phys. stat. sol. (a) **122**, K7 (1990)
Subject classification: 61.40; S1.1

Department of Solid State Physics, Lomonosov State University, Moscow
Laboratory of Surface and Interface Physics, Eötvös University, Budapest

Structure of the Amorphous Fe–B Alloy Modeled by Molecular Dynamics

By V.S. STEPANYUK (a), A.A. KATSNELSON (a), O.S. TRUSHIN (a), and A. SZÁSZ (b)

The Fe–B alloy structures have been widely investigated. Earlier studies /1, 2/ gave a traditional picture of the radial distribution function (RDF): the first maximum is a single one, the second being slightly split. Recently high resolution neutron diffraction measurements /3, 4/ made it clear that the first maximum has a small sub-peak on its left side. A pseudo-crystalline model of the amorphous Fe–B alloy was proposed /3/ and from this model the RDF (g(r)) was calculated. A comparison of the calculated and experimental g(r) for Fe_{81}B_{19} /3/ shows practically coinciding curves near the first maximum. Nevertheless, the shape of the second maximum does not agree well with the calculated curve above 0.5 nm /3/.

A calculation by molecular dynamics (MD) was previously performed /5/. A weak sub-peak on the left side of the first maximum has been observed, and has been compared with a limited number of experimental results /1, 2/. The deviations of the calculated data from the experiments were explained, and it was concluded that the observed sub-peak is related to the correlation of Fe–B pairs. Furthermore, an a priori calculation based on the pseudopotential method has been provided /6/, overestimating the boron-boron interaction.

To clarify these problems we carried out a new MD investigation on these alloys. In our present short note we report on a MD calculation for 256 atoms with Morse pair potential, based on the integration of the equations of motion in the frame of a microcanonical (NVE) assembly, in which N (the number of particles), V (the volume of the system), and E (the energy of the system) are kept constant. The calculation is done for the atoms in a rigid box with periodic boundary conditions imposed. The interaction between atoms is given by the Morse potential /7/,

\[
V(r) = \epsilon \left[\exp(-2A(r/R_o - 1)) - 2 \exp(-A(r/R_o - 1)) \right] f(r/R_o),
\]

\[
1) \text{Lenin Hills, SU-119899 Moscow, USSR.}
2) \text{Muzeum krt. 6-8, H-1088 Budapest, Hungary.}
\]
the parameters R_o and ε being determined from experimental data /8/, and

$$f(y) = \begin{cases} 1, & y \leq 1, \\ 3z^4 - 8z^3 + 6z^2, & 1 < y < R_c/R_o, \\ 0, & y > R_c/R_o, \end{cases}$$

where

$$z = (y - R_c/R_o)(1 - R_c/R_o), \quad A = 3.76, \quad R_c/R_o = 1.4.$$

The equations of motion were integrated by the "leap-frog" method /9/ with a time-step of 10^{-15} s.

In the initial state the atoms are arranged in the nodes of an f.c.c. lattice and their velocities assumed were in accordance with a Maxwell distribution for 2000 K temperature. After a thermal stabilization at this temperature the system was cooled at a constant volume with an average rate of 10^{14} K/s until getting an amorphous state. A rescaling of particle velocities by multiplying with a constant factor after every 10 steps was introduced. The entire process contained cooling and thermal stabilization phases at several intermediate (every 3000 steps) temperatures adjusting the distribution of atoms to a Maxwellian at the given temperature.

For amorphous Fe$_{85}$B$_{15}$ the total $g(r)$ function and the partial $g_{FeFe}(r)$, $g_{FeB}(r)$, and $g_{BB}(r)$ functions are illustrated in Fig. 1 and 2. The total $g(r)$ has two main maxima. On the left side of the first peak a weak sub-peak is observed and the second maximum is slightly split and almost symmetrical. It should be noted that in the $g(r)$ curve both the positions of all the maxima (up to $r \approx 0.6$ nm) and the minima are lying very close to the experimental data, /3/. This means that the molecular dynamic modeling yields a $g(r)$ which agrees with the experimental $g(r)$ better than that obtained on the basis of the pseudo-crystalline model.

The weak sub-peak of the first maximum (Fig. 2) is caused by the high probability of finding Fe and B atoms at a distance of approximately 0.22 nm. Moreover the second maximum of the $g_{FeB}(r)$ curve coincides with the minima of the

![Fig. 1. The total radial distribution function of the Fe$_{85}$B$_{15}$ alloy, calculated (-----) and experiment (--.--)]
Fig. 2. Calculated partial radial distribution functions of the Fe$_{85}$B$_{15}$ alloy. (a) $g_{\text{FeFe}}(r)$, (b) $g_{\text{FeB}}(r)$, (c) $g_{\text{BB}}(r)$

$g_{\text{FeFe}}(r)$ curve and vice versa, which confers a relatively high stability to the amorphous phase the Fe$_{85}$B$_{15}$ alloy.

Our present investigation proves the applicability of a molecular dynamics approach for obtaining the correct radial distribution function of this alloy.

References

/4/ E. SVAB, R. BELLISSENT, and GY. MESZAROS, see /3/ (p. 487).

(Received March 21, 1990; in revised form August 1, 1990)