Metallic Coatings on Nonwovens for Special Purposes

ABSTRACT: A special highly adhesive metallic coating has been developed for...

1. Dussas and A. Szasz

JOURNAL OF COATED FABRICS Volume 21—July 1991

PRETREATMENT

METALLIZATION

RINSING

Figure 1: Block diagram of the coating process.
FIGURE 2. Schematic diagram of the arrangement of the counting equipment.

The Physics of the Process

The different steps of the counting process were widely investigated, and various theories have been developed. The proposed model of the process was widely investigated, and various theories have been developed.

FIGURE 3. Schematic diagram of the arrangement of the counting equipment.
APPLICATIONS OF THE METALIZED TEXTILES

1. Decorative furnishings (for commercial and residential interiors, etc.)
2. Flame retardant (for electronics, electrical, etc.)
3. Microwavable materials (for cooking and heating purposes)
4. Personal protective equipment (for military, industrial, etc.)
5. Antimicrobial materials (for healthcare, textiles, etc.)
6. Non-woven substrates (for medical, industrial, etc.)
7. Lightweight materials (for aerospace, automotive, etc.)
8. Electronic components (for circuit boards, sensors, etc.)
9. Electrical and magnetic materials (for energy storage, power, etc.)
10. Conductive textiles (for robotics, sensors, etc.)
11. Anti-static materials (for healthcare, electronics, etc.)
12. Thermal insulation (for building, construction, etc.)
13. Biodegradable materials (for agriculture, pharmaceuticals, etc.)

The growth process can be divided into three well-distinguished stages:

- The first stage: The nucleation period which is determined by the initialization
- The second stage: The growth period which is determined by the nucleation
- The third stage: The deposition process is in order governed by the film

The growth of the film is described by the N-p bond formation.

- The nuclei is the smooth-substrate surface. When the nuclei are in process and the N-layers are sectioned by the P-intersection, the nuclei are common to the growth-modified period which is determined by the nucleation.
FIGURE 6. Measured relative resistivity in the GFRP section.
The corners were done in position x = y = f (position x = y = f, position y = x = f).

Figure 7. Example of a position sensor in a grid system with non-homogeneous materials.

Figure 8. Non-homogeneous electronic system for computer-controlled position sensors.

REFERENCES

Notes are needed to specify positions (fig. 8).

Basing on the ideas, the coated nonwoven becomes a suitable sensing material on the coated textile, the sensor will be suitable for any contours, which is useful for different applications.
ABSTRACT

Extrusion coating lines are among the most technologically complex units on production lines. The decision to proceed with the installation of a major project is an INTRODUCTION

KEY WORDS: cost, configuration, extrusion coating

planning phase. The possible effect of planning a new extrusion coating line in an existing manufacturing plant to be considered when planning a new extrusion coating line in an existing manufacturing plant. This paper reviews the process, benefits, and economic aspects of extrusion coating lines, including how to design the coating system to meet production requirements. The paper concludes with a discussion of the economics of installing an extrusion coating line and a comparison of the costs and benefits of different coating systems.