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Abstract 

There are several practical methods to reduce machine tool vibrations that have negative 

effects especially on the quality of the machined surface. The most intricate vibration is the 

regenerative one originated in a delay effect of cutting processes. One group of the methods 

that may be successful in avoiding regenerative vibrations is the appropriate variation of 

the corresponding time delay. This study presents the stability analysis of milling processes 

in case of an especially intricate way of varying the delay in time: the radial depth of cut is 

varied in face milling resulting in a wavy tool path. The combination of the semi-

discretization method and the implicit subspace iteration method is introduced to present 

an efficient way of calculating stability charts that provide conclusions regarding the use 

of this method in eliminating chatter. 
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1. Introduction 

Machine tool chatter has a negative effect on the lifetime of the machine tools and on 

the quality of the surface finish of the workpiece [1-4]. This self-excited vibration is 

originated in the so-called surface regeneration effect [3-5]. The mathematical modeling of 

chatter is rooted in the theory of delay differential equations (DDEs) [6], and the primary 

cause of instability is the presence of a large time delay in the cutting processes.  

A constant single point delay appears in the DDE of the commonly used mechanical 

models of milling processes at constant spindle speed if conventional helical tools with 

even pitch angles are used. The time delays are proportional to the pitch angles between 

two neighboring cutting edges, and inversely proportional to the spindle speed. 

Different tool geometries and operating conditions have been developed in order to 

improve the stability properties of cutting processes by weakening the negative effect of 

the inherent time delay by disturbing the concentrated nature of the delayed term in the 

corresponding equations of motion. 

In case of milling processes, the concentrated nature of the time delay can be changed 

to a more disturbed one by introducing uneven pitch angles between the cutting edges 

[7,8,9,10]. This idea results in multiple discrete time delays in the system, whose number 

depends on the number of teeth of the tool and the applied pitch angle distribution 

[11,12,13]. 

Milling tools with varying helix angle [14,15,16,17,10] or with wavy cutting edges 

[18,19] are used to achieve a similar effect by distributing the concentrated time delay even 

further to continuously varying delays over a given delay-interval. In these cases, the pitch 

angles are changing continuously along the axial coordinate of the tool, which leads to 

DDE models with distributed time delays [20]. In addition to the continuously varying 
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helix angle, wavy cutting edge profiles give the opportunity to modify/design the weight 

function of the distributed delay terms in the governing equations [5,21,22]. 

Serrated tools [23,24,10] are also designed to perturb the regenerative phase shift. 

Serration profiles have phase shift from one cutting edge to the subsequent one. The 

geometry of serration causes the actual machining edge to cut the surface marks of different 

previous teeth along the axial direction of the tool. The result is the appearance of multiple 

discrete delays which depend on the applied serration density and on the actual feed per 

tooth. 

Applying varying spindle speed [25,26,27,28,29] to the cutting process also affects the 

time delay of the system directly. In case of turning [20], the periodic spindle speed 

variation results in a continuously changing time delay, which periodically varies the 

otherwise constant delay over a specific interval determined by the range of the spindle 

speed variation. The same applies to milling operations with continuously varying spindle 

speed, however, this leads to DDE models with time periodic parameters both in the cutting 

coefficients and in the delays. 

Note, that all the above mentioned methods create an uneven distribution of the cutting 

force between or along the cutting edges, which could lead to decreased tool life. Moreover, 

in the case of spindle speed variation, the cutting load fluctuates in time which also leads 

to increased tool wear [29]. 

Considering the applications above aiming to improve cutting stability by perturbing 

the time delay itself and thus suppress the regenerative effect, a similar possible way to 

decrease the appearance of chatter might be the variation of the coefficient of the delayed 

term in the DDE model instead of varying the time delay itself. In this case, the cutting 

conditions could be kept at an optimal level, which would not shorten the tool life. This 

can be achieved, for example, by means of a wavy tool path that causes the variation of the 

entering and exiting angles of the cutting edges periodically, therefore, it causes an 

additional periodic variation of the time periodic coefficient of the delayed term in the DDE 

model. Actually, it leads to a quasi-periodic parametric excitation, since the corresponding 

coefficient of the delayed term is already periodic with the time delay, which is perturbed 

now further periodically with the wavy path having an independent time period. Since it 

leads to an uneven surface finish, the wavy tool path can primarily be used in roughing 

processes, similarly to the application of serrated tools. 

The present study investigates the stability of milling processes in the latter case. This 

requires the improved application of the semi-discretization method (SDM) [30,31,32] 

combined with the implicit subspace iteration method (ISIM) [33,34]. The structure of the 

paper is as follows. First, the simplified mechanical model of milling is presented and the 

corresponding mathematical model is derived in case of wavy tool paths. Then SDM and 

ISIM are implemented with special attention to the computation time required for the 

construction of stability charts in the parameter plane of spindle speed and axial depth of 
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cut. The resulting stability charts then provide conclusions regarding the effectiveness of 

applying wavy tool paths in order to reduce the probability of chatter. 

 

2. Mechanical model of milling 

In order to analyze the effect of a wavy tool path on the stability properties of milling, 

a single degree-of-freedom (DoF) model is considered in Fig. 1. The tool is assumed to be 

flexible with a single relevant vibration mode in the feed direction, and the workpiece is 

considered to be rigid. The corresponding equation of motion reads 

        2

n n

1
2  ,xx t x t x t F t

m
     (1) 

where ωn is the natural angular frequency of the tool, ζ is the corresponding damping ratio, 

m denotes the effective modal mass, and Fx is the x component of the resultant cutting force 

acting on the tool. Figure 2 presents an up-milling operation with spindle speed Ω given in 

[rad/s]. 

 

 

Fig. 1: Mechanical model of milling with a wavy tool path 

 

The wavy tool path is generated by means of the harmonic variation of the radial depth 

of cut, which assumes the form 

 𝑎e(𝑡) = 𝑎e + 𝐴e cos (
2𝜋𝑡

𝑇
) , (2) 

where 𝑎𝑒 is the average radial depth of cut and 𝐴e is the amplitude of the wavy tool path. 

The time needed for the tool to complete one period of the depth of cut variation is denoted 

by T. Due to the wavy tool path, the entering angles φen and the exiting angles φex of the 

cutting teeth change according to the radial depth of cut function. As it can be checked with 

the help of Fig. 2, these angles are now time-dependent and can be calculated for up-milling 

and down-milling as 
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𝜑en

up(𝑡) = arctan (−
𝑎̇e(𝑡)

𝐷
) , 𝜑en

down(𝑡) = arccos (2
𝑎e(𝑡)

𝐷
− 1) ,

𝜑ex
up(𝑡) = arccos (1 − 2

𝑎e(𝑡)

𝐷
) , 𝜑en

down (𝑡) = arctan (
𝑎̇e(𝑡)

𝐷
) ,

 (3) 

respectively, where D is the diameter of the tool. 

A straight-fluted tool is considered (helix angle η =0) with number N of cutting teeth. 

The tangential and radial cutting force components acting on tooth j have the forms 

 
     

     

,t p t

,r p r

 ,

 ,

q

j j j

q

j j j

F t a g t K h t

F t a g t K h t




 (4) 

where ap is the axial depth of cut, Kt and Kr are the tangential and radial cutting force 

coefficients, respectively [2], hj is the actual chip thickness cut by tooth j, q is the cutting 

force exponent, and gj is a screen function determining whether tooth j is in (gj = 1) or out 

(gj = 0) of the cut [35]. The actual chip thickness cut by tooth j can be obtained as 

 ℎ𝑗(𝑡) = (𝑓z + 𝑥(𝑡 − 𝜏) − 𝑥(𝑡))sin (𝜑̃(𝑡)), (5) 

where fz is the constant feed per tooth. The regenerative effect is described by x(t – τ) and 

x(t), which denote the delayed and actual positions of the tool, respectively [5]. The 

instantaneous angular position of tooth j is represented by φj, and the time delay can be 

calculated as τ = 2π / N / Ω if the cutting edges are uniformly distributed. The angle between 

the overall and instantaneous feeds is represented by 𝜑̃(𝑡) which is equal to 𝜑en(𝑡) for up-

milling and  𝜋 − 𝜑ex(𝑡) for down-milling. This term is necessary for defining the angular 

position which corresponds to zero chip thickness.  

 

          

Fig. 2: Entering and exiting angles for up (a) and down-milling (b). Grey areas represent 

the material to be removed. 

 

Substituting (3), (4) and (5) back to the equation of motion (1), the general solution 

has a periodic part xp(t) and its variation ξ(t) which can be interpreted as the perturbation 

of the stationary milling process described by the particular solution xp(t). Substituting the 
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general solution x(t) = xp(t) + ξ(t) back to Eq. (1), and linearizing around the trivial solution 

of the perturbation parameter, the equation of motion has the form 

             2

n n p p2 , ,  ,t t G t a t G t a t            (6) 

where G(t,ap) is a particular directional factor [35, 36, 37], that depends on the axial depth 

of cut linearly, and it is a quasi-periodic function of time t. In case of a straight tool path, 

it is simply periodic with the tooth passing period τ of the system. However, for a wavy 

tool path, this period is modulated by the time period T of the sinusoidal depth of cut. If T 

/ τ is rational then G(t,ap) remains periodic with a possibly large principal period, otherwise 

it is quasi-periodic. For practically realizable sinusoidal depth of cut functions T >> τ holds 

and it is also reasonable to assume those cases only when T is simply an integer multiple 

of τ. 

The effects of different wavy tool paths on G are presented in Fig. 3 for a two-fluted 

tool that takes five complete rotations over the time period T. Consequently, ten peaks of 

different heights, widths and shapes can be seen in each period, depending on the level of 

waviness applied. 

In the subsequent sections, those mathematical tools are presented which are used for 

the stability analysis of the above systems having the above described periodic parametric 

excitation that is close to quasi-periodic. 

 

 

Fig. 3: Effect of a wavy tool path on the particular directional factor G: straight tool path 

in panel a), slight waviness in panel b), moderate waviness in panel c), and severe 

waviness in panel d). Parameters presents in Table 1.  

 
3. Brief summary of the semi-discretization method 
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There have been many algorithms [30,38,39,40] developed during the last 15 years for 

systems where the time-delay effect is coupled with parametric excitation. The semi-

discretization method (SDM) is one of the efficient ways to analyze stability 

[20,41,42,43,30,31,32]. The basic idea of the SDM is the numerical discretization of the 

delayed terms only above the delay-time interval. Consequently, the governing DDE 

becomes an ordinary differential equation (ODE) that can be solved in closed form in linear 

cases for each time step within these discrete delay-intervals, and a linear discrete map is 

constructed that describes the connection of the discretized state as a large vector over the 

discrete time instants within the delay interval. The size of this mapping depends on the 

resolution of the delay discretization. 

If explicit time-periodicity also appears due to the parametric excitation, the time-

periodic coefficients (or even the delays) should also be discretized in time over the time 

period, and the above procedure leads to different linear mappings at each sampled instant 

of the time period: 

 1  ,i i i z G z  (7) 

can be defined between two states corresponding to two neighboring time steps. Here, Gi 

denotes the coefficient matrix connecting states zi and zi+1, which are the vectors of the 

discretized states sampled at the discrete time intervals at subsequent time instants. If these 

linear mappings are chained by simple multiplications over the time-periodicity, a discrete 

map can be defined between the initial delay-discrete state z0 and the one zT a principal 

period later: 

 𝐳𝑇 = 𝐆𝑛 … 𝐆2𝐆1𝐆0𝐳0 = 𝚽𝐳0, (8) 

where the transition matrix Φ is a finite dimensional approximation of the infinite 

dimensional monodromy operator [44]. Thus, the stability analysis is reduced to the 

problem whether the absolute values of all the eigenvalues of Φ are less than one: | μi | < 1. 

In order to improve numerical accuracy, the delay resolution, the order of semi-

discretization, and the time periodicity resolution can be increased. 

In the basic models of milling with constant parameters, the time delay and the time 

periodicity are just equal to each other and it is reasonable to apply the same resolution for 

both of them. This is not true for time-varying spindle speeds, or for the case in question 

when the tool path is wavy. In this case, certain parts of the stability boundaries require 

significantly higher delay resolutions than others. To resolve this problem and to achieve 

relevant reduction in computation time, the SDM is combined with the implicit subspace 

iteration method (ISIM) [33,34] as explained in the next section. 

 

Implicit subspace iteration 

Consider the general eigenvalue problem 
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  ,ΦS Sμ  (9) 

where Φ is an n × n square matrix, μ is a diagonal matrix of size n × n containing the 

eigenvalues of Φ on its main diagonal, and matrix S of size n × n consists of the 

eigenvectors of Φ in its columns. A set of Ns ≤ n dominant eigenvectors corresponding to 

the first Ns eigenvalues of the largest absolute values can be approximated in an iterative 

way. Let Sj of size n × Ns denote the matrix of the Ns dominant eigenvectors after the jth 

iteration step. Taking an additional iteration step, a new set Vj of size n × Ns can be 

calculated according to 

  .j jV ΦS  (10) 

If Sj is obtained after a sufficient number of iteration steps, it will converge to the dominant 

eigenvectors, and the basis formed by the column vectors in both Sj and Vj span 

approximately the same space. Therefore, an approximate matrix Hj of size Ns × Ns 

connecting Sj and Vj can be obtained using a pseudo-inverse calculation from the relation 

  
1

T T   ,j j j j j j j j



  V S H H S S S V  (11) 

where matrix Hj represents a subspace of size Ns × Ns of the original space of matrix Φ of 

size n × n. After several iteration steps, the eigenvalues of Hj provide a good approximation 

for the dominant eigenvalues of Φ. This way, it is enough to compute the eigenvalues of a 

significantly reduced Ns-sized matrix Hj instead of the large n-sized matrix Φ. The details 

of this iteration process can be found in [33,34]. 

In the case of a known matrix Φ, the iteration can be initiated from a random array of 

S0, and Eqs. (10) and (11) can be used to calculate the approximation of the dominant 

eigenvectors after one iteration step. Normalizing the result: Sj+1 = Aj Vj (where Aj is a 

matrix containing the eigenvectors of Hj), the same formula can be applied again and again 

until convergence of the dominant eigenvectors is achieved. 

However, it is also possible to determine the matrix Hj without calculating the whole 

matrix Φ, which is computationally demanding [20,45]. The vector Vj can be calculated 

directly from the equations of motion of the given system, starting from a random set of 

initial conditions S0. In this case, matrix Hj can be approximated in each iteration step until 

convergence is reached. In stability calculations, convergence is evaluated simply by 

means of the magnitude of the largest eigenvalue of Φ. Thus, the advantage of 

implementing the ISIM is that the transition matrix Φ does not have to be calculated. Given 

an arbitrary initial set S0, the new set Vj can be obtained by time integration utilizing the 

linear equations of motion of the system. During the time integration process, the 

corresponding elements of the matrix G in Eq. (12) of the SDM are used, for which a closed 

form solution is given in [20]. Consequently, the subspace Hj can be determined iteratively 
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without calculating the transition matrix for each parameter combination which is time-

consuming, especially in case of fine delay resolutions. 

Figure 4 presents the computation time required to determine the stability properties 

of a single parameter combination against the delay resolution. The relations can be 

described by power functions, and the combined ISIM-SDM is significantly more efficient 

than the SDM alone, especially for fine delay resolutions. The computation time of the 

SDM with direct matrix multiplication [20] increases according to a power of 3.7, while 

the computation time with the combined ISIM increases only linearly when the accuracy 

is the same. Note, that the memory requirements of the ISIM-SDM are also better. 

 

 

Fig. 4: Comparison of the computation time of the SDM and the ISIM-SDM as a function 

of delay resolution on a logarithmic scale 

 
Stability analysis 

The time period T of the harmonic radial depth of cut function is defined in such a way 

that the tool is able to make an integer number Nr of revolutions over that time period  

(Nr = T / τ/N).  This idea is used for preserving the simplicity of the analysis without losing 

any possible effect of the wavy tool path. The stability charts in Figures 5 and 7 present the 

effects of both the amplitude and the time period of the harmonic depth of cut function. 

In these case studies, the single relevant natural frequency of the tool is considered to 

be 400 Hz, and all the other tool, cutting and process parameters are taken from a real case 

study in [54]. An up-milling operation is assumed with a straight-fluted end mill of two 

cutting edges. 

 

Tool Modal parameters Process parameters 

diameter - D 20 mm natural frequency  - ωn 400 Hz average radial depth - ae up milling: 2 mm 

No. of teeth - 

N  

2 modal mass - m 3.166 kg cutting force exponent - q 0.75 

helix angle - η 0° damping ratio - 𝜁 2 % feed per tooth - fz 0.1 mm 

  modal stiffness - k 20 MN/m tangential cut. coeff. - Kt 107 MN/mq+1 
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    radial cut. coeff. - Kr 40 MN/mq+1 

Table. 1: Parameters of the case-study 

 

 

Fig. 5: Effect of the amplitude of the wavy tool path for Nr = 5 (shaded region), 

thick lines indicate the stability boundaries corresponding to a straight tool path. 

The numerical simulations are performed at parameter points near to A, B and C; the 

stable and unstable motions are denoted by circles and squares, respectively. 

 

Figure 5 shows the effect of the amplitude of the applied waviness with fixed Nr values. 

It can be seen that additional flip lobes appear in the stability charts as the amplitude of the 

radial depth cut variation gets higher. The original flip lobe below the dimensionless 

spindle speed coordinate Ω  = NΩ/ωn = 1, which is present for a straight tool path as well, 

even gets detached as a flip island as the waviness of the tool path is increased (see also 

[46] where it was shown analytically that the flip lobes are actually islands). 

 

In what follows, numerical simulations are presented to validate the stability properties 

[47, 48], in which the forced vibration is also considered. Simulations are performed at 

three points (stable, unstable, stable) around each stability boundary denoted by A, B and 

C  in Fig. 5 and the corresponding resultant motions are presented by grey lines in Fig. 6. 

The tendencies in the simulation results validate the stability properties. For the 

technological parameters selected from the white area, the motions are unstable (see 

squares in Fig. 5) and the tool position signals start increasing exponentially. For the 

parameter points selected from the shaded area, the tool center motion tends to the 

stationary vibration caused by the periodic forcing; these are stable cases, no chatter occurs. 

A simple model of the fly-over-effect is also considered to approximate the amplitude 

of the chatter vibration [49,50].  In this model, the cutting force is switched off for negative 

chip thickness ℎ𝑗(𝑡) < 0 (see Eq.(5)). This leads to saturation in the exponentially 

increasing unstable vibration (see black lines in Fig. 6). The results in Fig. 6 in row A (𝛺̃ =
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1.98) and row B (𝛺̃ = 2.85; 3.05) show that if the milling process without the wavy tool 

path is stable (see the area below the thick line in Fig. 5), then the amplitude of the chatter 

vibration is significantly smaller. However, it still leads to high load on the tool. 

 
Fig. 6: Numerical simulations of the tool center position x for milling with harmonically 

varied radial depth of cut.  The black and grey lines refer to simulations with and without 

the fly-over-effect, respectively. The middle column represents the stable processes based 

on Fig.5, where the stable and unstable parameters are denoted by circles and squares, 

respectively. 

 

 

 

Fig. 7: Effect of the time period of the wavy tool path for Ae / āe = 0.3 (shaded region), 

thick lines indicate the stability boundaries corresponding to a straight tool path 

 

Figure 7 presents the effect of the time period for constant waviness amplitude of 

Ae / āe = 0.3. As the time period increases, the stability charts corresponding to a harmonic 

radial depth of cut variation get closer to that of the straight tool path. Practically realistic 

time periods correspond to several hundreds of revolution over one harmonic radial depth 

of cut variation (Nr >>100). Still, the convergence of the stability chart is so fast to the chart 

of the straight tool path that it does not seem to be reasonable to do calculations with larger 
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values of Nr, since the calculation time would be several days even with the combined 

ISIM-SDM. As a conclusion we can state that the effect of the realistic time periods is not 

relevant, even for tool path with large waviness amplitude. 

Note, that while the Nr = 1 case is not realistic as a wavy tool path, it can still be used 

as a simplified model of milling tool with runout  [51,52,53,54] while the tool path is still 

straight. In this case, the edges cut different radial depths, hence, the corresponding 

directional factor G varies within one period, similarly to the Nr = 1 case with wavy tool 

path without runout. Figure 8 presents a series of stability charts corresponding to Nr = 1 

and Ae / āe = 0.1 for different number of edges. 

 

 

Fig. 8: Effect of the number of cutting edges for Nr = 1 and Ae / āe = 0.1 (shaded region), 

thick lines indicate the stability boundaries corresponding to a straight tool path 

 

Figure 8 shows that even such a simple model of machine tool runout can predict 

detectable effects of this phenomenon on the stability charts. The amount of runout 

modeled by a waviness amplitude of Ae / āe = 0.1 constitutes a physically possible scenario, 

however, it cannot be considered as a negligible eccentricity. For example, in the case of 

two cutting edges, it means that one tooth cuts 10% more and the other 10% less compared 

to the ideal runout-free tool. 

The case of N = 2 cutting edges is identical to the case investigated by Insperger et al. 

in [54] where the difference between the stability boundaries corresponding to zero and 

nonzero runout is infinitesimal. It can be seen in Fig. 8 that the stability boundaries 
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corresponding to the straight and wavy tool paths are close to each other, however, the very 

high speed region presents significant differences. It is important to note that such high 

cutting speeds are not considered in [54], in fact, the highest displayed dimensionless 

spindle speed in [54] is less than Ω= 1. Therefore, it can be concluded that the comparable 

parts of the stability boundaries at low spindle speeds in Fig. 9 of this study and those in 

[54] practically coincide for zero and nonzero runout. Also, the maximum applicable 

spindle speed is inversely proportional to the amount of runout of the machine tool, 

therefore, the stability boundaries corresponding to very high spindle speeds fall out of the 

scope of practical importance. 

 

 

Fig. 9: Effect of a wavy tool path (Nr = 5, Ae / āe = 0.3) for lower spindle speeds (shaded 

region), the thick line indicates the stability boundaries corresponding to a straight tool 

path 

 

It can be concluded from Fig. 9 that the higher the lobe number is, the less effect the 

wavy tool path has on the stability boundaries. This is in correspondence with the 

observation in [2], namely that for higher order lobes the zeroth-order approximation 

method provides accurate enough stability boundaries. Accordingly, the wavy tool path 

has small effect on stability at lower spindle speeds, since its harmonic variation can be 

canceled out by the time averaging of the zeroth-order approximation. 

 

4. Summary 

The generation of a wavy tool path in milling processes can introduce additional time-

periodicity into the delay-induced regenerative vibrations and this way, it may help to 

reduce the appearance of chatter similarly to many other techniques that try to mismatch 

the delay effects during cutting. The mathematical model of such a milling operation was 

derived for a simple one DoF mechanical model, and it was shown that the model typically 

leads to a quasi-periodic parametric excitation in the DDE model. 

It was shown that the stability analysis of these systems is extremely time-consuming 

even if the most efficient methods (like the SDM) are used for long periodic 

approximations of the quasi-periodicity. The combination of the SDM with the ISIM 

improves the efficiency of these calculations and makes it possible to construct stability 

charts for these cases in reasonable time. 
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The analysis of the resulting stability charts showed that the application of a wavy tool 

path affects the stability properties in the domain of high cutting speeds only. However, 

even this effect is negligible for realistic harmonic radial depth of cut amplitudes and 

periods: the significant impact of large amplitudes gets suppressed as the time period 

approaches practical values. Based on the test cases, it can be concluded that perturbing 

the time periodic coefficient of the delayed term only is not a successful way to weaken 

the negative effect of surface regeneration and thus to achieve practical improvement in 

the stability properties of milling operations. These results generalize the observations of 

Insperger et al. [54] achieved for the investigation of the effect of runout on chatter in 

milling processes. The parameters that look extreme at the moment could change in the 

future and the presented results can serve as the source of a new direction for research in 

fighting against chatter. 
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