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Abstract Computation of the stability limits of systems with time delay is essential
in many research and industrial applications. Most of the computational methods
consider the exact model of the system, and do not take into account the uncertain-
ties. However, the stability charts are highly sensitive to the change of some input
parameters, especially to time-delays. An algorithm has been developed to deter-
mine the robust stability limits of delayed dynamical systems, which is not sensitive
to the fluctuations of selected parameters in the dynamic system. The algorithm
is combined with the efficient Multi-Dimensional Bisection Method. The single-
degree-of-freedom delayed oscillator is investigated first and the resultant robust
stability limits are compared to the derived analytical results. For multi-degree-of-
freedom systems, the system of equations of the robust stability limits are modified
with the aim to reduce the computational complexity. The method is tested for the
2-cutter turning system with process damping.

1 Introduction

The determination of the stability of dynamical systems with time delay is of high
importance for numerous industrial and research applications. Some of the most
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representative examples are cutting processes [25, 26, 23, 12], wheel shimmy [24],
traffic jams [19] and human balancing [11].

One of the most important qualitative properties of dynamical systems is the
stability of the equilibrium or the periodic motion. Stability is usually visualized in
the form of so-called stability charts, which show the stability boundaries separating
those parameter domains for which the system is stable or unstable.

There often exist problems, especially in the field of machining operations at low
spindle speeds, where the computation of the stability boundaries requires very high
computational effort and unnecessarily high resolution. This is caused by the dense
and sharp line segments of the stability boundaries (so-called lobe structure), as it is
visible for example in Fig.1 [27]. In case of time-domain computations [12, 13, 27],
a high degree of discretization is required for being able to obtain appropriate re-
sults. For instance, in frequency domain computations [6, 1, 5] for cutting processes,
the lobe structure becomes dense for low spindle speed values (see Fig.1), which re-
quires high resolution of the stability chart and a continuously growing resolution
in the chatter frequency parameter. However, these accurate boundaries are of no
interest from practical point of view, thus the computation of the lower envelope of
the lobe curves only might be sufficient.
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Fig. 1 Stability boundaries in the low spindle speed range for tool geometry optimization presented
in [27]

Traditional computational methods consider exact models of the corresponding
system and they do not take into account the uncertainties of the input parameters,
in spite of the fact, that the results of these computations are highly sensitive to
changes of some input parameters like the natural frequencies and time-delays. In
practice, these system parameters can only be determined with a limited accuracy.

The parameter uncertainty can be analysed based on the stability radius [17],
which considers the perturbation of the elements of the system matrix. In [9] com-
plex perturbation is applied, while [20] considers real valued perturbation. This sta-
bility radius method was also applied for time delayed systems in [16, 18].

In the present study, a different perturbation method is introduced in order to de-
termine the robust stability limit. The presented algorithm is based on the direct per-
turbation of the time-delay parameter, only. The main steps are presented based on
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the well-known mathematical model of the delayed oscillator. The resultant robust
stability limit is obtained in the form of the lower envelope of the lobe structure. In
order to decrease the computational time even further, the method is combined with
an efficient numerical root-finding algorithm, the so-called Multi-Dimensional Bi-
section Method (MDBM) [4, 2]. These robust stability curves are given in analytical
form, too. Finally, the presented robust stability computation method is generalized
for multi-degree of a freedom systems. The system of equations of the robust sta-
bility limits are reformulated to create a more efficient numerical scheme, which is
applied to the 2-cutter turning model with process damping [22].

2 Robust stability of single-degree-of-freedom systems

In this section, linear time invariant systems are analysed, which can be described by
the higher order delay differential equation with a single point delay in the following
form:

Noodix(r) NSodRx(r—1)

j;)l, 5 +k§)rk o =0 (1)
where x is the scalar state variable, N is the order of the highest derivative, /; and
i are constant parameters and 7 is the point delay. Note, that we do not deal with
neutral equations, hence the highest order derivative term is not delayed.

The robust stability computation algorithm is presented along the model of the
second order delayed oscillator (see [10]) given by the governing equation:

F(1) + Kx(t) + 8x(r) — bx(t — 7) = 0, 2)

where the time delay is T = 27. Equation (2) is obtained from Eq.(1) with N = 2,
1=[6,x,1] and r = [b,0].

The corresponding stability charts are computed with the help of the D-subdivision
method (for detailed description see [23]) — main steps are summarized below. The
characteristic function D of Eq.(1) can be found by substituting the trial function
x(r) = Ae* into Eq.(1):

N N—1
D=Y A7+ Y rake ™, 3)
Jj=0 k=0

which yields the following characteristic function for the delayed oscillator:

D=2A2+KkA+8—be 7, 4)

The stability boundaries can be determined by substituting the critical value of
the characteristic root A = i@.. The co-dimension 2 problem is defined by the real
and imaginary parts of the characteristic equation in the parameter space of (1, r, @.):
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®)
(6)

The Multi-Dimensional Bisection Method (MDBM) [4, 2] is designed specifically
for these types of root-finding problems, since it is able to find the submanifolds of
the roots of a system of non-linear equations in arbitrary parameter dimension and
co-dimension. This robust technique can be used for the determination of multiple
boundary curves and it can even find closed curves of stable and unstable islands in
the stability chart automatically.

For Eq.(2) the free parameters are §,b and @, while k is usually considered to be
a constant representing damping. The roots of (5) and (6) are determined by MDBM
for the test case and are presented in Fig. 2 for k = 0.2. In the top view (right panel
of Fig. 2) the resultant boundary curves form the border of the shaded stable area.

&

Fig. 2 Resulting curves for the delayed oscillator in the space of §,b and @, (left panel) and its
top view (right panel), where the stable area is shaded for k = 0.2

2.1 Parameter uncertainty

Equation (2) can be considered as a dimensionless form of the governing equation
of a mass-spring system with delayed control. The above computation method con-
siders the exact model of this mechanical system and it does not take into account
the uncertainty of the input parameters, like eigenfrequency and feed-back delay.
These parameters influence the dimensionless time delay, which is the main source
of instability. To represent the effect of uncertainty in the delay parameter 7, numer-
ous stability boundary curves were calculated for a set of time delays in the range
[0,47]. These curves are plotted in Fig. 3. The intersection of the stable areas can be
used as an approximation of the robust stability region (grey area in the right panel
of Fig.3).
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Fig. 3 Resulting curves for the delayed oscillator in the space of §,b and @, (left panel) for dif-
ferent discrete 7 values in the range [0,47] (black lines) where the boundary curves from Fig.2
are denoted by red thick lines. In the top view (right panel), the approximated robust stable area is
shaded for k¥ = 0.2.

2.2 Robust stability limit

The exact robust stability limit has to be computed for continuous time delay vari-
ation, however, the computation of the resultant boundaries presented in Fig. 3 was
already time consuming, even for only 30 different T values. To overcome this prob-
lem, a new idea was shown in [3], according to which the set of boundary curves
can be connected to a surface by means of an additional parameter, which is defined
as the regenerative phase shift parameter

@ :=mod(Ta,27). @)

This parameter has to be treated as an independent extra (time-delay perturbation)
parameter in the exponential terms, only. Consequently, the set of parameters for the
characteristic function is extended by one and it yields:

N N—1

D=Y 1A+ Y nate . (8)
j=0 k=0

For the delayed oscillator, at the stability limit, the characteristic function is given

in the form:

D=—?+ika. +8 —be '?. 9)

The application of MDBM is essential to solve the resultant co-dimension 2 prob-
lem in the extended parameter space. The resultant surface for Eq.(9) is plotted in
Fig. 4.

The robust stability limit is defined by the envelope of this surface, where the
surface is parallel to the @ axis in the 3D-representation in Fig. 4. It was found,
that in the vicinity of the parameter points along the envelope, the real part of the
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Fig. 4 Surface of the connected stability boundaries of the delayed oscillator in the space of 8, b, .
and @ (left panel) and its top view (right panel). The envelope of the surface forms the robust
stability limit given with thick black lines for k¥ = 0.2.

critical roots A of the characteristic equation (4) does not change as a function of
the perturbation parameter. This condition can be described as follows:

ar
R(-=|=0. 10
(5¢) (10)
The left hand side of Eq.(10) can be determined by the implicit derivation of the
characteristic equation [23], which results:
dD(1)

do
wor o _

oALIDP 0D
The extra condition (10) necessary for the computation of the robust stability limit

can be written with the help of (12) as follows:

PY) 9D
EK(%):EK(—@ =0. 13)
In order to eliminate the division during the numerical implementation of Eq.(13),
it is favourable to use the following rearranged form

dD oJD
S|{s— == | =0, 14
(awc aqs) (9
in which the critical value A = i@, is considered and the bar denotes complex con-
jugate. This extra equation leads to:

=0 an

12)
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N N-1 , N—1
R ( liji(io) "+ Y rkki(iwc)k—le—l‘f’) <Z rk(ia)c)ke—iq’> =0. (15)
j=1 k=1 k=0

Note, that the last term in Eq.(15) was already computed during the evaluation of
Eq.(8), which can be reused to decrease the computational time. For the delayed
oscillator, the extra condition yields

R ((—Za)c—i—iic)(be’i‘p)) —0. (16)

Figure 5 shows the traditional stability chart and the robust stability limit of the
delayed oscillator, which is determined by MDBM as a co-dimension 3 problem
formed by (5), (6) and (16) in the 4 dimensional parameter space (8,b, @, D).

For 153 grid points along each parameter dimension, the computational time
of the traditional stability limit curves was 3.5 s (Matlab 2014b; Intel Core i7-
4710HQM CPU 2.50GHz, 16GB Memory). Thus, the set of stability curves in Fig.
3 was computed in approximately 105 s, while the robust stability limit in Fig. 5
was computed in 4.1 s, only. The computational effort for the robust stability limit
is comparable with the time consumed for the computation of the traditional stabil-
ity limit. Furthermore, the robust stability computation scheme is not only orders
of magnitude faster than the approximating method applied for a discrete set of
time delays, but it also delivers qualitatively better results in the form of continuous
boundary lines, while the results in Fig. 3 present only segmented boundaries.

Fig. 5 Stability boundaries of the exact model of the delayed oscillator (red lines - see Fig.2) and
the corresponding robust stability limit given with black lines in the space of 8,b, @, and P (left
panel). In the top view (right panel) the robust stable area is shaded for k = 0.2.



8 D. Bachrathy, M.J. Reith, G. Stepan

2.3 Analytical results for robust stability of delayed oscillator

For the delayed oscillator, the system of equations (5),(6) and (13) defining the
robust stability limit leads to:

—@?+ 8 —beos(P) =0, (17
K@, + bsin(P) =0, (18)
—bxsin(P) — 2baccos(P) =0. (19)

This system can be solved analytically. The first set of results is
b=d o.=0 =0, (20)
b=—-d o.=0 ®==m, 21

which are straight robust stability lines corresponding to fold-type bifurcations,
while the second set of solutions is:

b=+tky\/8—«K2/4, (22)
0. =+4/8—k2/2, (23)

K
& = +acos (45—1(2> , (24)

which represent the robust stability curves for Hopf-type bifurcations in case of
5> K?)/2.
3 Robust stability of multi-degree-of-freedom systems

Let us generalize Eq.(1) for multi-degree-of-freedom systems, which yields the fol-
lowing matrix equation:

N j N—1 k
d’x(r) d*x(r — 1)
YL+ L Re—g— =0, (25)
j= =
where x € R", N is the order of the highest derivative, L; and Ry, are coefficient ma-
trices and 7 is the point delay. The characteristic equation of Eq.(25) is determined
based on the determinant
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N N-1
D := det (Z LA/ + ) Rk/lke“> =0 (26)
j=0 k=0

using the trial solution x(¢) = AeM . Since Eq.(26) defines the characteristic equa-
tion, all steps described in Section 2 can be performed in order to obtain the robust
stability limit. First, the regenerative phase shift parameter is introduced in the expo-
nential terms based on Eq.(7), then the system of equations Eq.(5) and (6) together
with the extra condition Eq.(14) are solved by means of MDBM.

The derivative terms in Eq.(14) can be approximated by a finite difference
method. This approximation is generally appropriate for numerical schemes. How-
ever, it can be determined in closed form, too. Based on this closed form equation,
a rearranged form of Eq.(14) is created in order to make the computations more
efficient.

3.1 Optimized numerical solution

In the extra condition for the robust stability computation given with Eq.(14), the
derivative of a determinant must be computed. The closed form solution is provided
by Jacobi’s formula [14]:

d dG
o det(G) =tr (adj (G) dx) , 27)
where tr() denotes the trace and adj() is the adjugate matrix (the transpose of the

cofactor matrix). Let us define the argument of the determinant of Eq.(26) as

N N-1
G=Y LA+ Y Rafe ™. (28)
j=0 k=0

The computational effort for the adjugate matrix can be high, however, in our
case, special conditions can be applied. Matrix G is singular due to Eq.(26), hence
rank (G) = n— 1. If this holds, the rank (adj (G)) = 1, because the image of adj (G)
is contained in the kernel of G that has dimension 1 by rank-nullity [15]. This means
that the adjugate matrix can be expressed by

adj (G) = Cegoe] , (29)

where o denotes the vector direct product or dyadic product and ey is the eigenvector
belonging to the singular eigenvalue (1 = 0) of matrix G. Note, that the constant C
depends on the non-singular eigenvalues of G, however, it is not relevant in the
further steps of the derivation since it will be cancelled. Equation (29) is valid if the
multiplicity of the critical characteristic root is equal to one, otherwise adj(G) =0
holds. The probability of this situation is very low, especially during the numerical
analysis, thus these special cases are not treated here.
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The computation of the only eigenvector ey can be performed efficiently, e.g. with
the inbuilt function eigs in Matlab. Alternatively, the simple text-book-calculation
can be used directly if we set the first element of ey equal to 1, which leads to

e =1, G&?,,)X(z:,,)(}(l)x(z:n)]f (30)
For very special parameter sets (ep,; ~ 0), this could result a poorly conditioned
problem. If we consider the special form of the adjugate matrix as in Eq.(29) and
the fact that the trace of a dyadic product is the same as the dot product, then Eq.(27)
can be reformulated as:

d dG
1, det(6) = egaeo. (31)

The final form of Eq.(14) for multi-degree-of-freedom systems is

G G
3 <<egawceo> (ega(peo)> =0, 32)

which leads to the following equation after the substitution of Eq.(28) and after
performing the derivations:

N N—-1
R <<eg ( Ljji(io:) "'+ ) Rkki(iwc)k—le—@> eo>
j=1 k=1
N—1
<eg (Z Rk(ia)c)ke—iq’> e0> =0. (33)

k=0

Note, that this formula is only valid at the boundary of the robust stability area.
If we are off the robust stability curve, then this equation is an approximation only,
because G is not singular. For these off-boundary points eg can be approximated by
Eq.(30) or by the eigenvector belonging to the eigenvalue with the smallest magni-
tude.

If we decide to compute the eigenvector e( by solving the eigenvalue-eigenvector
problem, then the corresponding eigenvalue py with the smallest magnitude is also
obtained as a side result, which can be used instead of the determinant in Eq.(26),
because det (G) = [];,_; tm = 0 if and only if py = 0.

The above presented robust stability computation method is applied for a two-
cutter turning system with process damping.
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3.2 Robust stability limit of the two-cutter turning with process
damping

In order to present the efficiency of the above presented robust stability computation
method, it is applied for the test case of the two-cutter turning process with process
damping. The model and the corresponding equation of motion of a two-cutter turn-
ing system is given in [21, 22] where the dynamics of the turret is also modelled.
The simplified mechanical model is shown in Fig.6. If the effect of process damp-
ing [26, 8, 7] is taken into account, too, then an extra damping coefficient appears,
which is proportional to the time delay 7 and thus the governing equation can be
written in the form:

Mx(t) + (C+¢pTE) x(t) + Kx(t) = ky (Lx(t — 7) — Ex(¢)) . (34)

Here, x is the vector of the position coordinates of the tools and the turret (see
Fig.6), ¢, denotes the process damping coefficient, &y, is the cutting coefficient. The
coefficient matrices in Eq.(34) are given in Tab.1.

Fig. 6 Schematic representation of the two-cutter turning model. Tool 1 and tool 2 are coupled via
the cutting force function, too, due to the surface regeneration effect.

Table 1 The coefficient matrices in the governing equation of the two-cutter turning model

mass matrix damping matrix stiffness matrix self coupling|cross coupling
matrix matrix
M C K E L
ny 0 0 C1 0 —C1 k1 0 —kl 100 010
0 m O 0 o ) 0 k —ka 010 100
0 0 mj —C] —Cy c1t+ca+c3 —ky —kp ki +ky+k3 000 000

The corresponding characteristic equation for A = i@, with the regenerative

phase shift parameter @ is given by:
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det (—w§M+iwcc +icpToE+ K —ky (Le_i(p —E)) —0, 35)

Note, that the term T, is replaced by @ in the exponential term only, while in the
damping term it is left as it is.

The resulting stability boundary curves (red) and the robust stability limit (black)
are shown in Fig.7 in the plane of the spindle speed 2 = 27/7 and the cutting
coefficient k.

ol JAWA.

X

Q

Fig.7 Stability boundaries of the two-cutter turning system (red lines) and its robust stability limits
(black lines) for the dimensionless parameters: m;=my=1, m3=10, c;=c2=0.02, ¢3=0.2, k1=1, kr=4,
k3=40, ¢;=0.03. Note, the logarithmic scale of £2.

In spite of the high resolution of the computed stability chart, the dense stability
lobe structure (red curves) becomes more and more inaccurate in the lower spindle
speed range. It can be observed in Fig.7 that the robust stability lines (black) are
smooth in the whole spindle speed range for the same resolution, while the compu-
tational time is in the same range as for the stability computation.

4 Conclusion

In the present study, we have developed a method based on parameter perturbation
for calculating the robust stability limits of systems of differential equations with
point delay. One of the main benefits of the presented method is, that it eliminates
the sensitivity of the stability charts to the time delay parameter. Thus it can be
efficiently used in cases where some of the input parameters are inaccurate.

In the proposed computation method, an additional perturbation parameter has
to be introduced in order to find the resultant robust stability curves, which form
the envelopes of the stability boundary lines. This increases the dimension of the
parameter space by one, which requires the formulation of an additional condition



Algorithm for Robust Stability of Delayed Multi-Degree-of-Freedom Systems 13

for the robust stability limit curve. Although the set of parameters and the system
of equations are extended, the applied Multi-Dimensional Bisection Method can
efficiently solve the equations without significant increase of computational time.

Future research is planned to extend this method to dynamical systems with mul-
tiple and/or distributed delays.
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