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Abstract 10 
In view of system efficiency and environmental protection, it is important to harvest solar 11 

energy better e.g. by improving solar heating systems. A theoretically founded tool for it is 12 

mathematical modelling with the use of system transfer functions. Knowing the transfer 13 

functions, the outlet temperature of the system can be determined as a function of the system 14 

inputs (solar irradiance, inlet and environment temperatures), the dynamic analysis of the 15 

system can be carried out, furthermore, stable feedback control can be designed effectively 16 

based on the mathematical methods of control engineering. The designed control can be used 17 

e.g. to provide just the minimal required outlet temperature for the consumer and, therefore, to 18 

maximize the produced heat with minimal or without any auxiliary heating cost. 19 

Although, pipes can affect the operation of solar heating systems considerably, this effect has 20 

not been built in the transfer functions of such systems worked out already in the literature. In 21 

this study, new transfer functions for solar heating systems with pipes are proposed based on a 22 

validated mathematical model. Transfer function based control design is also given generally. 23 

As particular applications, the dynamic analysis and the design of a stable P control are 24 

presented on a real solar heating system. It is also presented quantitatively that the designed P 25 

control is faster and more precise than the most conventional on/off control. Furthermore, the 26 

presented methods can be easily adapted for any solar heating system with long pipes 27 

equipped with an external heat exchanger. 28 

Keywords: Solar heating systems; Pipes; Transfer functions; Control design 29 

Nomenclature 30 

t: time (s), 31 
1L : symbol for inverse Laplace transformation 32 

Time-dependent variables 33 

cI : solar irradiance (global) on the collector surface (W/m
2
), 34 

cT : collector (fluid) temperature (°C), 35 

1pcT : pipe temperature between the collector outlet and the heat exchanger (°C),  36 

2pcT : pipe temperature between the heat exchanger and the collector inlet (°C), 37 

1piT : pipe temperature before the heat exchanger in the inlet loop (°C),  38 

2piT : pipe temperature after the heat exchanger in the inlet loop (°C), 39 

outT : outlet temperature of the heat exchanger in the inlet loop (°C), 40 

routT , : reference (outlet) temperature of the heat exchanger in the inlet loop (°C), 41 

ceT : temperature of the collector environment (°C), 42 

pceT : environment temperature of the pipes in the collector loop (°C),  43 
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pieT : environment temperature of the pipes in the inlet loop (°C), 44 

iT : temperature of the inlet (fluid) to the system (°C) 45 

cv : flow rate in the collector loop (m
3
/s), 46 

iv : flow rate in the inlet loop (m
3
/s) 47 

Constant parameters 48 

cA : area of collector surface (m
2
), 49 

PA : control (tuning) parameter for the proportional control (-), 50 

cc : specific heat capacity of the fluid in the collector (J/(kgK)), 51 

ic : specific heat capacity of the fluid in the inlet loop (J/(kgK)), 52 

pck : heat loss coefficient of the collector pipes to the environment (W/(mK), 53 

pik : heat loss coefficient of the storage pipes to the environment (W/(mK), 54 

pcL : length of the collector pipe in one direction (m), 55 

piL : length of the storage pipe in one direction (m), 56 

IT : control (tuning) parameter for the integral control (-), 57 

LeU : (overall) heat loss coefficient of the collector (W/(m
2
K)), 58 

cV : volume of the collector (m
3
), 59 

pcV : volume of the collector pipe in one direction (m
3
), 60 

piV : volume of the storage pipe in one direction (m
3
), 61 

0 : optical efficiency of the collector (-), 62 

 : effectiveness of the heat exchanger (-), 63 

c : mass density of the fluid in the collector (kg/m
3
), 64 

i : mass density of the fluid in the inlet loop (kg/m
3
) 65 

1. Introduction 66 

In view of system efficiency and environmental protection, it is important to harvest solar 67 

energy better e.g. by developing solar heating systems (see e.g. (Bíró-Szigeti, 2014)). The 68 

theoretically founded tool for it is mathematical modelling. 69 

Various ordinary differential equation (ODE) models are used in the field. In (Buzás and 70 

Farkas, 2000), systems with collector, heat exchanger and storage are modelled with a 71 

(multidimensional) ODE, which is linear as well as its improved version in (Kicsiny et al., 72 

2014), where system pipes are also modelled with ODEs. The latter linear model, which is 73 

used with slight modification in the present paper, is validated and accurate enough for 74 

general engineering purposes on modelling and developing solar heating systems. The simple 75 

usability is a great advantage of linear models. Furthermore, the nonlinear version of the 76 

linear model of (Kicsiny et al., 2014) (proposed there as well) is not much more accurate but 77 

much more complicated to apply. 78 

From the mathematical model of Buzás et al. (1998), transfer functions for collectors (Buzás 79 

and Kicsiny, 2014) and for simplified solar heating systems without pipe effects (Kicsiny, 80 

2015) have been worked out and used for dynamic analysis. These research results are 81 

extended in the present paper by the determination of transfer functions for solar heating 82 

systems with pipes and the application of the transfer functions in the dynamic analysis of a 83 

particular real system. It can be stated generally that the transfer function based modelling is a 84 

relatively new and not frequent approach in the analysis of solar heating systems, especially, 85 
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in the domestic case. Further examples in this subject are the following: Bettayeb et al. (2011) 86 

and Huang and Wang (1994) used two-node models to propose collector transfer functions. 87 

Several control strategies with pump flow rate modulation have been applied in solar heating 88 

systems: in (Löf, 1993), differential, P (proportional), I (integral), PID (proportional integral 89 

differential), adaptive and certain kinds of optimal controls are discussed. Generally, the 90 

useful heat gain is to be maximized, in some sense, with optimal controls, by flow rate 91 

modulation. The Pontryagin maximum principle (Pontryagin, 1962) is used to work out such 92 

controls in the field of solar heating systems in (Badescu, 2008; Kovarik and Lesse, 1976; 93 

Orbach et al., 1981; Winn and Hull, 1979). For the application of the controls of (Badescu, 94 

2008; Kovarik and Lesse, 1976; Orbach et al., 1981), the knowledge of future meteorological 95 

data is needed. This is also the case in (Ntsaluba et al., 2016), where the objective is to 96 

maximize the overall gained solar energy of the system while minimize the losses but still 97 

meet the heat requirements of the consumer. Clearly, such controls cannot be put directly into 98 

practice because the weather is not known in advance. The problem is partially but not fully 99 

resolved if it is assumed a priori that only one on and off switches will occur during the 100 

considered time interval. In this case a feedback control stands for the optimal one, which, 101 

theoretically, can be used in the practice (Orbach et al., 1981), but, the mentioned assumption 102 

seems rather speculative. 103 

So-called (often nonlinear) model based controls also exist but they are generally complicated 104 

to apply because of the need to predict system output at future time instants and (similarly to 105 

the optimal controls) the use of objective functions (Camacho et al., 2007a). 106 

 P and PI (proportional integral) controls for collectors (Buzás and Kicsiny, 2014) and for 107 

simplified solar heating systems without pipes (Kicsiny, 2015) have been proposed recently. 108 

The present work extends these results by means of control design for solar heating systems 109 

considering pipe effects according to a future research task set in the Conclusion of (Kicsiny, 110 

2015). Based on studying the literature, not many developments have been carried out on 111 

controls (particularly, on transfer function based controls) for domestic type solar heating 112 

systems in the recent few decades. Controls based on transfer functions occur in industrial 113 

processes, e.g. for solar power plants (Camacho et al., 2007b) and solar desalination plants 114 

(Ayala et al., 2011; Fontalvo et al., 2014). The general purpose in such control schemes, as in 115 

the present work as well, is that the output temperature follows some reference signal in time 116 

by means of the flow rate modulation. 117 

Although, pipes can affect the operation of solar heating systems considerably (Kicsiny et al., 118 

2014; Ntsaluba et al., 2016), this important effect has not been built in the transfer functions 119 

of such systems worked out already in the literature. The significant delaying and heat loss 120 

effects of pipes in hydraulic systems are studied and modelled generally in (Kicsiny, 2017). 121 

The contributions of the present paper are the following in details: by means of the 122 

mathematical methods of control engineering, new transfer functions for solar heating 123 

systems with pipes are proposed and used for dynamic analysis and control design. According 124 

to a there appointed future research task, the present study extends the research results of 125 

(Buzás and Kicsiny, 2014 and Kicsiny, 2015), where transfer functions, dynamic analysis and 126 

corresponding control have been proposed for solar collectors and simplified solar heating 127 

systems (without considering pipe effects). The here worked out transfer functions are based 128 

on the slightly modified version of the linear ODE model proposed and validated in (Kicsiny 129 

et al., 2014). The main novelty and advantage of this model, in contrast to former ones used to 130 

work out transfer functions, is that it takes into account the effects of the pipes in the system, 131 

so the worked out transfer functions, as their novelty and advantage as well, also consider 132 

pipe effects. This modified model is detailed and validated in the present paper based on 133 

measured data. Both the dynamic analysis and the control design are interpreted with respect 134 

to a real solar heating system, where the pipe effects are significant and important to model, 135 
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see (Kicsiny et al., 2014; Kicsiny, 2017). Stability criterion is also given for the designed 136 

closed-loop proportional (P) control. The efficiency of the proposed control design is shown 137 

by means of simulations. The advantages of the transfer functions are considerable: by 138 

knowing them, dynamic analysis can be made and feedback control can be designed based on 139 

the standard methods of control engineering. Such a control is generally much simpler than 140 

optimal and (nonlinear) model based controls but it can follow the reference signal more 141 

precisely and rapidly than the on/off control working with constant flow rate (Duffie and 142 

Beckman, 2006), which can be called the most conventional control method, even, it is not 143 

out of date and still worth researching (Araújo and Pereira, 2017). The simple usability may 144 

be the main advantage of the linear approach in connection with the transfer functions. 145 

The organization of the paper is the following: in Section 2, the model for solar heating 146 

systems with pipes is presented and validated, for which the transfer functions are worked out 147 

in Section 3 and used for the dynamic analysis of a real system. In Section 4, a stable 148 

feedback control is designed based on the transfer functions, applied for the mentioned real 149 

system and evaluated. Section 5 gives conclusions and proposals for future research. 150 

Because of limits in volume, see e.g. (Bakshi and Bakshi, 2007) for the concepts of control 151 

engineering (transfer function, step response, Laplace transformation, P, PI controls, stability, 152 

static error, etc.) underlying the present work. Maple (Maplesoft, 2003) and Matlab (Etter et 153 

al., 2004) was used for the mathematical calculations required below. 154 

2. Mathematical model and validation 155 

This section recalls the basic mathematical model for solar heating systems with pipe effects 156 

based on (Kicsiny et al., 2014). The transfer functions will be established according to this 157 

model. The studied solar heating system can be seen in Fig. 1. 158 

 159 
Fig. 1. The studied system 160 

2.1. Mathematical model 161 

In fact, a slightly modified version of the linear model of (Kicsiny et al., 2014) is used in the 162 

present work as the effect of the pipe between the heat exchanger and the solar storage is 163 

omitted now. This is because of that the (homogeneous) temperature of the mentioned pipe 164 

2piT  (see Fig. 1) cannot be conveniently controlled (later in Section 4) by means of the 165 

manipulated flow rate iv  (see Fig. 9), since this temperature is not increasing in case of any 166 

(high) solar irradiance (and permanently switched on collector pump) if the inlet pump (in the 167 

inlet loop) is off. This problem does not hold if the controlled variable is the temperature just 168 

after the outlet of the heat exchanger at the inlet loop ( outT ). The corresponding mathematical 169 

model is formed by Eqs. (1a-e). 170 
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        tTtTtTtT pipipcout 111                                                                                            (1e) 175 

2.2. Experimental setup 176 

A particular real solar heating system installed at the campus of the Szent István University 177 

(SZIU) Gödöllő, Hungary (Farkas et al., 2000) is used in the present work for validation. Let 178 

it be called SZIU system. The installation produces domestic hot water (DHW) for a 179 

kindergarten nearby. In our investigation, the solar storage (with 2 m
3
) is not considered. The 180 

tap water, from the bottom of the storage, enters into the inlet loop (with temperature iT ), the 181 

outlet fluid is the DHW (at temperature outT ). As the main working components, flat plate 182 

solar collectors (collector field) oriented to south with an inclination angle of 45° (see Fig. 2) 183 

and a compact counter flow heat exchanger (see Fig. 3) are used in the system. 184 

 185 
Fig. 2. Solar collector field of the measured system 186 

 187 
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Fig. 3. Heat exchanger of the measured system 188 

The parameter values of the SZIU system are 0 =0.74, cA =33.3 m
2
, cc =3623 J/(kgK), c189 

=1034 kg/m
3
, cV =0.027 m

3
, ic =4200 J/(kgK), i =1000 kg/m

3
, LeU =5.2 W/(m

2
K), pck =0.45 190 

W/(mK), pik =0.25 W/(mK), pcL =80 m, piL =115 m, pcV =0.111 m
3
, piV =0.158 m

3
,  =0.89, 191 

cv =16.3 l/min (0 or 0.000272 m
3
/s), iv =10.5 l/min (0 or 0.000175 m

3
/s) (Kicsiny et al., 192 

2014). 193 

According to Fig. 1, the values of iT , cT , ceT = pceT , 1pcT , 2pcT , 1piT  and outT  are measured 194 

once a minute (by means of LM 335 type temperature sensors). cI  is also measured (by 195 

means of a Kipp & Zonen CM 11 type pyranometer). The pipes of the inlet loop are 196 

underground, so pieT  is the soil temperature, which is not measured but estimated because of 197 

technical reasons. Nevertheless, it is an acceptable approach, since the soil temperature is 198 

nearly constant throughout the year. cv  and iv  are also measured (by means of Schlumberger 199 

FLOSTAR-M 40 type flow meters). ADAM type data acquisition modules collect the 200 

measured data and transmit them to a computer for saving and evaluation. 201 

2.3. Validation 202 

In this section, model (1a-e) is applied for the SZIU system. (For the computer simulations, 203 

the model has been realized in (Matlab) Simulink.) 204 

For the validation, the measured values of iT , cI , ceT = pceT , cv , iv  and the estimated value of 205 

pieT  are fed into the computer model for (1a-e) along with the measured initial values of cT , 206 

1pcT , 2pcT , and 1piT . Then the measured and modelled values of the outlet temperature outT  207 

are compared. 208 

Fig. 4 compares the measured and modelled temperatures for a measured day 2
nd

 November 209 

2012, which is a general day with normal operation of the kindergarten and the solar heating 210 

system. The operating states (on/off) of the pumps can be also seen in the figure. 211 

 212 
Fig. 4. Modelled and measured outlet temperatures of the solar heating system 213 

The time average of the difference and the absolute difference between the measured and 214 

modelled outlet temperatures are -1.7 °C and 2.6 °C, respectively. In proportion to the 215 

difference between the minimal and maximal measured values of the temperature, the time 216 
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average of the absolute difference (absolute error) is 9.0%, so it can be concluded that the 217 

model describes the thermal processes characteristically well with an acceptable precision 218 

regarding several engineering aims (developing and studying solar heating systems). Such 219 

accuracy is generally acceptable for similar systems in the practice (see e.g. (Kalogirou, 220 

2000)). Thus the mathematical model (1a-e) can be accepted and applied henceforth. 221 

Remark 2.1 222 

It can be seen in Fig. 4 that the modelling error is higher at the end of the day, when the 223 

pumps are permanently off. This may be caused by that the value  =0.89 corresponds to 224 

switched on pumps and that outT  is measured (technically) on the connecting pipe just after 225 

the heat exchanger and not inside the heat exchanger. The temperatures at these places may be 226 

quite different if the pumps are off for a considerable time. Nevertheless, this time period is 227 

not really important with respect to the performance of the solar heating system, since the 228 

system is inactive because of the switched off pumps. 229 

3. Transfer functions 230 

3.1. Derivation of transfer functions 231 

For determining the transfer functions Eqs. (1a-e) is rewritten from time to Laplace domain by 232 

means of Laplace transformation according to Eqs. (2a-e). 233 
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(2c) 237 
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        sTsTsTsT pipipcout 111  ,                                                                                       (2e) 239 

where overbars denote the variables in Laplace domain, s is the (complex) independent  240 

variable in Laplace domain, furthermore, the initial values of cT , 1pcT , 2pcT  and 1piT  (state 241 

variables) are  0cT ,  01pcT ,  02pcT  and  01piT . It is an important advantage of the 242 

transformation that the system of linear ODEs (1a-e) is transformed to the simpler linear 243 

algebraic form of Eqs. (2a-e). Rearranging Eqs. (2a-e), Eqs. (3a-e) is resulted. 244 
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                 sTsHsTsHsTsHTsHsT pcepcepipcpcpcpcpcpc  122121202 0 ,                          (3c) 247 

             sTsHsTsHTsHsT piepieipipipipi  11101 0 ,                                                           (3d) 248 

         sTsHsTsHsT pioutpcoutout 1211  ,                                                                                 (3e) 249 
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where c , pc , pi  are the time constants of the collector, the collector pipes (in the collector 256 

loop) and the inlet pipes (in the inlet loop), respectively: 257 
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After solving Eqs. (3a-e) for  sTout , Eqs. (4) is resulted. 259 

                             

       ,

0000

54

3211423121

sTsHsTsH

sTsHsIsHsTsHTsHTsHTsHTsHsT

piepce

cecipiipcipciciout




260 

(4) 261 

where 262 

 
21121

0111

1
1 cpcpc

cpcout

i
HHH

HHH
sH




 ,  

21121

01

2
1 cpcpc

pcout

i
HHH

HH
sH




 ,  

21121

02111

3
1 cpcpc

pccpcout

i
HHH

HHHH
sH




 , 263 

 
 

21121

21121222221110

4
1 cpcpc

cpcpcoutoutpccpcoutpi

i
HHH

HHHHHHHHHH
sH




 , 264 

 
 

21121

211212222211111

1
1 cpcpc

cpcpcoutoutpccpcoutpi

HHH

HHHHHHHHHH
sH




 ,  

21121

1111

2
1 cpcpc

cpcout

HHH

HHH
sH




 , 265 

 
21121

3111

3
1 cpcpc

cpcout

HHH

HHH
sH




 ,  

 

21121

2111

4
1

1

cpcpc

cpcpceout

HHH

HHHH
sH




 , 266 

 
 

21121

2112122222111

5
1 cpcpc

cpcpcoutoutpccpcoutpie

HHH

HHHHHHHHHH
sH




 , 267 

where, the independent variable s is not always indicated, for the sake of simplicity. 268 

From the viewpoint of systems engineering, the solar heating system is a system with an 269 

output variable ( outT , which is to be controlled in Section 4) and input variables (other time-270 

dependent but not state variables), when the flow rates are constant, see Fig. 5. 271 
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 272 
Fig. 5. Scheme of the solar heating system 273 

The transfer functions are the quotients of the Laplace transformed form of the output  sTout  274 

and the proper inputs  sTi ,  sIc ,  sTce ,  sTpce ,  sTpie . If the transfer function relating to a 275 

selected input is determined, the initial conditions  0cT ,  01pcT ,  02pcT ,  01piT  and the other 276 

inputs are supposed to be zero. According to Eq. (4) the transfer functions for the inputs are 277 

 
 

 sH
sT

sT

i

out
1 , 

 
 

 sH
sI

sT

c

out
2 , 

 
 

 sH
sT

sT

ce

out
3 , 

 
 

 sH
sT

sT

pce

out
4 , 

 
 

 sH
sT

sT

pie

out
5 . 278 

The response of the outlet temperature regarding the initial conditions can be characterized 279 

similarly with functions 
 
 

 sH
T

sT
i

c

out
1

0
 , 

 
 

 sH
T

sT
i

pc

out
2

1 0
 , 

 
 

 sH
T

sT
i

pc

out
3

2 0
 , 

 
 

 sH
T

sT
i

pi

out
4

1 0
 . 280 

Eq. (4) represents the linear superposition that is the resultant effect of the initial temperatures 281 

and inputs is simply the sum of the single effects of the initial temperatures and the inputs. 282 

3.2. Dynamic analysis 283 

Dynamic analysis for solar heating systems with pipes can be made with the transfer 284 

functions. The unit step responses characterize well the dynamics of a system. The unit step 285 

response relating to a selected input is the response (the output) of the system with respect to 286 

the input (in time domain), assuming that the input is of unit step type and that the initial 287 

values of the state variables and the other inputs are zero. Eq. (5) gives the unit step input 288 

generally. 289 

 









,0,1

,0,0

t

t
tInput                                                    (5) 290 

Eq. (6) gives the Laplace transformed form of  tInput . 291 

 
s

sInput
1

                                                            (6) 292 

Eq. (7) gives the unit step response as output in Laplace domain using  sH , which is the 293 

transfer function corresponding to the input. 294 

   
s

sHsOutput
1

                                                      (7) 295 

The unit step response can be determined in time domain from  sOutput  according to Eq. 296 

(8), where 1L  stands for the inverse Laplace transformation. 297 

    







 

s
sHtOutput

11L                                                (8) 298 

According to Eq. (9), the effect of the initial conditions can be also studied in time domain by 299 

means of the inverse Laplace transformed form of the product containing the given initial 300 

Solar heating
system

Ic
Tce Tout

Ti

Tpce

Tpie
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condition and its transfer function  sH i  (here, the other initial values and the inputs are 301 

assumed to be zero again). 302 

       sHconditionInitialconditionInitialsHtOutput ii

11   LL             (9) 303 

Apply the above dynamic analysis on the solar heating system (based on Section 3.1). The 304 

unit step responses relating to the inputs iT , cI , ceT , pceT  and pieT  are the following, 305 

respectively:     







 

s
sHtTout

1
1

1L ,     







 

s
sHtTout

1
2

1L ,     







 

s
sHtTout

1
3

1L , 306 

    







 

s
sHtTout

1
4

1L  and     







 

s
sHtTout

1
5

1L . 307 

The responses relating to the initial conditions  0cT ,  01pcT ,  02pcT  and  01piT  are the 308 

following, respectively:       sHTtT icout 1

1 L0 ,       sHTtT ipcout 2

1

1

 L0 , 309 

      sHTtT ipcout 3

1

2

 L0  and       sHTtT ipiout 4

1

1

 L0 . 310 

3.2.1. Dynamic analysis of a real system 311 

The above analysis for solar heating systems is presented for the SZIU system (in case of 312 

switched on pumps). Eq. (10) gives the unit step response of the SZIU system relating to iT . 313 

  tttt

out eeeetT 001.0001.0004.0012.0 89.26481.2713.0004.072.0   ,             (10) 314 

where t: time (s). The graph of the function can be seen in Fig. 6. 315 

 316 
Fig. 6. Response of the system with respect to the unit step of iT  317 

Eqs. (11), (12), (13) and (14) give the unit step response relating to cI , ceT , pceT  and pieT . 318 

                               ttt

out eeetT 001.0004.00012.0 021.0009.0005.00249.0   ,                      (11) 319 

                               ttt

out eeetT 001.0004.0012.0 147.0066.00389.0175.0   ,                       (12) 320 

                                ttt

out eeetT 001.0004.0012.0 085.001.0002.0078.0   ,                          (13) 321 

                     tttt

out eeeetT 001.0001.0004.0012.0 052.1075.1005.00002.0028.0               (14) 322 
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Eq. (15) gives the response relating to  0cT  (  0cT =1 °C) (see Fig. 7 as well). 323 

  ttt

out eeetT 001.0004.0012.0 096.0163.0258.0                               (15) 324 

 325 
Fig. 7. Response of the system with respect to  0cT =1 °C 326 

Eqs. (16), (17) and (18) give the response relating to  01pcT  (  01pcT =1 °C),  02pcT  (  02pcT =1 327 

°C) and  01piT  (  01piT =1 °C). 328 

                                    ttt

out eeetT 001.0004.0012.0 417.0501.0028.0   ,                              (16) 329 

                                       ttt

out eeetT 001.0004.0012.0 677.0967.03.0   ,                                 (17) 330 

                         tttt

out eeeetT 001.0001.0004.0012.0 937.27598.27493.0044.0                   (18) 331 

If all inputs and initial conditions affect simultaneously, the resultant output is a simple sum 332 

of functions (10)-(18) based on the superposition principle (see Eq. (19) and Fig. 8). 333 

  tttt

out eeeetT 001.0001.0004.0012.0 886.26481.27129.0004.072.0               (19) 334 
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Fig. 8. Resultant output of the system 336 

For better visibility, the responses in Figs. 6, 7 and 8 are shown for different time periods. 337 

Remark 3.1 338 

The largest effect of the inputs to the outlet temperature outT  is produced by the unit change of 339 

iT , according to Eqs. (10)-(14), since the function of Eq. (10) has the biggest maximum 340 

(bigger than 0.72 °C).  01pcT  has the largest effect regarding the initial conditions. 341 

4. System control 342 

Stable control can be determined for solar heating systems with pipes by means of the transfer 343 

functions and the well-tried tools of control engineering. Here, the outlet temperature is the 344 

controlled variable, which is to be changed in time according to a prefixed reference function 345 

by proper flow rate modulation in the inlet loop, so iv  (as manipulated variable) can be varied 346 

now. cv  is maximal (constant) to maintain the collector temperature always at a minimal 347 

level. In this way, the efficiency of the collector (and the solar heating system) is maximal in 348 

case of any iv  value. It is assumed that the collector temperature is always high enough to 349 

increase outT  even if cv  is maximal. (Otherwise, cv  could be changed if needed while always 350 

kept as high as possible, since it is enough for us to increase outT  to any small extent). 351 

Functions iT , cI , ceT , pceT  and pieT  are disturbances now. Fig. 9 summarizes the control. 352 

 353 
Fig. 9. Scheme of the solar heating system regarding control 354 

Now, not every coefficient is constant in system (1a-e), since neither is  tvi  constant, even 355 

system (1a-e) is not linear in  tTpc1 ,  tTpi1 ,  tTi ,  tvi , because of the products    tTtv pci 1 , 356 

   tTtv pii 1 ,    tTtv ii  in (1c and d), so the linear methods of control engineering cannot be 357 

applied directly. First, Eqs. (1a-e) should be linearized at a convenient operating point. 358 

4.1. Model linearization 359 

Such an equilibrium of Eqs. (1a-e) is chosen for operating point, which represents a kind of 360 

“average” circumstances, that is, when each of  tTc ,  tTpc1 ,  tTpc2 ,  tTpi1 ,  tTout ,  tTi , 361 

 tIc ,  tTce ,  tTpce ,  tTpie  is constant and is the approximate mean value between the lower 362 

and upper limits of its real occurring values. Let 
0

cT , 
0

1pcT , 
0

2pcT , 
0

1piT , 0

outT , 0

iT , 0

cI , 0

ceT , 
0

pceT , 363 

0

pieT  and 0

iv  denote these constants at such operating point. The r.h.s. of (1a-e) are zero at this 364 

operating point as it is an equilibrium (see Eqs. (20a-e)). 365 
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0 pipie
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  0

1

0

1

0

1

0

pipipcout TTTT                                                                                                         (20e) 370 

Eqs. (1c and d) have the form of Eqs. (21c and d). 371 

 
          tvtTtTtTtTF

dt

tdT
ipcepipcpc

pc
,,,, 121

2
 ,                                    (21c) 372 

 
        tvtTtTtTF

dt

tdT
ipieipi

pi
,,,1

1
                                              (21d) 373 

Eqs. (22c and d) shows the linearized version of Eqs. (1c and d) at the operating point. 374 
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(22c) 376 
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(22d) 378 

Eqs. (1a,b and e) are linear corresponding to each time-dependent function, so the coefficients 379 

in Eqs. (1a,b and e) remain the same below in the linearized model Eqs. (23 a-e). 380 
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Let     0~
ccc TtTtT  ,     0

111

~
pcpcpc TtTtT  ,     0

222

~
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111

~
pipipi TtTtT  , 381 

    0~
outoutout TtTtT  ,     0~
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iii vtvtv   in the linearized Eqs. (23 a-e). 383 
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        tTtTtTtT pipipcout 111

~~~~
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Rewrite Eqs. (23a-e) into Laplace domain with  0
~

cT =  0
~

1pcT =  0
~

2pcT =  0
~

1piT =0 °C: 389 
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~~~~
 .                                                                                      (24e) 394 

Based on the linear superposition principle, the sum of the separate effects of the inputs is the 395 

resultant effect according to Eq. (25). 396 

                         svsHsTsHsTsHsTsHsIsHsTsHsT ipiepcececiout
~~~~~~~~~~~~~

654321  ,     (25) 397 

where 398 
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in accordance with the notation of Section 3.1, and 409 
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V

v
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
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4.2. Control design 411 

A stable closed-loop control for the solar heating system (1a-e) is to be realized in such a way 412 

that the outlet temperature  tTout  follows a given reference input  tT rout,  in time accurately 413 

enough. It means that  tTout

~
 is to follow  tT rout,

~
, where     0

,,

~
outroutrout TtTtT   (see Fig. 10). 414 

 415 
Fig. 10. Feedback control for the solar heating system 416 
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The task is to determine cH
~

 such that the control is stable with properly small static errors 417 

relating to the inputs 
routT ,

~
, iT

~
, cI

~
, ceT

~
, pceT

~
, pieT

~
. It should be mentioned that the 418 

mathematical derivation is not fully detailed below because of limits in volume. For more 419 

details, see (Buzás and Kicsiny, 2014; Kicsiny, 2015), where similar derivations can be found 420 

(but for different systems). The transfer functions of the (controlled) system of Fig. 10 421 

regarding the reference input 
routT ,

~
 and the disturbances iT

~
, cI

~
, ceT

~
, pceT

~
, pieT

~
 are given in 422 

Eqs. (27)-(32). 423 
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c
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5
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,
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~
~


 .                                              (32) 429 

   sHsHc 6

~~
 is the loop gain of the system (multiplying around the feedback control loop). 430 

Write    sHsHc 6

~~
 (in (36) and (37)) in the general form  sH

s

c
i

c
0

~
: 431 

     sH
s

c
sHsH

i

c
c 06

~~~
 ,                                                   (33) 432 

where  0
~

0H =1 and cc  and i are constant. 433 

Consider the cases of P and PI controls: 434 

P:                                                                Pc AsH 
~

,                                                           (34) 435 

PI:                                              I

I

P

I

Pc sT
sT

A

sT
AsH 








 1

1
1

~
,                                       (35) 436 

where PA  and IT  are constant. It can be derived based on Section 4.1 that the product 437 

   sHsHc 6

~~
 fits into the general form of Eq. (33) in case of both control types, see Eqs. (36) 438 

and (37). 439 

P:                                                       sH
s

c
sHsH

Pc

c 00

,

6

~~~
 ,                                                  (36) 440 
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PI:                                                     sH
s

c
sHsH

PIc

c 01

,

6

~~~
                                                    (37) 441 

Take the reference input in the form of Eq. (38) (the disturbances are set zero). 442 

  j

rrout tctT ,

~
,                                                            (38) 443 

where 
rc  and j are constant. If j=0,  tT rout,

~
 is a step function, if j=1,  tT rout,

~
 is a ramp 444 

function (in our case, only 0t  is considered). 445 

If it holds that i>j (for i, j in (33) and (38)), then the static error of the control relating to 
routT ,

~
 446 

is zero. If i>j does not hold, the static error relating to 
routT ,

~
 is according to Eq. (39) for a P 447 

control. 448 

                                     
c

r
outrout

t
sr

c

c
tTtTe




 1

~~
lim ,,                                          (39) 449 

If i>j does not hold, the static error relating to routT ,

~
 is according to Eq. (40) for a PI control. 450 

                                     
c

r
outrout

t
sr

c

c
tTtTe 



~~
lim ,,                                              (40) 451 

Take the disturbance  tTi

~
 in the form of Eq. (41) (the other disturbances and  tT rout,

~
 are set 452 

zero). 453 

  k

i tctT 1

~
 ,                                                            (41) 454 

where 1c  and k are constant. If k=0,  tTi

~
 is a step function, if k=1,  tTi

~
 is a ramp function. 455 

The transfer function  sH1

~
 relating to iT

~
 should be considered in the form of Eq. (42). 456 
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s

c
sH i

T
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i
T
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0

~

1

~~
1

 ,                                                      (42) 457 

where  sH i
T
~

0

~
=1 and 

i
T

c~  is constant. 458 

If i>k+ 1l  holds for i, k and 1l  in Eqs. (33), (41) and (42), the static error relating to iT
~

 is zero. 459 

One can derive based on Section 4.1 that  sH1

~
 really fits into the form of Eq. (42), where 1l460 

=0. Furthermore,  sH2

~
,  sH3

~
,  sH4

~
 and  sH5

~
 are also in accordance with Eq. (42), see 461 

Eqs. (43)-(46). 462 
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sH pie
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~

5

~~
5

 ,                                                   (46) 466 

where 
2l = 3l =

4l = 5l =0. If i>k+
1l  does not hold, the static error of the control corresponding to 467 

iT
~

 is according to Eq. (47) for a P control. 468 
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                                         (47) 469 

If i>k+
1l  is not fulfilled, the static error corresponding to iT

~
 is according to Eq. (48) for a PI 470 

control. 471 
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Consider  tIc

~
,  tTce

~
,  tTpce

~
 and  tTpie

~
 similarly as in Eq. (41):   m

c tctI 2

~
 ,   n

ce tctT 3

~
 , 473 

  q

pce tctT 4

~
 ,   u

pie tctT 5

~
 , where m, n, q, u, 2c , 3c , 4c  and 5c  are constant. 474 

Similarly as above, the static error relating to cI
~

 ( se ,2 ), ceT
~

 ( se ,3 ), pceT
~

 ( se ,4 ) and pieT
~

 ( se ,5 ) are 475 

zero if i>m+ 2l , i>n+ 3l , i>q+ 4l or i>u+ 5l , respectively. If these conditions are not fulfilled, the 476 

static errors are according to Eqs. (49)-(52) for a P control. 477 
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If the above conditions are not fulfilled, the static errors are according to Eqs. (53)-(56) for a 482 

PI control. 483 
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5

~

,5 c
c

c
e

c

pie
T

s                                                         (56) 487 

The values of the control parameter(s) 
PA  (and 

IT ) should be selected in such a way that the 488 

absolute values of the above static errors are not bigger than a positive prefixed limit E and 489 

the control is stable. Considering stability, the controlled system is stable with respect to 
routT ,

~
 490 

if the real parts of the zeros of the denominator of 
rout

T
out

T
H

,
~

,
~

~
 (see Eq. (27)) are negative. 491 

The denominators in (28)-(32) are the same as the denominator in (27) (    sHsHc 6

~~
1 ), so 492 

the same condition with respect to the mentioned zeros is sufficient to assure the stability of 493 

the controlled system relating to iT
~

, cI
~

, ceT
~

, pceT
~

 and pieT
~

 as well. 494 

Summing up, the task of determining a P (or PI) control mathematically is to select the free 495 

control parameter(s) PA  (and IT ) such that Ee sr , , Ee s ,1 , Ee s ,2 , Ee s ,3 , Ee s ,4 , 496 

Ee s ,5  hold, and the real parts of the zeros of the denominator of 
rout

T
out

T
H

,
~

,
~

~
 are negative. 497 

Remark 4.1 498 

The above criterion on the denominator of 
rout

T
out

T
H

,
~

,
~

~
 is sufficient for the stability of not only 499 

the linearized system but the original nonlinear controlled system (in which  tvi  is variable), 500 

since, according to Lyapunov, the latter one is stable as well if the real part of each zero of the 501 

denominator of 
rout

T
out

T
H

,
~

,
~

~
 is negative. 502 

4.2.1. Control design for a real system 503 

Let us design a proper P control of the SZIU system specified in Section 3.2. Consider a time 504 

period in May. Let 
0

outT =55 °C, which is generally high enough for domestic purposes. Let 
0

cI505 

=600 W/m
2
 (approximately the average daytime irradiance on a clear day (in May) in 506 

Hungary (Varga, 2011)), 
0

iT =15 °C (average tap water temperature), 
0

ceT =
0

pceT =20 °C 507 

(average daytime temperature of the environment), 
0

pieT =
0

1piT =15 °C (underground (soil) 508 

temperature). From these assumptions, the remaining values of the equilibrium 
0

cT , 
0

1pcT , 
0

2pcT , 509 

0

iv  can be calculated from Eqs. (20a-e): 
0

cT =61.35 °C, 
0

1pcT =59.94 °C, 
0

2pcT =53.88 °C, 
0

iv510 

=0.00003 m
3
/s (=1.8 l/min). The maximum of iv  is 10.5 l/min (see Section 3.2). It is assumed, 511 

as a further limitation, that  tvi  can be changed between zero and its maximal value in 3 512 

seconds, from which the (maximal) speed of flow rate changing is 0.000058 m
3
/s

2
. 513 

Let us require that the absolute values of the static errors (39), (47), (49)-(52) are less or equal 514 

to 0.2 °C, which is suitable for a DHW producing installation. It is also required that the 515 

controlled system is stable that is the real parts of the zeros of the denominator of 
rout

T
out

T
H

,
~

,
~

~
 516 

are negative. 517 

Assume that such high changes of the disturbances act on the system at the same time (at time 518 

10 (min), see Figs. 11, 12, 13 and 14), which are still not impossible but rare even separately 519 

under real conditions, thus they are even more unlikely simultaneously. Check in this case if 520 

the controlled system can still follow accurately enough a reference input, which is also 521 

changed to a great extent in the same time. (If the controlled system is able to follow well an 522 
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extreme reference input under extreme disturbances (with small probabilities), it can be 523 

expected that it works even more precisely under more common real circumstances.) 524 

A step input is used as the mentioned reference input (see Fig. 11) and sums of step and 525 

trigonometric inputs are used as the mentioned disturbances (see Fig. 12) modelling both 526 

sudden and permanent environmental changes. 527 

 528 
Fig. 11. Reference input for the controlled system 529 

 530 
Fig. 12. Disturbances for the controlled system 531 

The control parameter is set PA = -0.00008, which assures stability and that the requirements 532 

sre , 0.2 °C, se ,1 0.2 °C, se ,2 0.2 °C, se ,3 0.2 °C, se ,4 0.2 °C, se ,5 0.2 °C hold. 533 

Apply and test this P control (in (Matlab) Simulink) for the original, not linearized, model 534 

(1a-e) for the SZIU system. 535 

The initial state variables are at the equilibrium point (at which the system is suddenly 536 

disturbed at the selected initial time 10 min):  10cT =
0

cT ,  101pcT =
0

1pcT ,  102pcT =
0

2pcT , 537 

 101piT =
0

1piT ,  10iT =
0

iT ,  10cI =
0

cI ,  10ceT =
0

ceT ,  10pceT =
0

pceT ,  10pieT =
0

pieT ,  10iv =
0

iv , 538 

from which the control has to reduce relatively high initial error:    00, outrout TT  =5 °C (see 539 

the upper part of Fig. 13). The simulation results are shown in Figs. 13 and 14. Fig. 13 shows 540 
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the reference temperature  tT rout,  (input), the outlet temperature  tTout  (controlled variable) 541 

and the pump flow rate  tvi  (manipulated variable). 542 

 543 
Fig. 13.  tT rout, ,  tTout  as controlled variable and  tvi  as manipulated variable 544 

The error of control    tTtT outrout ,  is shown in Fig. 14. 545 

 546 
Fig. 14. Error of control    tTtT outrout ,  547 

Based on the results on the P control, the absolute value of the error of control decreases 548 

definitively below 1 °C and 0.5 °C within 13.5 min (at 23.5 min, c.f. Fig. 14) and 35.9 min (at 549 

45.9 min), respectively. This speed and precision is convenient for general domestic purposes. 550 
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The absolute value of the error of control decreases definitively below 5% of the initial error 551 

(below 0.25 °C) within 51.4 min (at 61.4 min) and definitively below the required limit 0.2 °C 552 

within 54.3 min (settling time). According to these results, the designed P control is 553 

satisfactorily fast and precise regarding the control purpose. 554 

Remark 4.2 555 

1. Of course, the DHW produced at the claimed temperature (55 °C) can be stored in a solar 556 

storage and can be consumed according to the current hot water demand during the day. If 557 

the DHW produced by the worked out control is just at the minimal temperature level 558 

required by the consumer, then the produced DHW amount is maximal, so the hot water 559 

demand can be satisfied with minimal or without any auxiliary heating costs. 560 

2. The gained results underlie Remark 4.1 regarding the stability of the nonlinear controlled 561 

system (in which  tvi  is not constant), since above, the nonlinear system model (1a-e) has 562 

been controlled. 563 

4.2.3. Comparison with on/off control 564 

For comparison, the most conventional on/off control has been also applied (instead of the P 565 

control) for the same system with the same initial conditions above. The control purpose (to 566 

follow the reference input of Fig. 11) is also the same. The inlet pump flow rate iv  has been 567 

modified according to the on/off strategy, that is, it can take a constant (maximal) value or 568 

zero. Based on many attempts, 0.2 m
3
/h=3.3 l/min (instead of 10.5 l/min above) has proved to 569 

be optimal to minimize the residual amplitude of the oscillating error of control while still be 570 

able to follow (on the average) the reference input. Also for the sake of minimizing the 571 

residual amplitude of the error, the switch-on and switch-off temperature differences have 572 

been set to very low, namely, 0.1 °C and -0.1 °C. (Even lower values are not practical because 573 

of normal inaccuracies of real temperature sensors.) Figs. 15 and 16 show the results in case 574 

of the on/off control, which can be directly compared with those of the P control (see Figs. 13 575 

and 14). 576 

 577 
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Fig. 15.  tT rout, ,  tTout  and  tvi  in case of on/off control 578 

 579 
Fig. 16. Error of control    tTtT outrout ,  in case of on/off control 580 

Based on the results on the on/off control, the absolute value of the error of control decreases 581 

definitively below 1 °C and 0.6 °C within 24.4 min (at 34.4 min, c.f. Fig. 16) and 44.9 min (at 582 

54.9 min, respectively. This speed and precision can be still satisfactory for not strict domestic 583 

purposes, nevertheless, it can be seen that the P control is considerably faster and more 584 

precise than the on/off control. Even the on/off control cannot meet the requirements of that 585 

the absolute error decreases definitively below 0.5 °C or 5% of the initial error (0.25 °C) or 586 

0.2 °C, which are not problem for the P control. 587 

5. Conclusion 588 

It can be stated generally that modelling based on transfer functions is a relatively new and 589 

not frequent approach in analysing solar heating systems, more particularly, in case of 590 

domestic purposes. Accordingly, control design based on transfer functions is quite rare in 591 

case of such systems in spite of the simple applicability, which is an important advantage of 592 

the linear method in connection with transfer functions. Transfer function based controls are 593 

usually simpler than optimal or (nonlinear) model based controls but able to follow the 594 

reference signal more precisely than the most conventional on/off control. Although, pipes 595 

can affect the operation of solar heating systems considerably, this effect has not been built in 596 

the transfer functions of such systems worked out already in the literature. It has been 597 

intended to contribute to fulfil the above research gaps in this paper by working out new 598 

transfer functions considering pipes and designing stable controls (a closed-loop P control as a 599 

particular application) based on the proposed transfer functions. 600 

In addition, the transfer functions have been used for the dynamic analysis of a particular 601 

solar heating system (the SZIU system). The worked out stable P control has been also 602 

applied for the SZIU system to make the outlet temperature of the system follow a given 603 

reference input. If this reference input is just the minimal temperature level required by the 604 

consumer, then the produced DHW amount is maximal, so the hot water demand can be 605 

satisfied with minimal or without any auxiliary heating cost. 606 
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In accordance with a future research task set in the Conclusion of (Kicsiny, 2015), the present 607 

study gives an extension of the research results of (Buzás and Kicsiny, 2014 and Kicsiny, 608 

2015), where transfer functions, dynamic analysis and a corresponding control have been 609 

worked out for solar collectors and solar heating systems without considering pipe effects. 610 

It can be stated based on the applications of this paper that the worked out transfer functions 611 

can be successfully and easily applied for dynamic analysis and control design with the 612 

mathematical methods of control engineering. In particular, the designed P control is 613 

appropriate with respect to the control purpose because of its rapidity and precision even in 614 

case of highly changed disturbances and reference input. In comparison with the most 615 

common on/off control, the P control has proved to be considerably faster and more precise. 616 

Essentially, the presented dynamic analysis can be adapted easily for any solar heating system 617 

equipped with an external heat exchanger. The derived control design can be used for many 618 

solar heating systems if the outlet temperature has to follow a reference signal in time (e.g. 619 

solar desalination plants and solar power plants). Pumps with variable flow rate needed for the 620 

worked out control are already widely used in the practical field of solar heating systems. 621 

Further researches may deal with the determination of so-called describing functions, which 622 

correspond to nonlinear mathematical models for solar heating systems and can be gained 623 

from harmonic linearization (a linearization method other than the one used in this paper, 624 

which can be applied for dynamic analysis and for control design as well). 625 
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