.

Investigating the state of velocity, let’s suppose we know νA, νB and νC, the
velocities of A, B, C points (5), which points are not collinear (Fig. 1).

The velocities of the points B and C can be expressed by νA and ω.

νB = νA + ω×rAB [1]

νC = νA + ω×rAC [2]

rAB and rAC are the position vectors pointing from A to B and from A to C.

Fig. 1. The body-segment with the three markers and their velocities

The purpose of the following arrangements is to express ω. After rearranging [1]
and [2], take the vector product from left by rAB and by rAC, respectively:
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rAB×(νB–νA) = rAB×(ω×rAB)

rAC×(νC–νA) = rAC×(ω×rAC)

By expressing the right sides of the equations we get:

rAB×(νB–νA) = r2
ABω–(rAB

.ω)rAB [3]

rAC×(νC–νA) = r2
ACω–(rAC

.ω)rAC [4]

Take the scalar product of [3] by rAC and of [4] by rAB, after rearrangements:

(rAC×rAB).(νB–νA) = r2
AB(ω.rAC)–(rAB

.ω)(rAC
.rAB) [5]

and

(rAB×rAC).(νC–νA) = r2
AC(ω.rAB)–(rAC

.ω)(rAC
.rAB) [6]

In equations [5] and [6] the unknowns are ω.rAC ≡ rAC
.ω and ω.rAB ≡ rAB

.ω.
According to these unknowns the equations [5] and [6] are linear inhomogeneous
algebraic equations. D is the determinant of this system:
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The state of acceleration of a rigid body is determined if we know ω, and the
accelerations of three non-collinear points. The angular acceleration ε can be
determined by differentiating the equation [7]:
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Results and Discussion

Spastic hemiparesis mostly arises as a consequence of stroke, brain injury,
multiple sclerosis, brain tumor, perinatal damage. In these cases not only the muscular
strength becomes weaker, but the muscular tone increases causing further problems.

REHAROB project (IST-1999-13109 REHAROB = Supporting Rehabilitation of
Disabled Using Industrial Robots for Upper Limb Motion Therapy) will be a robotic
rehabilitation system for upper limb motion therapy for the disabled. Industrial robots,
utilizing intelligent identification of the required physiotherapy motion will drive the
therapy. The REHAROB project will provide personalized three-dimensional motion
therapy for patients with neuro-motor impairments. The REHAROB will provide an on-
line physiotherapy monitoring and documentation system with 3D motion therapy
measuring, visualizing and logging. Exercises were collected by physiotherapists
working for the REHAROB project and than described in a catalogue. The robot will be
required to execute selected exercises from this catalogue. The aim of these exercises is
to improve the patient’s upper limb movements (strengthen the muscles, decrease
spasticity, improve coordination and proprioception, increase the range of movement of
the joints).

We specially developed the mentioned method to characterize these exercises, but
the formulae can be widely used in general motion analysis. Let’s choose from these
exercises a simple one, as an example (Fig. 2).

Fig. 2. Start and end position

Starting position: The patient lies on his back.
Upper arm lies on the bed next to the body, elbow is in a 90-
degree flexion, palm is turned towards the body (0-degree
position).
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Line of movement: Continuous upper arm abduction between the starting and the end
position.

End position: 90-degree position of upper arm.
Execution of movement: Slow, continuous movement.

The calculation based on a measurement of the described exercise, using 3
markers at the upper arm according to Figure 3. On the basis of the measurement we
have the positions, velocities and accelerations versus time functions as series of data,
getting from the Zebris system CMS70P. Based on these data we determine the angular
velocity and angular acceleration versus time functions as mentioned in this paper.

Fig. 3. Arrangement of the markers and the microphones at the measurement using the ZEBRIS CMS-HS
measuring system

Figure 4 shows the three components of the angular velocity for the previously
described exercise in the global coordinate system of measuring unit, as demonstrated in
Figure 3.

According to the measured exercise the microphones and the marker
arrangements are always different, and the measured data will be transformed from the
global coordinate system of the measuring unit to the special coordinate systems of the
used robots (Fig. 3).
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Fig. 4. The three components of the angular velocity [1/s] versus time [msec] functiones for the exercise
shown in Figure 2

Example 1 (Theoretical control of the formulae)

Let’s put a cone with a length l = 1m, and with a radius of its base circle R = 0.5m
into a Descartesien coordinate system according to the arrangements of Figure 5. The
apex coincides with the origin and the cone’s axis of rotation lies in the
y–z plane. Let’s rotate first the cone about its axis of rotation with constant angular
velocity ωf = 4/s, than rotate the cone about the x axis with the angular velocity
ωx = 2+5t. (The axis of the cone moves in the y–z plane!)

Let’s determine the angular velocity and angular acceleration versus time
functions of the cone on the basis of the position, velocity and acceleration of three
points (A, B, C) lying on the base circle of the cone.

Fig. 5. Demonstration of the cone for Exercise 1

Acta Physiologica Hungarica 88, 2001



8 L. Kocsis and G. Béda

In this case the scalar coordinates of the angular velocity can be determined
theoretically:
ωx = 2 + 5t
ωy = 4cosφ1
ωz = 4sinφ1

Using the equation [7], the results are exactly the same as can be seen in Figure 5
(Fig. 6).

Fig. 6. Angular velocity-time functions of the cone determined by equation [7]

Example 2

The following calculation based on a measurement of the thigh of a walking
woman on a treadmill with a speed of 2 km/h, used 3 markers (4=r. tibial tubercle, 6=r.
femoral epicondyle, 8=r. greater trochanter) determining the spatial position of the
body-segment). On the basis of the measurement we have the positions versus time
functions as series of data (Fig. 7). Based on this data we determined the angular
velocity and angular acceleration versus time functions of the thigh (Figs 8-10).

Figures 8–10 compare the results of the “correct” calculations described in this
paper, according to the “planar” ones during the investigated interval of the gait, to get
an idea about the errors caused by the simplification.

Investigating these Figures one can recognize if the motion is very near to a
planar motion, the errors between the two calculations can be neglected (see Fig. 9), and
this is the purpose why the “planar” method is still in use. In case of the other
coordinates not only the values are different but the characters of the functions are also
different. According to these diagrams one can draw false inference.
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Fig. 7. Coordinates – versus time functions of the markers during gait

Fig. 8. The changes of the x coordinate of the angular velocity (omega_x = the correct calculation,
om_plane_x = the value based on the component motion x axis shows towards the direction of the motion)
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Fig. 9. The changes of the y coordinate of the angular velocity (omega_y = the correct calculation,
om_plane_y = the value based on the component motion y axis is horizontal, perpenducular to the direction

of the motion)

Fig. 10. The changes of the z coordinate of the angular velocity (omega_z = the correct calculation,
om_plane_z = the value based on the component motion z axis is vertical)

Conclusion

Advantage of the suggested method is the simplicity of the calculations
comparing with the other methods mentioned (1, 6). This can be recognized seeing the
scalar equations in the Appendix. There is no need to use very complicated
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transformations, which will cause extra errors in the data, and all the calculations are
based on the global coordinates of the markers. Using systematical permutation of A, B
and C, six different calculations could be made on the same data basis of three markers.
In case of “smooth” data these results are identical. Applying these calculations for
noisy data, the results will alternate a bit, but the average of these functions will insure a
smoother solution, as we would use instead of three markers on the same body, as the
Method of Least Squares (Fig. 11). demonstrates the mentioned six different solutions
and their average for the x component of the angular velocity. The results, according to
the needs of the users can be further smoothed and transformed. The authors hope that
this method will be used widely to determine the correct values of the coordinates of the
angular velocity for a body-segment.

Fig. 11. “noisy” x components of the angular velocity [1/s] versus time [msec] funcions in case of
systematic permutation of equation [7] and their average (omega-x)

Appendix

Scalar equations to determine the angular velocity

Since all, in equation [7] mentioned coordinates and velocities are determined in
the global x, y, z coordinate system, the coordinates of ω will be determined in the same
coordinate system. Let’s denote the coordinates of the point A by xA, yA and zA, the
coordinates of the velocity of the same point by νAx, νAy, νAz, and using similar
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notations in case of the points B and C. Finally the coordinates of ω are denoted by ωx,
ωy, ωz, respectively. The coordinates of ω are:
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