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The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear
dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial
anisotropy driven by a rotating magnetic field. We propose a new type of applied field, which is
”simultaneously rotating and alternating”, i.e. the direction of the rotating external field changes
periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible
with this new type of applied field and we suggest its possible experimental realization in cancer
therapy which requires the enhancement of loss energies.
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I. INTRODUCTION

Nonlinear dynamics of the magnetization in single-
domain ferromagnetic nanoparticle systems has received
a considerable attention due to a wide range of their ap-
plicability such as magnetic resonance imaging, ultrahigh
density magnetic data recording, spintronics, ferrofluids
and in biomedical engineering, in particular, drug de-
livery or hyperthermia [1–3]. Among many forms of
hyperthermia, the local induction of heat via magnetic
nanoparticles seems a fruitful strategy with promising
preclinical results in different cancer modes [4, 5]. The
unique feature of magnetic nanoparticle hyperthermia is
that the energy is transported in the body by means of
an ac magnetic field. At present the clinical application
is partly limited due to the efficacy of the heat transfer
and the poor controllability of temperature parameters
[6]. Thus, the study of relaxation mechanisms of mag-
netic nanoparticles is a very active research field, both in
its theoretical and material-science aspects.

Among many controllable parameters, the applied ex-
ternal magnetic field is one of the most easily variable to
increase the efficiency of heat generation. Indeed, there
is an increasing interest in the literature to consider the
case of rotating external magnetic field [7–17] instead of
the commonly applied alternating one, see for example
[18]. Some of these studies compare the efficiency of the
two types of applied fields. For example, in [17] it was
argued that the use of an alternating-like external field is
favourable, in particular an orthogonal synchronised bi-
directional field is proposed as a most efficient heat gen-
eration. Another experimental work [11] suggests that
the alternating and circulating applied fields produce the
same heating efficiency in the limit of low-frequency.

In order to clarify the above question and to look for
the most efficient heat generation one has to take into
account two other important effects: the role of mag-
netic anisotropy which is inevitably present in magnetic

nanoparticles and the influence of thermal fluctuations.
For example, in [9], isotropic nanoparticles were consid-
ered without taking into account the thermal effects and
the alternating applied field was found to be consider-
ably more favourable than the rotating one. However,
it was shown in [13] that the effect of thermal fluctua-
tion modifies the results obtained for the alternating field
with isotropic nanoparticles and results in a small differ-
ence between the heating efficiency of the rotating and
alternating applied fields in the limit of small frequency.
Let us note, the inclusion of thermal fluctuations [13]
only slightly modifies the findings of the rotating field
obtained for isotropic nanoparticles without thermal ef-
fects [9].
Magnetic anisotropy can also influence this picture,

specially in case of the rotating applied field. An im-
portant feature of the rotating external field is the pres-
ence of stable steady states (precession modes). Indepen-
dently of the initial positions, the magnetic moments of
nanoparticles tend to the steady state and the dissipated
energy can be easily calculated. However, for relatively
large anisotropy, more than one steady states appear [7].
Thus, one can study the influence of the transition be-
tween these modes on the heating [8, 12]. For example, in
Refs. [15, 16] the effect of strong anisotropy on the heat-
ing efficiency has been studied and its enhancement is
shown for large frequencies near the boundary of various
regimes of forced precession (steady states) of the param-
eter space in case of a rotating applied field. Although, it
was argued in [16] that thermal fluctuations do not mod-
ify the results but the frequencies where the enhancement
is observed are too high for a medical treatment, i.e. for
hyperthermia. Another example where the presence of
uniaxial anisotropy was considered is Ref. [14], where it
was shown that in the low-frequency limit, an easy-axis
anisotropy turned out to leave unchange (or slightly de-
crease) the calculated loss power if no transitions between
the various precession modes (steady states) are taken
into account which is the case for relatively moderate
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anisotropy. In summary, the alternating applied field is
found to be slightly more favourable for low-frequencies
which is suitable for hyperthermia and the small or mod-
erate anisotropy does not change this picture.
Instead of trying to decide whether an alternating or a

rotating external magnetic field is more suitable for mag-
netic nanoparticle hyperthermia, here we propose a new
type of applied field, which is ”simultaneously rotating
and alternating”. In particular, we demonstrate that a
more efficient heat generation by magnetic nanoparticles
is possible if the direction of the rotating external field
changes periodically and the particles exhibit a moderate
anisotropy. We show results of this new and successful
attempt which enhances the loss energy drastically by
means of abrupt changes in the applied magnetic field
(sudden change of the direction of the rotating field af-
ter every circle). The change in the direction of the ro-
tating applied field dislocates the magnetic moment of
the nanoparticle out of its steady state, i.e. the preces-
sion mode. Since the steady state solution corresponds
to minimal dissipation, a more effective heating can be
achieved if the system is out of the steady state. We argue
that the loss energy achievable by changing the direction
of a rotating field is worth to study as a possible tool to
enhance the heat in hyperthermia. The calculation has
been done for a single, simple configuration, but the stun-
ning result is worth checking experimentally. Indeed, we
propose another new type of rotating applied field which
has a periodically alternating direction, similarly to the
case of ”sudden change” studied in the present work but
with a feature of being more suitable for experimental
realisation.
The paper is organised as follows. In Sec II, we dis-

cuss the deterministic Landau-Lifshitz-Gilbert equation
in case of uniaxial anisotropy with rotating applied field
where overall units and parameters suitable for hyper-
thermia are also considered. Some known results on the
specific loss power and loss energy obtained in the steady
state solutions of the Landau-Lifshitz-Gilbert equation
for oblate (positive anisotropy) particles is summaries
briefly in Sec III and new results for prolate (negative
anisotropy) particles are discussed. New findings related
to the loss energy per cycle out of the steady state are
shown in Sec IV. In Sec V we propose a novel type of
applied field which is rotating with periodically changed
direction. Proposal for experimental realization of the
new applied field is discussed in Sec VI. Finally, Sec VII
stands for the summary and a detailed discussion for the
optimised set of parameters for magnetic particle hyper-
thermia is given.

II. LANDAU-LIFSHITZ-GILBERT EQUATION

Out of the many phenomenological equations of mo-
tion for the relaxation of magnetization [19] the Gilbert
equation [20] has proved to give the one of the most re-
alistic description of the dynamics of single-domain mag-

netic particles at strong damping (Ref. [2] represents an-
other frequently used appoach). Such a particle, being
too small to accommodate a domain wall, can be fully
characterized with a single vector, its magnetic moment
m. An important feature of Larmor precession is that
|m| = mS does not change under the influence of the
external field, including the anisotropy field. Hence it
is convenient to rewrite the equation of motion of the
magnetization m of a single-domain particle in terms of
the unit vector M = m/mS, mS being the saturation
magnetic moment (e.g. mS ≈ 105 A/m for single crystal
Fe3O4). Then the Gilbert equation reads as

d

dt
M = γ0M×

[

∇MV + µ0η
d

dt
M

]

, (1)

where γ0 = 1.76×1011 Am2/Js is the gyromagnetic ratio
of the electron spin (with opposite sign), µ0 = 4π× 10−7

Tm/A (or N/A2) is the permeability of free space, V is
the potential energy and η is the damping factor, both
of them normalized for unit M . To describe the system,
the potential energy must contain the Zeeman energy in
the external applied magnetic field and the anisotropy
energy [8]

V = −µ0M ·Hext −
µ0

2
HaM

2
z (2)

wher Mz is the z-component of the normalized magneti-
zation vector and the external applied field is a rotating
one (perpendicular to the anisotropy field)

Hext = H0 (cos(ωt), sin(ωt), 0), (3)

with the angular frequency ω. We define the vector Heff ,
which contains the external applied magnetic field and
the effect of the anisotropy of the magnetic particle

Heff = −
1

µ0

∇MV = −
1

µ0

(∂Mx
, ∂My

, ∂Mz
)V

= H0 (cos(ωt), sin(ωt), λeffMz), (4)

with λeff = Ha/H0. Clearly, if λeff > 0 (Ha > 0), the
anisotropy will turn the magnetization towards the z-
axis, if λeff < 0 (Ha < 0), into the xy-plane. Giordano
et al. [22] treated the shape anisotropy of the isotropic
ellipsoidal particles using a different notation, where L is
the parameter giving the deviation from spherical sym-
metry. The link to our parameters is Ha = (3L− 1)mS .
Although, our model does not specify the source of
anisotropy, given the material used in hyperthermia, we
have to deal with shape anisotropy.
Equation (4) implies a uniaxial anisotropy with a po-

tential energy −(µ0/2)H0λeffM
2
z , which has its minima

at |Mz| = 1 for λeff > 0 and Mz = 0 for λeff < 0. Two
ellipsoids of revolution have the shapes with the geome-
try of this energy: for λeff > 0 oblate (cigar-shape) and
for λeff < 0 prolate (lens shape).
The Gilbert equation (1) can be rewritten in such a

way that it has a functional form similar to the Landau-
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Lifshitz equation [21]. This is called the Landau-Lifshitz-
Gilbert (LLG) equation,

d

dt
M = −γ′[M×Heff ] + α′[[M×Heff ]×M], (5)

where γ′ = µ0γ0/(1 + α2) and α′ = γ′α with the di-
mensionless damping factor α = µ0γ0ηmS . For example,
α = 0.1 was chosen in [16] and α = 0.3 was used in [22].
Writing Eq. (5) in polar coordinates (M, θ, ϕ) allows

to drop the constant (M), leaving but two equations:

dθ

dt
= ωL sinφ+ αN cos θ cosφ− αNλeff sin θ cos θ,

dφ

dt
= ωL cosφ

cos θ

sin θ
+ ω − αN

sinφ

sin θ
− ωLλeff cos θ

(6)

where ωL = H0γ
′ and αN = H0α

′. Note that (6) is
written in a new coordinate system rotating with the
applied field: the azimuthal angle (ϕ) has been cut into
the rotation (ωt) and a measure (φ) of the lag of M with
respect to the rotation of the applied field: ϕ = ωt− φ.
Knowing that in the practice [23] H0 ≈ 18 kA/m we

find that ωL is of the order of 109 Hz. In hyperthermia
the frequency of the applied field is advised to be chosen
between 105 and 5 × 105 Hz, so that ω is four orders of
magnitude below ωL. Furthermore, αN = αωL. For ex-
ample, a set of parameters of (6) typical for hyperthermia
(with α = 0.1 and H0 = 18 kA/m),

ω = 5× 105Hz, ωL = 4× 109Hz, αN = 4× 108Hz, (7)

and the dimensionless anisotropy parameter λeff depends
on the shape and geometry of the nanoparticle. The left
sides of (6) being derivatives of angles with respect to
time, the units of all terms in the equations must be s−1.
Their dimension can be taken of introducing a dimen-
sionless ”time” t̃ = t/t0 where t0 = 0.5×10−10s is chosen
in this work, thus, e.g. the dimensionless form of (7)
reads

ω → ωt0 = 2.5× 10−5,

ωL → ωLt0 = 0.2,

αN → αN t0 = 0.02. (8)

Let us note, t0 is chosen to be in the range of the attempt
time τ0 used in Neel relaxation. Typical values for τ0 are
between 10−10 and 10−9 seconds.

III. STEADY STATE SOLUTION OF THE LLG

EQUATION

The solution of Eq.(6) is shown in Fig. 1 for a par-
ticular set of (dimensionless) parameters given in the
caption. As expected below the critical value of the
anisotropy |λeff | < λc, only a single attractive fixed point
appears [14], which corresponds to a steady state solution

of the original LLG equation (5) (single periodic preces-
sion mode),

Mx(t) = ux0 cos(ωt)− uy0 sin(ωt),

My(t) = ux0 sin(ωt) + uy0 cos(ωt),

Mz(t) = uz0. (9)

where ux0 and uy0 are determined by ω, ωL, αN and λeff .
The loss energy is calculated using these attractive fixed
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FIG. 1: Orbit map in the rotating frame obtained by solv-
ing the LLG equation, below the critical value of anisotropy
(there is a single attractive fixed point in the figure). The pa-
rameters are αN = 0.1, ω = −0.01, ωL = 0.2 and λeff = 1.1.

point solutions in the formula for the energy dissipated
in a single cycle,

E = µ0mS

∫ 2π
ω

0

dt

(

Heff ·
dM

dt

)

= µ02πmSH0(−uy0), (10)

(see also Eq.(12) in [14]) which has the following form
in the low-frequency ω ≪ αN and small anisotropy
|λeff | ≪ 1 limits

E ≈ 2πµ0mSH0

[

αNω

ω2
L + α2

N

−
αNω2

Lω
3

(ω2
L + α2

N )3
(1 + 2λeff)

]

.(11)

It is clear that for positive (negative) λeff the energy per
cycle is decreased (increased) by the anisotropy albeit for
relatively large frequencies. Since λeff appears only at
the next-to-leading terms, if one takes the low-frequency
limit (ω → 0) the effect of anisotropy is irrelevant. This
result has been discussed in [14] and can be seen in Fig. 2,
which shows that for |λeff | < λc, and for small frequen-
cies, the loss energy per cycle becomes identical to that
in the isotropic case, independently of the sign of λeff .
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For large anisotropy, |λeff | > λc, (if no transition be-
tween the various precession modes is taken into account)
the loss energy per cycle tends to zero for λeff > 0 , and
to a constant (almost identical to the isotropic value if
ω → 0) for λeff < 0. Similar observation holds for the
loss energies in the steady states which exist only above
the critical anisotropy, see the dashed lines in Fig. 2. For
low frequencies, the dashed lines tend to zero for λeff > 0
and to a constant for λeff < 0. As to the application
in hyperthermia, these results confirm that particles of
lens shape provide an enhanced loss energy, but at the
allowed frequency the effect is not significant. It is im-
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FIG. 2: The loss energy per cycle as a function of the
anisotropy parameter λeff is shown for various frequencies:
(a) ω = 0.15, (b) ω = 0.1, (c) ω = 0.05 and (d) ω = 0.01. The
calculation is based on the attractive fixed point solutions of
(6) with αN = 0.1, ωL = 0.2. The vertical lines indicate
the critical value λc. Solid and dashed lines correspond to
loss energies of steady state solutions. The upper lines (solid,
dashed) always correspond to λeff < 0 while the lower lines
(solid, dashed) are related to λeff > 0. Dotted lines represent
the loss energy per cycle in case of rotating field where the
direction is changed periodically.

portant to note that frequencies (ω = 0.01− 0.15) shown
in Fig. 2 are too large for biomedical application.

IV. LOSS ENERGY PER CYCLE OUT OF THE

STEADY STATES

Up to now, we studied the loss energy per cycle cal-
culated at the steady state solution of the LLG equation
(i.e. at the attractive fixed point of Fig. 1). However, it
is a relevant question to address whether one can find a
larger loss energy in a single cycle if it is calculated out
of the steady states. Indeed, in the 3D-plot of Fig. 3 we
show the loss energy obtained in the first cycle of the ex-
ternal field as a function of various starting points on the
(θ, φ) plane. Note that in the low-frequency limit (suit-
able for hyperthermia), the solution of the LLG equation

FIG. 3: (Color online). The loss energy, E/(2πµ0mSH0),
obtained in the first cycle (out of the steady states) for small
anisotropy (λeff = 0.05) as a function of the initial conditions
on the (θ, φ) plane.

always tends to the attractive fixed point very rapidly, i.e.
it reaches the fixed point with one percent accuracy in a
quarter of a full circle. In Fig. 3 the ”well” corresponds
to the attractive fixed point which produces us the low-
est loss energy per cycle while the ”hill” where the loss
energy is the maximum is related to initial conditions
taken at the repulsive fixed point. Though, the results
displayed in Fig. 3 are obtained numerically, an approx-
imative analytic derivation is possible for the isotropic
case (λeff = 0). Indeed, an approximate solution to the
LLG equation is given by Eq.(29) of [9] which reads

Mξ(t) = M spec
ξ0 cos(Ωt)−M spec

η0 sin(Ωt)

+ (Mξ0 −M spec
ξ0 ) e

−
αNt
√

2 ,

Mη(t) = M spec
ξ0 sin(Ωt) +M spec

η0 cos(Ωt)

+ (Mη0 −M spec
η0 ) e

−
αNt
√

2 ,

Mζ(t) =
√

1− [Mξ(t)]2 − [Mη(t)]2, (12)

where (Mξ,Mη,Mζ) represents the magnetization vector
in a particular rotated coordinate system [9] and depends
on the initial values of the cartesian coordinates Mξ0 and
Mη0 linearly. (M spec

ξ0 , M spec
η0 depend on the parameters

ω, ωL, αN defined by Eq.(28) of [9] and Ω =
√

ω2 + ω2
L).

According to (10), the loss energy per cycle has a linear
dependence on the initial cartesian coordinates Mξ0 and
Mη0 as well. Thus, rewriting them by polar coordinates

Mξ0 ∝ sin(θ) cos(φ), Mη0 ∝ sin(θ) sin(φ) (13)

one finds

E/(1st cycle) = A sin(θ) cos(φ) +B sin(θ) sin(φ) (14)

where A,B constants depend on the parameters
ω, ωL, αN which is in agreement to the numerical result of
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Fig. 3 obtained for small anisotropy. Finally, let us note
that the numerical results of Fig. 3 are related to the fact
that the steady state solution corresponds to minimal
dissipation, so, a more effective heating can be achieved
if the system is out of the steady state. This prelim-
inary result does not define a new method to enhance
the loss energy but the difference between the maximum
and minimum on Fig. 3 being two orders of magnitude
larger than what can be achieved in the steady state, is
encouraging for further research on non-steady states.

V. ROTATING FIELD WITH PERIODICALLY

CHANGED DIRECTION

As a new idea let us consider the loss energy per cycle
in case of a rotating applied magnetic field where the di-
rection of rotation is changed periodically, i.e., after every
full cycle the sign of ω is switched in (4). By changing
the direction, the position of the steady state solution
is changed, i.e. for ω > 0 (ω < 0) it is below (above)
the equator of the orbit map. Thus, the magnetization
vector always tends from a disappearing steady state to
an arising one. Note that we do not calculate this ef-
fect above λc because in that case more than one stable
steady state solutions appear. The outcome is plotted in
Fig. 2, with dotted lines.

For high frequencies (ω = 0.15 and ω = 0.1), irrelevant
to the sign of λeff , there is an increase in the loss energy,
tending to constant values close to λc. The effect is larger
for λeff > 0, because in this case the positions of the
steady state solutions (for ω < 0 and ω > 0) are far from
each other.

For low frequencies (ω = 0.001) the situation com-
pletely changes as the loss energy for λeff > 0 becomes
larger than any other calculated values, including those
found for λeff < 0. For example, for lower values of the
damping, i.e. αN = 0.05 or αN = 0.01 the loss en-
ergy monotonously increases with λeff , reaching a value
that is about 15% or 100% larger as compared to the
isotropic case near (below) λc, see Fig. 4. Therefore, a
more efficient heat generation is possible for physical
values of the damping (i.e. for α = 0.1 − 0.3 where
αN = αωL ≈ 0.02 − 0.06), near the critical anisotropy
λeff = λc ≈ 1 if the direction of the rotating applied
field is changed periodically. In summary, the reason for
the peaks of the dissipated energy at |λeff | = 1 in Fig. 4
(dotted lines) is twofold: (i) it was shown that a more
effective heating can be achieved if the system is out of
the steady state which is achieved by the new type of
applied field (dotted lines) which is simultaneously ro-
tating and alternating, (ii) this enhancement effect be-
comes larger at |λeff | = 1 where the system is close to
the critical anisotropy |λc| ∼ 1, where the dislocating ef-
fect caused by the change in the direction of the rotation
is the largest.
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FIG. 4: The loss energy per cycle as a function of the
anisotropy parameter λeff is shown for various values of αN

(for fixed ω and ωL).

VI. PROPOSAL FOR EXPERIMENTAL

REALIZATION

Finally, let us propose a new type of ”rotating” ap-
plied field which has a periodically alternating direction,
similarly to the case carefully analyzed above but with
a feature of being more suitable for experimental real-
ization. Nonetheless, a ”sharp change” in the direction
of the rotating field which is studied previously is also
feasible in practice. Our proposal for the applied field is

Heff = H0 (cos(2ωt), sin(ωt), λeffMz), (15)

where the 2ω of the cosine naturally provides us with
the required change in the direction in every half cycle.
Well separated and oriented anisotropic nanoparticles in
an aerogel matrix can serve as a good experimental setup
to realize the enhanced loss energy in case of an applied
field as in Eq. (15). The practical advantage of (15) is
that it requires the use of two frequencies ω and 2ω and
no higher harmonics or no rapid switchings are needed.
Of course, one has to choose the frequency ω in a way
that 2ω should be in the range suitable for hyperthermia.

VII. SUMMARY

In this work we showed that a more efficient heat gen-
eration by magnetic nanoparticles is possible if the direc-
tion of the rotating external field changes periodically.
We would like to emphasise that the heating efficiency
of the new type of applied field is larger than those
of the rotating and alternating ones which are almost
identical in the limit of small frequency, see for exam-
ple [11, 13]. Based on this finding, we make a proposal
to apply a magnetic field regularly stopping its rotation,
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which should increase the loss energy. Conditions used
in the proposed work towards an enhance of heating ef-
ficiency are the followings.
Applied field.– A new type of ”rotating” applied field
is proposed here which has a periodically alternating di-
rection either using the form (4) where ω is assumed to
change sign in every full circle or using (15) where the
2ω of the cosine naturally provides us with the required
change in the direction in every half cycle. The frequency
is in the range of hyperthermia, i.e. ω = 1−5×105 Hz and
the amplitude of the applied filed is H0 ≈ 0.2× 105A/m.
Note that (15) produces a change in the rotation in ev-
ery half circle compared to the sudden change where the
direction of the rotation changes in every full circle. We
argued that in the low-frequency limit, the solution of the
LLG equation always tends to the attractive fixed point
very rapidly, i.e. it reaches the fixed point with one per-
cent accuracy in a quarter of a full circle. Thus, it is
expected that the proposed external field (15) possesses
the same properties found for the case of sudden change.
Anisotropy.– The nanoparticles are assumed to be
oblate ellipsoids where the shape anisotropy is moderate,
i.e. λeff = Ha/H0 ≈ 1 (which implies L ≈ 1.2/3 = 0.4
according to Ref. [22] for Ha = 0.2 × 105A/m and
Ms = 105A/m). In this case the nanoparticle has a
single precession mode. However, for larger anisotropy,
i.e. λc < λeff which has been discussed in [16] (where

h̃ = λ−1
eff ), more than one precession modes appear. In

Ref. 16 an enhancement of the heating efficiency was
found near the boundary of these regimes of forced pre-
cession. The largest increase is observed between the
periodic and quasi periodic regimes, however, it exists
only for large values of the reduced frequency used in [16]
which is not allowed in hyperthermia. Nevertheless, it is
expected that in case of an applied field, Eq. (15) which
can be considered as a rotating field (with alternating di-
rection) where the magnitude changes slightly, the effect
of the increased upward heating becomes even stronger
due to the transition between the two periodic modes. Fi-
nally, let us note that regarding the anisotropy, one has
to take into account the structure formation and syn-
chronization of interacting magnetic nanoparticles which
have been studied e.g., in [27] for rotating fields.
Orientation.– The anisotropy field (shape anisotropy

caused by oblate particles) is assumed to be perpendicu-
lar to the plane where the applied field rotates. In prac-
tice, this special situation can be achieved by switching
on a strong static field which orients all the nanoparticles
and than the rotating field applied while the static field
switched off. For an appropriate size of the nanoparti-
cle (with an average diameter d = 14nm [25]), the ori-
entation of the major part of the nanoparticles remains
unchanged (for long enough time) and only the magnetic
moment has a dynamics under the rotating field. Number
of parameters (for example biomedical coating) can be
tuned in order to design the nanoparticles (see e.g. [26])
for biomedical application incorporating the requirement
for particle size and shape-anisotropy. Furthermore, in
[16] it was argued that if the average diameter is chosen
to be in the range (dmin, dmax) than the nanoparticles
have single-domains and one finds no restriction on the
applied frequency and their dynamics is almost deter-
ministic. The boundary values, dmin and dmax depend
on the parameters such as the anisotropy factor: e.g.,
in case of relatively large anisotropy (h̃ = 0.1) one finds
dmin = 13.7nm. Thus, our choice d = 14nm indicates
that the description of the dynamics of the nanoparticle
magnetic moments by the deterministic LLG equation is
well justified [16] and it is expected that they retain their
orientation for long enough time [25].
Damping.– The dimensionless damping constant is cho-
sen to be in the range α = 0.1 − 0.3 which was used in
the works [16, 22]. Accordingly, the enhancement effect
shown in this work is 100% - 15% (in case of a smaller
damping the enhancement is larger).
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