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Abstract

In view of system efficiency and environmental protection, it is important to harvest solar
energy better e.g. by improving solar heating systems. A theoretically founded tool for it is
mathematical modelling with the use of system transfer functions. Knowing the transfer
functions, the outlet temperature of the system can be determined as a function of the system
inputs (solar irradiance, inlet and environment temperatures), the dynamic analysis of the
system can be carried out, furthermore, stable feedback control can be designed effectively
based on the mathematical methods of control engineering. The designed control can be used
e.g. to provide just the minimal required outlet temperature for the consumer and, therefore, to
maximize the produced heat with minimal or without any auxiliary heating cost.

Although, pipes can affect the operation of solar heating systems considerably, this effect has
not been built in the transfer functions of such systems worked out already in the literature. In
this study, new transfer functions for solar heating systems with pipes are proposed based on a
validated mathematical model. Transfer function based control design is also given generally.
As particular applications, the dynamic analysis and the design of a stable P control are
presented on a real solar heating system. It is also presented quantitatively that the designed P
control is faster and more precise than the most conventional on/off control. Furthermore, the
presented methods can be easily adapted for any solar heating system with long pipes
equipped with an external heat exchanger.

Keywords: Solar heating systems; Pipes; Transfer functions; Control design
Nomenclature

t: time (),

£ symbol for inverse Laplace transformation

Time-dependent variables

I.: solar irradiance (global) on the collector surface (W/m?),

T, : collector (fluid) temperature (°C),

T, pipe temperature between the collector outlet and the heat exchanger (°C),
T, - pipe temperature between the heat exchanger and the collector inlet (°C),
T,y : pipe temperature before the heat exchanger in the inlet loop (°C),

T,i» : pipe temperature after the heat exchanger in the inlet loop (°C),

T ... outlet temperature of the heat exchanger in the inlet loop (°C),

out *

Tou, - reference (outlet) temperature of the heat exchanger in the inlet loop (°C),
: temperature of the collector environment (°C),

Tce
T, - environment temperature of the pipes in the collector loop (°C),
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T, : environment temperature of the pipes in the inlet loop (°C),
T, : temperature of the inlet (fluid) to the system (°C)

v, : flow rate in the collector loop (m%/s),

v, : flow rate in the inlet loop (m?/s)

Constant parameters
A, : area of collector surface (m?),

A, : control (tuning) parameter for the proportional control (-),

c, : specific heat capacity of the fluid in the collector (J/(kgK)),

c, : specific heat capacity of the fluid in the inlet loop (J/(kgK)),

k,.: heat loss coefficient of the collector pipes to the environment (W/(mK),
ki - heat loss coefficient of the storage pipes to the environment (W/(mK),
L,.: length of the collector pipe in one direction (m),

L,;: length of the storage pipe in one direction (m),

T, : control (tuning) parameter for the integral control (-),

U, (overall) heat loss coefficient of the collector (W/(m?K)),

V. : volume of the collector (m°),

V,.: volume of the collector pipe in one direction (m®),

V,;: volume of the storage pipe in one direction (m®),

n, : optical efficiency of the collector (-),

@ : effectiveness of the heat exchanger (-),
p. - mass density of the fluid in the collector (kg/m?®),

p.: mass density of the fluid in the inlet loop (kg/m®)

1. Introduction

In view of system efficiency and environmental protection, it is important to harvest solar
energy better e.g. by developing solar heating systems (see e.g. (Biro-Szigeti, 2014)). The
theoretically founded tool for it is mathematical modelling.

Various ordinary differential equation (ODE) models are used in the field. In (Buzas and
Farkas, 2000), systems with collector, heat exchanger and storage are modelled with a
(multidimensional) ODE, which is linear as well as its improved version in (Kicsiny et al.,
2014), where system pipes are also modelled with ODEs. The latter linear model, which is
used with slight modification in the present paper, is validated and accurate enough for
general engineering purposes on modelling and developing solar heating systems. The simple
usability is a great advantage of linear models. Furthermore, the nonlinear version of the
linear model of (Kicsiny et al., 2014) (proposed there as well) is not much more accurate but
much more complicated to apply.

From the mathematical model of Buzas et al. (1998), transfer functions for collectors (Buzas
and Kicsiny, 2014) and for simplified solar heating systems without pipe effects (Kicsiny,
2015) have been worked out and used for dynamic analysis. These research results are
extended in the present paper by the determination of transfer functions for solar heating
systems with pipes and the application of the transfer functions in the dynamic analysis of a
particular real system. It can be stated generally that the transfer function based modelling is a
relatively new and not frequent approach in the analysis of solar heating systems, especially,
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in the domestic case. Further examples in this subject are the following: Bettayeb et al. (2011)
and Huang and Wang (1994) used two-node models to propose collector transfer functions.
Several control strategies with pump flow rate modulation have been applied in solar heating
systems: in (Lof, 1993), differential, P (proportional), I (integral), PID (proportional integral
differential), adaptive and certain kinds of optimal controls are discussed. Generally, the
useful heat gain is to be maximized, in some sense, with optimal controls, by flow rate
modulation. The Pontryagin maximum principle (Pontryagin, 1962) is used to work out such
controls in the field of solar heating systems in (Badescu, 2008; Kovarik and Lesse, 1976;
Orbach et al., 1981; Winn and Hull, 1979). For the application of the controls of (Badescu,
2008; Kovarik and Lesse, 1976; Orbach et al., 1981), the knowledge of future meteorological
data is needed. This is also the case in (Ntsaluba et al., 2016), where the objective is to
maximize the overall gained solar energy of the system while minimize the losses but still
meet the heat requirements of the consumer. Clearly, such controls cannot be put directly into
practice because the weather is not known in advance. The problem is partially but not fully
resolved if it is assumed a priori that only one on and off switches will occur during the
considered time interval. In this case a feedback control stands for the optimal one, which,
theoretically, can be used in the practice (Orbach et al., 1981), but, the mentioned assumption
seems rather speculative.

So-called (often nonlinear) model based controls also exist but they are generally complicated
to apply because of the need to predict system output at future time instants and (similarly to
the optimal controls) the use of objective functions (Camacho et al., 2007a).

P and PI (proportional integral) controls for collectors (Buzas and Kicsiny, 2014) and for
simplified solar heating systems without pipes (Kicsiny, 2015) have been proposed recently.
The present work extends these results by means of control design for solar heating systems
considering pipe effects according to a future research task set in the Conclusion of (Kicsiny,
2015). Based on studying the literature, not many developments have been carried out on
controls (particularly, on transfer function based controls) for domestic type solar heating
systems in the recent few decades. Controls based on transfer functions occur in industrial
processes, e.g. for solar power plants (Camacho et al., 2007b) and solar desalination plants
(Ayala et al., 2011; Fontalvo et al., 2014). The general purpose in such control schemes, as in
the present work as well, is that the output temperature follows some reference signal in time
by means of the flow rate modulation.

Although, pipes can affect the operation of solar heating systems considerably (Kicsiny et al.,
2014; Ntsaluba et al., 2016), this important effect has not been built in the transfer functions
of such systems worked out already in the literature. The significant delaying and heat loss
effects of pipes in hydraulic systems are studied and modelled generally in (Kicsiny, 2017).
The contributions of the present paper are the following in details: by means of the
mathematical methods of control engineering, new transfer functions for solar heating
systems with pipes are proposed and used for dynamic analysis and control design. According
to a there appointed future research task, the present study extends the research results of
(Buzas and Kicsiny, 2014 and Kicsiny, 2015), where transfer functions, dynamic analysis and
corresponding control have been proposed for solar collectors and simplified solar heating
systems (without considering pipe effects). The here worked out transfer functions are based
on the slightly modified version of the linear ODE model proposed and validated in (Kicsiny
et al., 2014). The main novelty and advantage of this model, in contrast to former ones used to
work out transfer functions, is that it takes into account the effects of the pipes in the system,
so the worked out transfer functions, as their novelty and advantage as well, also consider
pipe effects. This modified model is detailed and validated in the present paper based on
measured data. Both the dynamic analysis and the control design are interpreted with respect
to a real solar heating system, where the pipe effects are significant and important to model,
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see (Kicsiny et al., 2014; Kicsiny, 2017). Stability criterion is also given for the designed
closed-loop proportional (P) control. The efficiency of the proposed control design is shown
by means of simulations. The advantages of the transfer functions are considerable: by
knowing them, dynamic analysis can be made and feedback control can be designed based on
the standard methods of control engineering. Such a control is generally much simpler than
optimal and (nonlinear) model based controls but it can follow the reference signal more
precisely and rapidly than the on/off control working with constant flow rate (Duffie and
Beckman, 2006), which can be called the most conventional control method, even, it is not
out of date and still worth researching (Araujo and Pereira, 2017). The simple usability may
be the main advantage of the linear approach in connection with the transfer functions.

The organization of the paper is the following: in Section 2, the model for solar heating
systems with pipes is presented and validated, for which the transfer functions are worked out
in Section 3 and used for the dynamic analysis of a real system. In Section 4, a stable
feedback control is designed based on the transfer functions, applied for the mentioned real
system and evaluated. Section 5 gives conclusions and proposals for future research.

Because of limits in volume, see e.g. (Bakshi and Bakshi, 2007) for the concepts of control
engineering (transfer function, step response, Laplace transformation, P, Pl controls, stability,
static error, etc.) underlying the present work. Maple (Maplesoft, 2003) and Matlab (Etter et
al., 2004) was used for the mathematical calculations required below.

2. Mathematical model and validation

This section recalls the basic mathematical model for solar heating systems with pipe effects
based on (Kicsiny et al., 2014). The transfer functions will be established according to this
model. The studied solar heating system can be seen in Fig. 1.
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collector heat exchanger
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pc2 inlet loop
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Ve Tpce Vi Toie Toi1

Fig. 1. The studied system
2.1. Mathematical model

In fact, a slightly modified version of the linear model of (Kicsiny et al., 2014) is used in the
present work as the effect of the pipe between the heat exchanger and the solar storage is
omitted now. This is because of that the (homogeneous) temperature of the mentioned pipe
T, (see Fig. 1) cannot be conveniently controlled (later in Section 4) by means of the

manipulated flow rate v, (see Fig. 9), since this temperature is not increasing in case of any

(high) solar irradiance (and permanently switched on collector pump) if the inlet pump (in the
inlet loop) is off. This problem does not hold if the controlled variable is the temperature just
after the outlet of the heat exchanger at the inlet loop (T, ). The corresponding mathematical

model is formed by Egs. (1a-e).

ut



i IO AL 1y, YA o1 @) e (L (0)-T. (1) (12)

dt  p.cV, oLV, % ¢ V, ¢
172 dTgctl(t)=\j_:c(Tc(t)_Tpd(t))+%@;(Tpm(t)qm(t)), (1b)
s Tl 01,00 228, 0T 1,0 T, 0
174 dTg—tl(t) - \}’—p (T, (6)-T,.(t))+ % (7. 0)-T,. (), (1d)
175 T(t)= O(T 0 ()~ T,0(0)+ T, () (e)

176  2.2. Experimental setup

177 A particular real solar heating system installed at the campus of the Szent Istvan University
178  (SZIU) Godolld, Hungary (Farkas et al., 2000) is used in the present work for validation. Let
179 it be called SZIU system. The installation produces domestic hot water (DHW) for a
180  kindergarten nearby. In our investigation, the solar storage (with 2 m®) is not considered. The

181  tap water, from the bottom of the storage, enters into the inlet loop (with temperature T,), the
182  outlet fluid is the DHW (at temperature T,,,). As the main working components, flat plate

183  solar collectors (collector field) oriented to south with an inclination angle of 45° (see Fig. 2)
184 and a compact counter flow heat exchanger (see Fig. 3) are used in the system.
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Fig. 3. Heat exchanger of the measured system

The parameter values of the SZIU system are 7,=0.74, A =33.3 m?, c,=3623 J/(kgK), p,
=1034 kg/m®, V,=0.027 m®, c,=4200 J/(kgK), p,=1000 kg/m®, U,,=5.2 W/(m*K), k,,=0.45
WI(mK), k,;=0.25 W/(mK), L,.=80 m, L, =115m, V, =0.111 m®, V;=0.158 m®, d=0.89,
v,=16.3 I/min (0 or 0.000272 m3/s), v;=10.5 I/min (0 or 0.000175 m®s) (Kicsiny et al.,

2014).

According to Fig. 1, the values of T,, T., T.=T ., Tou, Toeor Tpp and T,

once a minute (by means of LM 335 type temperature sensors). I, is also measured (by
means of a Kipp & Zonen CM 11 type pyranometer). The pipes of the inlet loop are
underground, so T, is the soil temperature, which is not measured but estimated because of
technical reasons. Nevertheless, it is an acceptable approach, since the soil temperature is
nearly constant throughout the year. v, and v, are also measured (by means of Schlumberger
FLOSTAR-M 40 type flow meters). ADAM type data acquisition modules collect the
measured data and transmit them to a computer for saving and evaluation.

2.3. Validation

In this section, model (1a-e) is applied for the SZIU system. (For the computer simulations,
the model has been realized in (Matlab) Simulink.)

For the validation, the measured values of T,, I, T,=T

are measured

pce’ 'pcl?

V., Vv, and the estimated value of

pce !

T, are fed into the computer model for (1a-e) along with the measured initial values of T_,
T.a, T,,and T

pcl» pc2 pil*
are compared.

Fig. 4 compares the measured and modelled temperatures for a measured day 2" November
2012, which is a general day with normal operation of the kindergarten and the solar heating
system. The operating states (on/off) of the pumps can be also seen in the figure.

Then the measured and modelled values of the outlet temperature T,

) T
A — Tout,mod
35 /\ \[K — Tout,meas| |
g') J‘V ‘
<30 R
o )r VN
£25 P
o r
£ 20 } S
o A ! \\\‘\\
B 15 5 R —
3 J
10;\J
5
0 5 10 15 20 24
w time (h)
oy 1 : , , ,
E=ol , THT T r ]
2acewo 5 10 15 20 24
time (h)

Fig. 4. Modelled and measured outlet temperatures of the solar heating system

The time average of the difference and the absolute difference between the measured and
modelled outlet temperatures are -1.7 °C and 2.6 °C, respectively. In proportion to the
difference between the minimal and maximal measured values of the temperature, the time

6
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average of the absolute difference (absolute error) is 9.0%, so it can be concluded that the
model describes the thermal processes characteristically well with an acceptable precision
regarding several engineering aims (developing and studying solar heating systems). Such
accuracy is generally acceptable for similar systems in the practice (see e.g. (Kalogirou,
2000)). Thus the mathematical model (1a-e) can be accepted and applied henceforth.

Remark 2.1

It can be seen in Fig. 4 that the modelling error is higher at the end of the day, when the
pumps are permanently off. This may be caused by that the value ® =0.89 corresponds to

switched on pumps and that T, is measured (technically) on the connecting pipe just after

the heat exchanger and not inside the heat exchanger. The temperatures at these places may be
quite different if the pumps are off for a considerable time. Nevertheless, this time period is
not really important with respect to the performance of the solar heating system, since the
system is inactive because of the switched off pumps.

3. Transfer functions
3.1. Derivation of transfer functions

For determining the transfer functions Egs. (1a-e) is rewritten from time to Laplace domain by
means of Laplace transformation according to Eqgs. (2a-e).

ST T.0)= T, (5)+ b (T (5)-T6) o (Toale) -T2 22
STle) Tyal0)= G (106) T (1, 6)Toal), @)
_ V, (= _ Op, _ _ chkpc _ _
STch (S)_TpCZ (0) = V_pc(Tpcl(S)_TpCZ (S))+ P:chpc (Tpil(s)_Tpcl(s))+ chchc (TpCE(S)_TpCZ (S)),
(2c)
S-rpil(s)_Tpil(o) = \y_;l (-ri(s)_-rpil(s))+ ,:c:/p;, (-rpie(s)_-rpil(s))’ (Zd)
To(8) = (T, () -Tou(6)+ T 5), (2¢)

where overbars denote the variables in Laplace domain, s is the (complex) independent
variable in Laplace domain, furthermore, the initial values of T, T ,, T , and T, (state

variables) are T,(0), T,,(0), T,,(0) and T (0). It is an important advantage of the

transformation that the system of linear ODEs (la-e) is transformed to the simpler linear
algebraic form of Egs. (2a-e). Rearranging Egs. (2a-e), Egs. (3a-€) is resulted.

( )= co(S)T( )+ Hcl( ) ( )+ ch(S)Tpcz( )+ Hcs(s _ce(s)’ (33)
-ITpcl(S) =H e (S)Tpcl(o)+ H pcll(s)-rc(s)+ H pce(s)-rpce(s)v (3b)

pil

Tch (S) =H PO (S)TpCZ (0) +H chl(S)-rpcl(s)+ H chZ(s)-rpil(S)+ H pce(s)-rpce(s) , (3c)
-ITpll(s) = Mo (S)Tpll( )+ H pill(s)-ri(s)+ H pie(s)-rpie(s)7 (3d)
Tout(s) outl(s)-rpcl(s)—i_ Houeo (S)-rpil(s)’ (3e)

7



250 where

51 Hols)=—r, Hy)=—t B ()= T e p ()T DL

s+l C75+1 pcV. TS+l V)] C75+1 pcV.
B GO Mel g Ml e
R e L e 0 B RC Rec
M MW e
255 Hols)= 2 U M) L q’)v Hoa(8)=®, Ho(5)=1-0,

256  where 7., 7., 7, are the time constants of the collector, the collector pipes (in the collector

257  loop) and the inlet pipes (in the inlet loop), respectively:

T

1 1 1
258 == === =
ULe'A% _{_Vic P chkpc +V7c P Lpikpi +i
pCCcVC VC pCCCVpc Vpc pi Civpi Vpi

259  After solving Eqs. (3a-€) for T_,(s), Egs. (4) is resulted.

Toui(8) = His()To(0)+ Hip (ST (0)+ Hig (ST (0)+ Hia (T3 0)+ Hi ()i () + Hy () (5)+ Hy(s)Tes(5)+

M) HTLG)
261 (4)
262  where
263 Hy()=— ey ) ety () "o Dl
=1+ H o H paiHe =1+ H H uiHe =1+ H H aiHe,
264 HM(S) _ -H pi0 (HoutlH pc11Hc2H pc22 + HoutZ - Hout2H pc21H pcllHCZ) ’
=14+ H H o, H,,
265 Hl(S)z -H pill(HoutLH pclchiH pc22 + Hout2 - HoutZH pc21H pcllH02)1 HZ(S) _ - HoutLH pclchl ,
-1+H chlH pc11Hc2 -1+H pc21H pcllHCZ
266 H(5)= HooHparHes HL(5)= HouaH poe L+ Hpclchz)’
=1+ H ,H o, H,, =1+ H Hq,H,,
267 HS(S) _ -H pie(H ouuH pc11Hc2H pc22 + Hout2 - Hout2H pc21H pcllHCZ) ’
=1+ H H uiHe,

268  where, the independent variable s is not always indicated, for the sake of simplicity.

269  From the viewpoint of systems engineering, the solar heating system is a system with an
270  output variable (T,,, which is to be controlled in Section 4) and input variables (other time-
271  dependent but not state variables), when the flow rates are constant, see Fig. 5.
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Fig. 5. Scheme of the solar heating system

The transfer functions are the quotients of the Laplace transformed form of the output T, (s)
and the proper inputs T;(s), T.(s), T.(s), T,e(s), T,i(s). If the transfer function relating to a

ce

selected input is determined, the initial conditions T,(0), T,4(0), T,.,(0), T,,(0) and the other

1 T pe2
inputs are supposed to be zero. According to Eq. (4) the transfer functions for the inputs are

Tuls) ), Ty o), Tl (o), T _py ) Teul®)_py o
S 0), T Hle). ), = ). = )

-rpie(s)

The response of the outlet temperature regarding the initial conditions can be characterized
Touls) Tou(s) Tou(s) Touls)

W = H,(s), =205 = Hiy(s), =25 = Hiy(s), =220 = H,,(s).
T MO T M) g ) g e

Eq. (4) represents the linear superposition that is the resultant effect of the initial temperatures
and inputs is simply the sum of the single effects of the initial temperatures and the inputs.

similarly with functions

3.2. Dynamic analysis

Dynamic analysis for solar heating systems with pipes can be made with the transfer
functions. The unit step responses characterize well the dynamics of a system. The unit step
response relating to a selected input is the response (the output) of the system with respect to
the input (in time domain), assuming that the input is of unit step type and that the initial
values of the state variables and the other inputs are zero. Eq. (5) gives the unit step input
generally.

0, t<0,

Input(t):{l = ©)

Eq. (6) gives the Laplace transformed form of Input(t).

Input(s)zé (6)

Eq. (7) gives the unit step response as output in Laplace domain using H(s), which is the
transfer function corresponding to the input.

Output(s) = H(S)% @

The unit step response can be determined in time domain from Output(s) according to Eq.
(8), where £ stands for the inverse Laplace transformation.

Output(t) = fl[H (s)ﬂ 8

According to Eq. (9), the effect of the initial conditions can be also studied in time domain by
means of the inverse Laplace transformed form of the product containing the given initial

9
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condition and its transfer function H,(s) (here, the other initial values and the inputs are
assumed to be zero again).

Output(t) = £*[H,(s)- Initial condition]= Initial condition - £*[H,(s)] (9)

Apply the above dynamic analysis on the solar heating system (based on Section 3.1). The
unit step responses relating to the inputs T, I, T,, T, and T, are the following,

cr lce pce

respectively: T, (t)= K{Hl(s)ﬂ . TM)= fl[Hz(s)ﬂ, T,.(t)= fl[Ha(S)ﬂ ,
Tom(t):f{m(s)ﬂ and Tout(t)zfl[HE)(s)ﬂ,

The responses relating to the initial conditions T,(0), T,4(0), T,,(0) and T,,(0) are the
following, respectively: T,.0)=T. ()" [H,l(s)], Toult) =T,a(0)£ H ()],
Tout(t):Tpcz( )f [HI3( )] and out() pll( )f [H|4(S)]

3.2.1. Dynamic analysis of a real system

The above analysis for solar heating systems is presented for the SZIU system (in case of
switched on pumps). Eq. (10) gives the unit step response of the SZIU system relating to T, .

T,,.(t)=0.72+0.004¢°°** —0.13¢ %% — 27.481e°°°* 4+ 26.89e **™" (10)
where t: time (s). The graph of the function can be seen in Fig. 6.
Effect of Ti
0.7
0.6
_ 05
O
0.4
5
20.3
0.2
0.1
0)
0 20 40 60 80 100
time (min)

Fig. 6. Response of the system with respect to the unit step of T,

Egs. (11), (12), (13) and (14) give the unit step response relatingto 1., T, T, and T.

cer Tpoe
T,.:(t) = 0.0249 +0.005e °°°** —0.009e *** —0.021e %" , (11)
T,,.(t)=0.175+0.0389e **** —0.066e **** —0.147e %", (12)
T,..(t)=0.078-0.002¢ °%** +0.01e**** —0.085¢ ****, (13)

T,.«(t) = 0.028 +0.0002e °°** —0.005¢ **** —1.075¢ ***" +1.052¢ ***" (14)

10
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Eq. (15) gives the response relating to T,(0) (T.(0)=1 °C) (see Fig. 7 as well).

T,u(t)=—-0.258e%°"* +0.163e °%* +0.096e °*°* (15)
Effect of Tc(0)
0.12 0.12 / \
0.1 0.1 / \
§0.08 5/30.08 (
3006 30.06
[ —
0.04 0.04
0.02 0.02
% 1 2 % 10 20 30
time (min) time (min)

Fig. 7. Response of the system with respect to T_(0)=1 °C

Egs. (16), (17) and (18) give the response relating to T,,(0) (T,,(0)=1 °C), T,,(0) (T,,(0)=1
°C) and T,,(0) (T,4(0)=1 °C).

Tout(t) —_0.028e7°%12 | 050104 4 0.417e 7000t (16)
T,.(t)=0.3e°%% —0.967e % 10,677 °%°F, an
T, (t)=—0.044e %% 1+ 0.493e°%°* 4 27.598e %" —27.937¢ (18)

If all inputs and initial conditions affect simultaneously, the resultant output is a simple sum
of functions (10)-(18) based on the superposition principle (see Eq. (19) and Fig. 8).

T,u(t)=0.72+0.004e °%** —0.129e %% — 27.481e " + 26.886e **°* (19)
Resultant effect
1.008 1.025 —
1.007
1.02
1.006
81.005 51.015
—1.004 =
3 3
F1.003 = 1.01 /
1.002
1.005
1.001
b 123 4 5 1) 102030405060
time (min) time (min)
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Fig. 8. Resultant output of the system
For better visibility, the responses in Figs. 6, 7 and 8 are shown for different time periods.
Remark 3.1

The largest effect of the inputs to the outlet temperature T,,, is produced by the unit change of
T., according to Egs. (10)-(14), since the function of Eg. (10) has the biggest maximum
(bigger than 0.72 °C). Tpcl(O) has the largest effect regarding the initial conditions.

4. System control

Stable control can be determined for solar heating systems with pipes by means of the transfer
functions and the well-tried tools of control engineering. Here, the outlet temperature is the
controlled variable, which is to be changed in time according to a prefixed reference function
by proper flow rate modulation in the inlet loop, so v; (as manipulated variable) can be varied
now. v, is maximal (constant) to maintain the collector temperature always at a minimal
level. In this way, the efficiency of the collector (and the solar heating system) is maximal in
case of any v, value. It is assumed that the collector temperature is always high enough to
increase T, even if v_ is maximal. (Otherwise, v, could be changed if needed while always
kept as high as possible, since it is enough for us to increase T, to any small extent).
Functions T;, I, T, T, and T, are disturbances now. Fig. 9 summarizes the control.

ce’!

Ti Ic Tce Tpce Tpie: disturbances

A

A T
_V' Solar heating system out
manipulated controlled
variable variable

Fig. 9. Scheme of the solar heating system regarding control

Now, not every coefficient is constant in system (la-e), since neither is v, (t) constant, even
system (La-€) is not linear in T, (t), T,,(t), T,(t), v;(t), because of the products v, (t)T,,(t),
v,(t)T,(t), v,(t)T,(t) in (1c and d), so the linear methods of control engineering cannot be
applied directly. First, Egs. (1a-e) should be linearized at a convenient operating point.

4.1. Model linearization

Such an equilibrium of Egs. (1a-e) is chosen for operating point, which represents a kind of
“average” circumstances, that is, when each of T,(t), T,u(t), T,.(t), T,u(t), T,.(1), T,@),
1, (t), T,o(t), T,e(t), T, (t) is constant and is the approximate mean value between the lower

Towzs Tows Towr T00 10, T, Ty

pc2* "pil’ ‘out? ce! ' pce!?

and upper limits of its real occurring values. Let T, T®

pcl?
Tr?ie and v/ denote these constants at such operating point. The r.h.s. of (1a-€) are zero at this

operating point as it is an equilibrium (see Egs. (20a-¢)).

O 1 D e T2, s

c'c C
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V, LocKoe
0= v (re—T° )+ ﬁ (re.-72,), (20b)

v, Dp,cV° LocKpe
0= V—DC(T;’C1 —TO, )+ M(T;l —TO, )+ ﬁ (re,-72,), (20¢)
Vio LK,
0=V—pi(T ‘Tr?il)*ﬁﬁ % -To). (20d)
T2, =@(T%, -T% )+T5, (20¢)
Egs. (1c and d) have the form of Egs. (21c and d).
dT,,(t
Pd—tZ() = F(Tpcl(t)'TpCZ (t)’Tpil(t)’Tpce(t)' Vi (t))’ (210)
dT,,(t
2 e, 007,000 0) e)
Eqgs. (22c and d) shows the linearized version of Egs. (1c and d) at the operating point.
dT,,(t OF
Pd—tZ() = F(Tr?cliTr?cz ’Tr?il'T;)ce'ViO)—i— E(Tscl'T;)CZ’T;il’T;)ce’viO)' (Tpcl(t)_T;)cl)—i—
p
oF oF
—(T[?cl’T;)CZ'T[?il'T;?ce’ViO).(Tpc2(t)_TpOc2)+—(Tr?cl’T;?CZ’T;?il’Tr?ce’vio)'(Tpil(t)_T;?il)+
T e Ty
aaT—F (Tpocl’TpOCZ’TpOil’Tr?ce’ Vio ) (Tpce(t)_T;)Oce)+ ZV_F(Tpocl’Tr?cZ 'T[?il’TpOce’Vio)' (Vi (t)_ Vio): 0+
pce i
Vo _Ppov -(T (t)-T? )_ Ve _ Loy -(T (t)-T2 )+—q)picivi0 (T L)-TO )+
Vpc IOCCCVpC pC1 pd Vpc pCCCVpC pcz pcz IOCCCVpC pll pll
LK. Do (T —To
pZ:—Vp(Tpce(t)_T;)ce)—i_ p(cp\l/ pCl)(Vi (t)_vio)!
cTc" pc cTc” pc
(22c)
dTg—i:(t) = F(Tl?il’Tio’T;?ie’Vio)"' ;I'F (Tpoil’Tio’T;?ie’viO)'(Tpil(t)_T;?il)—l—
pil
%(T;?il’Tio'T;?ie’Vio)'(Ti (t)_Tio)+;—F_(T;?il’Tio’T;Sie’V?)'(Tpie(t)_T;?ie)Jr
i pie
oF Vi0 L ik i Vi0
Ei(Trf’il,TiO,T;’ie,v?}(vi (t)-v?)= o{\/-;ﬁv”m].(Tpn(t)—T;l)W—m-(Ti (t)-T°)+
L k.. TO-T¢
PR T (1)=TO )+ PL (v ()= VO
o Ta)=Ta 2501
(22d)

Egs. (1a,b and e) are linear corresponding to each time-dependent function, so the coefficients
in Egs. (1a,b and e) remain the same below in the linearized model Egs. (23 a-e).
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381

382
383

384

385

386

387

388

389

390

391

392

393

394

395
396

397
398

Let -Fc(t):T ( )_TO’ fpcl(t):Tpcl(t)_T;J()cl’ -FpCZ(t):Tpcz(t) Tr?cz -Fpil(t):Tpil(t) Tp(v)ll’

~

-E)ut(t):Tout(t) To(ilt Ti(t)_T(t)_TO iwc(t): Ic(t)_ IS’ -I:;e(t):Tce(t)_Tcg’
T o) =T o) =T, Tyt) =T, (t) =TS, V() =V, (t)—V? in the linearized Egs. (23 a-e).
c(t)_ A;770 T LeA\: _~ V_C T _~
t _pCCV c() pCCV( (t) TC(t))+VC (Tpcz(t) Tc(t))’ (233.)
dprl(t)_ Ve (£ = chkpc = =
T - Vpc (Tc (t)_Tpcl(t))+ pcccvpc (Tpce(t)_Tpcl(t))’ (23b)
dfpcz(t)_ Vc ~ ~ (I)pl 0 = = chkpc =
T_V (Tpcl(t)_Tpcz(t)) pCV (Tpil(t)_ pcl(t))+pT( pce(t) Tpcz(t))+
. pc c¥c’ pc c-cY pe (230)
q)pl |(Tp|l Tpd)V-(t)
chchc s
dTp,l() VO =y = LK, (= ~ T -To -
ot _V_pi(Ti(t)_Tpil(t))+M(Tpie(t)_-rpil(t))_'_V—pivi(t)’ (23d)
Tou(t) = BT, (1)~ () + T t) (23e)
Rewrite Egs. (23a-¢) into Laplace domain with T,(0)=T,,(0)=T,,(0)=T,,(0)=0 °C:
STs) =T s) 4 DT )T (o) Y Fcle) () (240
= Ve 7 = LocKpe = T
STpcl(S): Vpc (Tc (S)_Tpcl(s))_'-M(Tpce(s) Tpcl(s))’ (24b)
- - - - - Lk (= -
$Toale) = al6) T 227 (6) T2 0)-Tlo)s
. pc cTc" pc c~’c” pc (24C)
q)pl |(Tp|1 Tpcl)?(s)
chchc I
= 0 (= = |_ k — - -|-o T01~
Touls) =g L6 T ) Tuh 2576, (240)
Toul8) = O{Ta(6) T, (6)+ Ta(9). (240)

Based on the linear superposition principle, the sum of the separate effects of the inputs is the
resultant effect according to Eq. (25).

—~

Tou(8)= FL ()T, (8) + H ()T (5)+ Ha()Teu(8)+ H, (8)Ta (8)+ Hi (8)Te(5) + Ho()(5),  (25)

where
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399

400

401

402

403
404

405

406

407

408

409

410

411

412
413

414

415
416

ﬁl(s)_ H pill(ﬁouﬂﬁpdlﬁczﬁpr + ﬁoutz : |:iou'[ |:ipcz |:I‘pc11|:|‘(:2)’ ﬁz(s): NE ~E. Ni
-1+ Hpc21H pc11Hc2 -1+ Hpc2 H H
A fs) = el 1) (1+HpcllH )
38)= 1+0 0. A LANCA '
-1+ H,,H, HC 1+ H pcle pcllH
H’S(S): - Hﬂ.pie(l:d| H~pcllH~ |:ipczz lt'toutz : |:iout2|:ip021|:d| pclll:icz)
-1+ Hpcz HpcllHCZ
H" (S) — - Hout H pil2 H pc21 H H HouﬂH pcll'icZH ;1(322 lez + HoutLH pcllH H pc23 + HoutZH pil2
° 1+ H pc2 H pclchz
where
H~c1(s): Hcl(s)7 I:icz(s): HCZ(S)’ H~c3(s): Hc3(s)’ |’_]-pcll(s) H pcll(s) Hpce( ) H pce(s)
~ T Y CD,D O 3 Toc CDP
H — pc e i H P i
chl(S) 7,S+1 (Vpc pCCCVpCJ pm(s) T,S+1 chchc
- Ty PpO S ) NV . TLoTO-TY
H _ pc ivi\' pi pc H_ _ pi Vi H _ pi pi
zs(5) 0,5+l peN,. i(5) T+l Vv, pa(9) T+l v,
~ Ty Lk, ~ T, @ ~ T (1_c1))v.°
H . = P! . ) — pi A i pi i ’
pe(s) T,s+1 p,c,vp, ps(s) ~pis +1 V, pal8) = T+l Vv,
~ 7. (@-o +oT% -T° -~ ~
)~ o o O Tt ()1, (6), Pl (6)= ol
pi pi

in accordance with the notation of Section 3.1, and

~ 1
BTk, W 20)
+7

pcV, V

i pi pi
4.2. Control design

A stable closed-loop control for the solar heating system (1a-e) is to be realized in such a way
that the outlet temperature T, (t) follows a given reference input Outr(t) in time accurately

out

enough. It means that T, ,(t) is to follow T, (t), where T, ., (t)=T, .., ()~ T, (see Fig. 10).

out

~ Tce
Ti ~
_— ~J
H 1 ~ Tpce
_c N ~
Hs =

$out,r ~ V ~
%{/ )= Hc "= He T :
ou

Fig. 10. Feedback control for the solar heating system
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440

The task is to determine H~C such that the control is stable with properly small static errors
T, 1., T, Toes Tpe. It should be mentioned that the
mathematical derivation is not fully detailed below because of limits in volume. For more
details, see (Buzas and Kicsiny, 2014; Kicsiny, 2015), where similar derivations can be found

(but for different systems). The transfer functions of the (controlled) system of Fig. 10

relating to the inputs T, T,, I,

regarding the reference input T~Out,r and the disturbances f, I Teer Tpeer Tpie @re given in
Egs. (27)-(32).
A, . (s)=—PeBH) (27)
out'out,r 1+ c(S)He(S)
A, (s)= — i(s) , 28
out'l ) 1+ H_(s)H4(s) (28)
A (s)=— 1 2(31 ’ 29
L ) @
" Hy(s)
H- - (s)=—=—34L | 30
e LA (H,6) <0
v H,(s)
H- - = 31
outTpce(S) 1+ H_(s)H4(s) (D
~ H,(s
A (5)= )

H,(s)H,(s) is the loop gain of the system (multiplying around the feedback control loop).
Write H_(s)H,(s) (in (36) and (37)) in the general form Z—fﬁo(s):

~ ~ C ~

Hc(S)He(S): S_f Ho(s)’ (33)

where H,(0)=1and c, and i are constant.
Consider the cases of P and PI controls:

P: H,(s)= A, (34)
. T (s)= 1A
PI: HC(S)—AP( +ST,J_ST, (L+sT)), (35)

where A, and T, are constant. It can be derived based on Section 4.1 that the product

H,(s)H,(s) fits into the general form of Eq. (33) in case of both control types, see Eqs. (36)
and (37).

P: H,(s)H(s) =22 H,(s), (36)
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464

465

P AL (5L (6) = 5 Fi ) (37)

Take the reference input in the form of Eq. (38) (the disturbances are set zero).
Tour (D)=t (38)

where ¢, and j are constant. If j=0, T,,.(t) is a step function, if j=1, T, (t) is a ramp
function (in our case, only t >0 is considered).
If it holds that i>] (for i, j in (33) and (38)), then the static error of the control relating to T

out,r
is zero. If i>j does not hold, the static error relating to T,
control.

is according to Eq. (39) for a P

utr

= Iim(Tout,r(t)_Tout(t)) S (39)

e =
t 1+c,

rs

If i>] does not hold, the static error relating to T~0 is according to Eqg. (40) for a PI control.

utr

er,s = !i_l;PO(Tout,r (t)_Tout(t)):

(]

-

c (40)

C

Take the disturbance 'F,(t) in the form of Eq. (41) (the other disturbances and Ta;uu(t) are set
Zero).

T,(t)=ct", (41)

where ¢, and k are constant. If k=0, T, (t) is a step function, if k=1, T, (t) is a ramp function.

The transfer function |:|1(S) relating to T~I should be considered in the form of Eq. (42).

~ =7
H1(S):S_|1HoI (S)’ (42)

where Hi(s)=1 and c. is constant.
If i>k+1, holds for i, kand I, in Egs. (33), (41) and (42), the static error relating to f IS zero.

One can derive based on Section 4.1 that H,(s) really fits into the form of Eq. (42), where |,

=0. Furthermore, H,(s), H,(s), H,(s) and H,(s) are also in accordance with Eq. (42), see
Eqgs. (43)-(46).

~ G, ST
Hz(s)zs_é OC(S)’ (43)
~ C: =
Hy(s) =7 Ho(s). (44)
L (6)=—3= A (6), )
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Hy(s)=—2 Fig™(s), (46)

where 1, =1,=1,=1,=0. If i>k+1, does not hold, the static error of the control corresponding to

T. is according to Eq. (47) for a P control.

~ ~ Czx

el,s = !ilpo(Tout,r(t)_Tout(t))z 1+Tic Cl (47)

If i>k+1, is not fulfilled, the static error corresponding to f Is according to Eq. (48) for a Pl
control.
C~
. (= =~ T
el,s = Ilm(Tout,r (t)_Tout(t))z _Icl . (48)

t—ow
CC

Consider I(t), T.(t), T,.(t) and T,,(t) similarly as in Eq. (41): 1.(t)=c,t", T.(t)=cqt",
Toe(t)=c,t?, T (t)=cit", wherem, n, g, u, c,, ¢, ¢, and c, are constant.

Similarly as above, the static error relating to I~c (&), 'Fce (€55), 'che (e,5)and T;, (&) are
zero if i>m+1,, i>n+1,, i>g+1, or i>u+1,, respectively. If these conditions are not fulfilled, the
static errors are according to Eqgs. (49)-(52) for a P control.

G
€ = 1+CCC C,, (49)
Cr
€35 = 1 _:f:c Cs, (50)
€, = o c (51)
o 14c, Y
e .= CT~—"iec (52)
> 1t+c

If the above conditions are not fulfilled, the static errors are according to Egs. (53)-(56) for a
PI control.

G
€= C_:CZ’ (53)
Cr
€35 = Cze Cs, (54)
e, = Cfme c (55)
4.5 c 41
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C:

€ = % Cs (56)

c

The values of the control parameter(s) A, (and T,) should be selected in such a way that the
absolute values of the above static errors are not bigger than a positive prefixed limit E and
the control is stable. Considering stability, the controlled system is stable with respect to T

out,r

if the real parts of the zeros of the denominator of H =+ (seeEq. (27)) are negative.
OUt out,r

The denominators in (28)-(32) are the same as the denominator in (27) (1+H,(s)H,(s)), so
the same condition with respect to the mentloned zeros is sufficient to assure the stability of
the controlled system relating to T,1,T . and T . aswell.

1Y "¢c? “ce?

Summing up, the task of determining a P (or PI) control mathematically is to select the free

e |<E, ‘eZS <E, ‘93’5 <E, ‘94,5 <E,
‘ 5| < E hold, and the real parts of the zeros of the denominator of H - & arenegative.
out out,r
Remark 4.1
The above criterion on the denominator of H~ +  is sufficient for the stability of not only

OUt out,r

the linearized system but the original nonlinear controlled system (in which v, (t) is variable),
since, according to Lyapunov, the latter one is stable as well if the real part of each zero of the

denominator of H~ 7 Isnegative.
out out,r

4.2.1. Control design for a real system

Let us design a proper P control of the SZIU system specified in Section 3.2. Consider a time
period in May. Let T}, =55 °C, which is generally high enough for domestic purposes. Let 1°

out

=600 W/m? (approximately the average daytime irradiance on a clear day (in May) in
Hungary (Varga, 2011)), T.°=15 °C (average tap water temperature), T2=T> =20 °C

pce

(average daytime temperature of the environment), Tf,e—T[?,l—lS °C (underground (soil)

temperature). From these assumptions, the remaining values of the equilibrium T2, T2, T,

v{ can be calculated from Egs. (20a-e): T'=61.35 °C, T°,=59.94 °C, T°,=53.88 °C, V;

pcl pc2
=0.00003 m%s (=1.8 I/min). The maximum of v, is 10.5 I/min (see Section 3.2). It is assumed,
as a further limitation, that v(t) can be changed between zero and its maximal value in 3

seconds, from which the (maximal) speed of flow rate changing is 0.000058 m*/s°.
Let us require that the absolute values of the static errors (39), (47), (49)-(52) are less or equal
to 0.2 °C, which is suitable for a DHW producing installation. It is also required that the

controlled system is stable that is the real parts of the zeros of the denominator of HT~MT~0thr
are negative.

Assume that such high changes of the disturbances act on the system at the same time (at time
10 (min), see Figs. 11, 12, 13 and 14), which are still not impossible but rare even separately
under real conditions, thus they are even more unlikely simultaneously. Check in this case if
the controlled system can still follow accurately enough a reference input, which is also

changed to a great extent in the same time. (If the controlled system is able to follow well an
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529
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531

532
533

534
535
536

537
538

539
540

extreme reference input under extreme disturbances (with small probabilities), it can be
expected that it works even more precisely under more common real circumstances.)

A step input is used as the mentioned reference input (see Fig. 11) and sums of step and
trigonometric inputs are used as the mentioned disturbances (see Fig. 12) modelling both
sudden and permanent environmental changes.

60y

0 20 40 60 80 100 120 140
time (min)
Fig. 11. Reference input for the controlled system

19 700
a 680
18 o«
) £ 660
17 =
= 2 oo A
O
16 ' = 620
15 600
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
time (min) time (min)
26 15.2
)
S _.15.15
8 24 5_)
|§_ _g 15.1 '
§ 22 F15.05
(&)
- |
20 15
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
time (min) time (min)

Fig. 12. Disturbances for the controlled system

The control parameter is set A, = -0.00008, which assures stability and that the requirements
6[<0.2°C, |e,|<0.2°C, |, |<0.2°C, |e, |<0.2°C, |e,|<0.2°C, || < 0.2 °C hold.
Apply and test this P control (in (Matlab) Simulink) for the original, not linearized, model
(1a-e) for the SZIU system.

The initial state variables are at the equilibrium point (at which the system is suddenly
disturbed at the selected initial time 10 min): T,(10)=T/, T,,(10)=T2;, T,,(10)=T,

pcl pc2

Tpil(lo) :Tr?il ! Ti (10):Ti0 ! Ic(lo): I(? ! Tce (10)=Tc2 ! Tpce(lo):T;?ce ! Tpie(lo)zTF?ie ' Vi (1O)= Vio !

from which the control has to reduce relatively high initial error: T, (0)-T,,(0)=5 °C (see
the upper part of Fig. 13). The simulation results are shown in Figs. 13 and 14. Fig. 13 shows

e3,s
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541  the reference temperature Tow(t) (input), the outlet temperature T, (t) (controlled variable)
542  and the pump flow rate v,(t) (manipulated variable).

O 60-
5
2 58 8
55& — Tout,r |
Tout
0 20 40 60 80 100 120 140
time (min)
6
y N
: AW
s, /\
% 20 40 60 80 100 120 140
543 time (min)
544 Fig. 13. T, (t), T,,(t) as controlled variable and v,(t) as manipulated variable
545  The error of control T, (t)—T,,(t) is shown in Fig. 14.
5
4 \
o 3
5
3
3 \
— 1 \
0.5 ——
0 -
Vi
s NV ANA
-1
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140
546 time (min)
547 Fig. 14. Error of control T, (t)—T,.(t)

548  Based on the results on the P control, the absolute value of the error of control decreases
549  definitively below 1 °C and 0.5 °C within 13.5 min (at 23.5 min, c.f. Fig. 14) and 35.9 min (at
550  45.9 min), respectively. This speed and precision is convenient for general domestic purposes.
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The absolute value of the error of control decreases definitively below 5% of the initial error
(below 0.25 °C) within 51.4 min (at 61.4 min) and definitively below the required limit 0.2 °C
within 54.3 min (settling time). According to these results, the designed P control is
satisfactorily fast and precise regarding the control purpose.

Remark 4.2

1. Of course, the DHW produced at the claimed temperature (55 °C) can be stored in a solar
storage and can be consumed according to the current hot water demand during the day. If
the DHW produced by the worked out control is just at the minimal temperature level
required by the consumer, then the produced DHW amount is maximal, so the hot water
demand can be satisfied with minimal or without any auxiliary heating costs.

2. The gained results underlie Remark 4.1 regarding the stability of the nonlinear controlled
system (in which v, (t) is not constant), since above, the nonlinear system model (1a-e) has
been controlled.

4.2.3. Comparison with on/off control

For comparison, the most conventional on/off control has been also applied (instead of the P
control) for the same system with the same initial conditions above. The control purpose (to
follow the reference input of Fig. 11) is also the same. The inlet pump flow rate v, has been

modified according to the on/off strategy, that is, it can take a constant (maximal) value or
zero. Based on many attempts, 0.2 m*h=3.3 I/min (instead of 10.5 I/min above) has proved to
be optimal to minimize the residual amplitude of the oscillating error of control while still be
able to follow (on the average) the reference input. Also for the sake of minimizing the
residual amplitude of the error, the switch-on and switch-off temperature differences have
been set to very low, namely, 0.1 °C and -0.1 °C. (Even lower values are not practical because
of normal inaccuracies of real temperature sensors.) Figs. 15 and 16 show the results in case
of the on/off control, which can be directly compared with those of the P control (see Figs. 13
and 14).
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Based on the results on the on/off control, the absolute value of the error of control decreases
definitively below 1 °C and 0.6 °C within 24.4 min (at 34.4 min, c.f. Fig. 16) and 44.9 min (at
54.9 min, respectively. This speed and precision can be still satisfactory for not strict domestic
purposes, nevertheless, it can be seen that the P control is considerably faster and more
precise than the on/off control. Even the on/off control cannot meet the requirements of that
the absolute error decreases definitively below 0.5 °C or 5% of the initial error (0.25 °C) or
0.2 °C, which are not problem for the P control.

5. Conclusion

It can be stated generally that modelling based on transfer functions is a relatively new and
not frequent approach in analysing solar heating systems, more particularly, in case of
domestic purposes. Accordingly, control design based on transfer functions is quite rare in
case of such systems in spite of the simple applicability, which is an important advantage of
the linear method in connection with transfer functions. Transfer function based controls are
usually simpler than optimal or (nonlinear) model based controls but able to follow the
reference signal more precisely than the most conventional on/off control. Although, pipes
can affect the operation of solar heating systems considerably, this effect has not been built in
the transfer functions of such systems worked out already in the literature. It has been
intended to contribute to fulfil the above research gaps in this paper by working out new
transfer functions considering pipes and designing stable controls (a closed-loop P control as a
particular application) based on the proposed transfer functions.

In addition, the transfer functions have been used for the dynamic analysis of a particular
solar heating system (the SZIU system). The worked out stable P control has been also
applied for the SZIU system to make the outlet temperature of the system follow a given
reference input. If this reference input is just the minimal temperature level required by the
consumer, then the produced DHW amount is maximal, so the hot water demand can be
satisfied with minimal or without any auxiliary heating cost.
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In accordance with a future research task set in the Conclusion of (Kicsiny, 2015), the present
study gives an extension of the research results of (Buzas and Kicsiny, 2014 and Kicsiny,
2015), where transfer functions, dynamic analysis and a corresponding control have been
worked out for solar collectors and solar heating systems without considering pipe effects.

It can be stated based on the applications of this paper that the worked out transfer functions
can be successfully and easily applied for dynamic analysis and control design with the
mathematical methods of control engineering. In particular, the designed P control is
appropriate with respect to the control purpose because of its rapidity and precision even in
case of highly changed disturbances and reference input. In comparison with the most
common on/off control, the P control has proved to be considerably faster and more precise.
Essentially, the presented dynamic analysis can be adapted easily for any solar heating system
equipped with an external heat exchanger. The derived control design can be used for many
solar heating systems if the outlet temperature has to follow a reference signal in time (e.g.
solar desalination plants and solar power plants). Pumps with variable flow rate needed for the
worked out control are already widely used in the practical field of solar heating systems.
Further researches may deal with the determination of so-called describing functions, which
correspond to nonlinear mathematical models for solar heating systems and can be gained
from harmonic linearization (a linearization method other than the one used in this paper,
which can be applied for dynamic analysis and for control design as well).
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