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Calmodulin is a ubiquitous Ca2+-binding protein, which has numerous functions in cell biology, includ-
ing cAMP-dependent signal transduction and cell division. Drugs with a phenothiazine ring system have been
used for decades in the treatment of schizophrenia and other psychoses, and their anticancer potential has been
reported. Here we present the first evidence for the disruption of normal insect development by low doses of
two typical phenothiazines, chlorpromazine and trifluoperazine, administered via a semi-synthetic diet to larvae
of the cotton leaf worm (Spodoptera littoralis; Lepidoptera, Noctuidae), a polyphagous pest of various crops.
At 0.3 percent trifluoperazine in the diet the development of the larvae to the adult stage was completely
prevented. In view of their moderate toxicity to vertebrates, including humans, and in view of the availability of
numerous phenothiazine drugs at reasonable costs, agricultural applications of phenothiazines appear possible.

Keywords: phenothiazines, chlorpromazine, trifluoperazine, insect development inhibitor, Spodoptera
littoralis.

Phenothiazines and related derivatives have for several decades been the most im-
portant antipsychotics, and are widely used in the treatment of schizophrenia and other
mental illnesses (Forrest et al., 1974; Shen, 1999). These compounds were originally
synthesized as potential antimalarial agents, and are also known to have anthelmintic
properties (Dominguez et al., 1997; Lyons et al., 1993). A generally less well-recognised
aspect of these drugs is their cytotoxicity, which seems to be mainly based on their ability
to inhibit the effects of calmodulin, by Ca2+-dependent binding to the hydrophobic domain
of this protein. Phenothiazines and some related structures belong among the most potent
calmodulin antagonists (Weiss et al., 1980; Roufogalis et al., 1983). Calmodulin is an
ubiquitous Ca2+-binding protein that has pivotal roles in many aspects of cellular regulation
(Cheung, 1982; Klee et al., 1980; Johnson and Mills, 1986), among which its role in cell
cycle progression at G1/S and G2/M transitions is of especial importance (Rasmussen and
Means, 1989). Calmodulin antagonists, including trifluoperazine (TFP) (Fig. 1) affect cAMP
metabolism in different organs (MacNeil et al., 1985), and they impair, among others,
protein (Kumar et al., 1991) and DNA synthesis (Tomita et al., 1987), and DNA repair
(Charp and Reagan, 1985), to name only a few effects on basic cell functions. Thus it may
not surprise that TFP prevents liver regeneration (Alexander et al., 1988), and this and
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other phenothiazines inhibit the growth of a variety of mammalian cells (Hait and Lee,
1985; Grief et al., 1989; Nordenberg et al., 1999), as well as plant cells (Szabó et al.,
1997). Their cytotoxicity suggested the introduction of calmodulin antagonists, including
phenothiazines, as potential cancer chemotherapeutic agents (Jones, 1985; Hait, 1987;
Nagy et al., 1996). The ability of phenothiazines to form charge-transfer complexes
(mostly by acting as electron donors) (Gutmann et al., 1974) is another property, which
contributes to their manifold biological activities, among which interactions with a variety
of neurotransmitter receptors are of importance (Motohashi et al., 2000). Among the more
recent discoveries (Kristiansen, 1989; Molnár, 1997; Molnár et al., 1993; Motohashi et al.,
1992a, b; Page and Lagnado, 1995) the antiplasmid effect of phenothiazines will presu-
mably become of especial importance. Furthermore, phenothiazines have potentials as
antiparasitic agents, as well as in the prevention of drug resistance, and the potentiation of
the immune system (Tanaka et al., 1997; Molnár et al., 1998).

In view of this wide range of actions, surprisingly few toxicological reports on
insects have been published. These are maily focusing on insects of veterinary importance,
or studying infuence on a great variety of biochemical and physiological processes (Blenau
et al., 1998; Coats et al., 1976; Degen et al., 2000; Khabour and Sadiq, 1999; Lees-Miller
and Caveney, 1982; Man’ko et al., 2000; Marjamaki et al., 1994; Pendleton et al., 1996;
Quraishi, 1967; Schlinke and Palmer, 1973; van Schaik and Graf, 1993). However, no
information appears to exist on their effects on insect development. In pursuing the idea of
potential insecticide properties of the phenothiazines, we chose as a first model a lepidop-
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Fig. 1. Structural formulae of chlorpromazine 
(3-chloro-10[3’-dimethylaminopropyl]phenothiazine) and trifluoperazine 

(2-trifluoromethyl-10[3’-(4-methylpiperazin-1-propyl)]phenothiazine



terous species, the cotton leaf worm Spodoptera littoralis Boisd. (Lepidoptera, Noctuidae),
a well-known polyphagous pest of various crops (e.g. cotton, soybeans, alfalfa), with great
economic importance in the Mediterranean, and the tropical and subtropical regions of the
Old-World (Cayrol, 1972). Out of the numerous phenothiazines chlorpromazine (CPZ) (3-
chloro-10[3’-dimethylaminopropyl] phenothiazine) (Fig. 1) was used because it is the best
known phenothiazine drug, and trifluoperazine (TFP) (2-trifluoromethyl-10[3’-(4-methyl-
piperazin-1-propyl)]phenothiazine (Fig. 1), because much work on biological effects of
calmodulin antagonists were carried out with this drug.

Materials and Methods

Chemicals 

Laboratory chemicals were from Merck (Darmstadt, Germany); chlorpromazine
and trifluoperazine were from Sigma Chemical Co. (St. Louis, MO).

Insects

Larvae of cotton leaf worm (Spodoptera littoralis Boisd) (Lepidoptera, Noctuidae)
were obtained from the Laboratory of Chemical Ecology, Department of Plant Protection
Science, Swedish Agricultural University, Alnarp. Third instar larvae were randomly
selected from the synchronised laboratory culture, reared continuously on a semi-synthetic
diet during many generations.

Diets

The diet was prepared according to Hinks and Byers (1976) containing, however,
mashed potatoes instead of beans. It was the same as that used for rearing. The drugs were
dissolved in tap water (50 mg per ml) and were added during continuous stirring, before
the diet cooled below 60 °C. Final concentration of the drugs: 1 g per kg (3.1 mmol/kg
CPZ ; 2.5 mmol/kg TFP (experiment 1), and 3 g per kg TFP (7.5 mmol/kg) (experiment
2). The control diet contained the same amount of tap water as the drug-containing diets.
Portions of the diets were transferred into rearing boxes, where they cooled to room
temperature and became solid.

Testing procedure

Groups of 20 third instar larvae were placed on each diet, respectively, to which they
had access during their entire development. Cultures were kept in environmental chambers
at 24 °C and a 16 h light, 8 h dark photoregime. The weight of each larva was determined
before placing it on the diet, and again before pupation. One week after pupation, pupae
were carefully removed from their pupation chamber, the number of living pupae were
recorded, then these pupae were individually weighed. Their sex was determined visually
based on external appearance. The pupae were then placed on moistened filter paper, and
the number of emerging adults was recorded daily.
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Statistics

Larval/pupal weights, and length of developmental time were analysed by one way
ANOVA. If the F value was significant, differences between means were tested for signi-
ficance by the Bonferroni/Dunn test using SuperANOVA® software (Abacus Concepts,
1989, Berkeley, California). Survival percentages were analysed by Fisher’s exact test
(InStat).

Results

Effects of 0.1 percent chlorpromazine (CPZ) and trifluoperazine (TFP) in the diet on
development

At an approximate consumption of 3–5 g of the diet the total drug intake during the
developmental period corresponded to 9–15 µmol CPZ and 7.5–12.5 µmol TFP per larva.
These amounts of the drugs drastically reduced the survival of the insects. Only 35 and 40
percent, respectively, of adults emerged from pupae, in comparison with 95 percent of
controls. Differences with similar tendencies were evident already in earlier stages of the
development (Table 1), and larval survival was only 95 percent, compared with 100 percent
in the case of controls.

The duration of development of both male and female cotton leaf worms from 3rd
instar larva to the adult stage was retarded in the surviving insects following treatment with
both CPZ and TFP, however, the differences were significant only for TFP (Table 2). The
difference was greater in TFP-treated males than in females. Behavioural changes (e.g.
reduced motor activity or changes in feeding habits), which are indicative of sedative
effects of the drugs, were not observed, but may nevertheless have occurred.

Surviving larvae of both sexes treated with CPZ or TFP had nearly the same weight
as controls (not shown), but female pupae of the treated groups (CPZ: 331 ± 17 mg; TFP
338 ± 13 mg) exhibited a significantly lower weight than controls (406 ± 15 mg).
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Stage of insect development Survival of insects (percent)

CPZ TFP Control

Larva (before pupation) 95 95 100
Pupa (one week after pupation) 85 90 100
Adult 35* 40* 95

The asterisk indicates a statistically significant difference (p < 0.05) between a treated and the corresponding
control group (Fischer’s exact test)

Table 1

Effect of 0.1 percent chlorpromazine (CPZ) and trifluoperazine (TFP) in the diet 
on survival rate of Spodoptera littoralis



Effects of 0.3 percent trifluoperazine (TFP) in the diet on development

Being somewhat more potent than CPZ, the experiments were continued with 0.3
percent (7.5 mmol/kg) TFP in the diet. Under these conditions not a single treated larva
developed to the adult stage, and only 30 percent pupated successfully, whereas 95
percent of the controls pupated, and 85 percent developed to adults (Table 3). Larval
survival was under these conditions 75 percent in the treatment group, and 100 percent in
the control group.

The duration of development until pupation was not exactly determined, because it
would have required the disturbance of the larvae inside the pupation chamber. However,
larvae of the treated group started to prepare their pupation chamber several days later
than the controls, and they had a markedly prolonged developmental phase. 

The weight of both the fully developed larvae (60 percent) and the pupae (50
percent) was considerably lower in the TFP treatment group, as compared with untreated
controls (Table 4).
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Sex Duration of development# (Days)

CPZ TFP Control

Male 22.0 ± 0.6 23.8 ± 0.5* 20.7 ± 0.4
Female 20.0 ± 0.4 20.3 ± 0.3* 18.8 ± 0.3

#Duration of development was determined from the time when a third instar larva was exposed to the test medium
until emergence of the adult.
The values are means ± S.E.; the asterisk indicates a statistically significant difference (p < 0.05) between a
treated and the corresponding control group (ANOVA followed by Bonferroni / Dunn test).

Table 2

Effect of 0.1 percent chlorpromazine (CPZ) and trifluoperazine (TFP) in the diet 
on the duration of development of Spodoptera littoralis

Stage of insect development Survival of insects (percent)

TFP Control

Larva before pupation 75* 100
Pupa one week after pupation 30* 95
Adult 0* 85  

The asterisk indicates a statistically significant difference (p < 0.05) between a treated and the corresponding
control group (Fischer’s exact test)

Table 3

Effect of 0.3 percent trifluoperazine (TFP) in the diet 
on survival rate of Spodoptera littoralis



Discussion

To our knowledge this is the first report on the effect of phenothiazine drugs on the
development of an insect species. It was shown that low concentrations of the drugs
added to a semi-synthetic diet markedly interfered with the development of cotton leaf
worm: CPZ or TFP at 0.1 percent in the diet retarded larval development, caused larvae
moulting to smaller pupae, and reduced development to adult stage by more than 50
percent. TFP at 0.3 percent caused 100 percent mortality. Only 75 percent of the treated
larvae were able to complete their larval development, and merely 30 percent of the treated
larvae produced pupae.

The experimental design did not allow one to determine exactly the amount of diet
consumed by the insects. However, it is evident from the results that a total ingestion of
20–40 µmol (9–15 mg) of TFP during the larval stage completely prevented the develop-
ment of S. littoralis larvae into adults. 

As was mentioned in the introduction, phenothiazines have multiple molecular
targets and pharmacological actions. It is, therefore, not possible to discuss at present
mechanisms of action that may underlie our observation. However, there is no doubt that
the calmodulin antagonism of the phenothiazines could be of especial importance in our
context, because of its known multiple functions, and the divergent actions of phenothia-
zines on higher animals (see Introduction). Moreover, it is known that signal transduction
pathways involved in insect moulting and pheromone synthesis involve Ca2+ -calmodulin
regulation of adenylate cyclase (Bondaryk, 1983; Granger et al., 1995; Gilbert et al., 1988;
Matsumoto, 1997). Most probably a multitude of processes of importance for normal
growth and development of insects are impaired by phenothiazine-type calmodulin anta-
gonists. The known chlolinesterase inhibitory properties of phenothiazines may be of
importance as well (Legheand et al., 1975; Fernandez et al., 1975).

It may appear somewhat premature to discuss the potentials of practical applications
of phenothiazines in the control of agriculturally important pests. However, in view of their
moderate toxicity to vertebrates, and in view of the fact that phenothiazines with diverse
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Stage of insect development Sex Weight (mg)

TFP Control

Larva at start (mid stage) Unknown 170 ± 9 158 ± 9
Larva (before pupation) Unknown 283 ± 26* 487 ± 29
Pupa (one week after pupation) Male 178 ± 13* 360 ± 10

Female 176# 373 ± 10

Data are mean values ± S.E., the asterisk indicates a statistically significant difference (p < 0.05) between a
treated and the corresponding control group (ANOVA followed by Bonferroni/Dunn test).
#determination of SE was not possible, as only one female pupa survived.

Table 4

Effect of 0.3 percent trifluoperazine (TFP) in the diet 
on the weight of Spodoptera littoralis



biological and physicochemical properties are readily available at relatively low cost, this
novel possibility of fighting pests should be considered and these type of compounds could
be used as novel leads for the development of pest control agents.
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