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ABSTRACT
In this work the effect of the inhomogeneous material prop-

erties are investigated in regenerative turning processes by in-
troducing white noise in the cutting coefficient. The model is a
one degree of freedom linear delayed oscillator with stochastic
parameters. A full discretization method is used to calculate the
time evolution of the second moment to determine the moment
stability of the turning process. The resultant stability chart is
compared with the deterministic turning model.

NOMENCLATURE
κ Dimensionless cutting force coefficient
σ Relative deviation of the dimensionless cutting force coeffi-

cient
ζ Damping coefficient
t̃, τ̃ Time and time delay
t, τ Dimensionless time and time delay
ỹt̃ Time function of the displacement of the tool
yt Dimensionless displacement of the tool
Γt̃ Langevin-force
Wt Wiener process on the dimensionless time-scale

INTRODUCTION

In the field of manufacturing science machine tool vibra-
tion is source of many problems since decades [1, 2]. The com-
monly used models involve deterministic delay differential equa-
tions, in which the parameters are usually considered to be con-
stant [3–8]. During the measurements of these parameters, the
average is considered and the variance is attributed to the quality
of the measurement. However, it is easy to see that materials are
not homogeneous, so variance can be an inherent property, which
leads us to the use of stochastic models. A typical measured cut-
ting force signal of an orthogonal planning process (material: AL
2024 T351) is shown in Fig. 1, where the time signal is measured
by Kistler dynamometer (9129AA), with the cutting parameters
chip width w = 1 mm, chip thickness h0 = 0.1 mm, feed rate
vf = 10000 mm/min and rake angle αr = 5◦. All the main- (�
blue), the feed- (� orange) and the passive- (� red) force compo-
nents have a significant variation around their mean value under
the range where the transient seem to be settled (� green area
in Fig. 1). On the histograms of these stationary time signals
marked with � green, one can observe that the signal shows a
Gaussian distribution as shown on Fig. 2, with the help of fitted
normal distributions. In this test case for the main force com-
ponent a large relative variance (σ0 = 0.089) is observed. This
can be related to different physical phenomena, like shear-plane
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FIGURE 1: TIME SIGNAL OF A CUTTING FORCE MEA-
SUREMENT DURING TURNING: THE � MAIN-, THE �
FEED- AND THE � PASSIVE FORCE COMPONENTS ARE
ALL SHOWING STOCHASTIC BEHAVIOUR

oscillation [9] or inhomogeneity in the texture structure. These
are very complex processes, thus a stochastic noise excitation is
used to take the effect of these unmodelled dynamics into ac-
count. Further advantages of this stochastic models are, that it
can predict the noise of the measured signals, which is typically
important near the stability borders, where the signs of chatter-
vibration already appears in the stable parameter domain.

MATHEMATICAL MODEL
The Mechanical Model

To investigate the effect of stochasticity, the a simple one
degree of freedom regenerative model of turning is used [1, 2]:

¨̃yt̃ +2ζ ωn ˙̃yt̃ +ω
2
n ỹt̃ =

Fc(ht̃)

m
, (1)

where ωn =
√

c/m is the natural frequency, ζ = b/(2mωn) is the
damping coefficient, and c, b, m are the resultant stiffness, the
resultant damping and the modal mass, respectively (see Fig. 3).
To analyze the small amplitude vibration around the stationary
position a widely used linear cutting force model is considered
[1–5, 10]:

Fc(ht̃) = k1 (1+σ0Γt̃) wht̃ , (2)

where k1 is the linear cutting force coefficient, w is the chip width
and ht̃ is the chip thickness. This force model can be used with-
out the loss of generality for linear stability calculations, since
the k1 linear cutting force coefficient can be determined by means
of Taylor expansion around the h0 nominal chip thickness even
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FIGURE 2: THE HISTOGRAM OF THE MEASURED FORCE
SIGNALS. THE HISTOGRAMS SHOW A NEAR-GAUSSIAN
DISTRIBUTION COMPARED WITH THE � THEORETICAL
CURVES OF THE NORMAL DISTRIBUTION

for nonlinear force characteristics [11]. To consider the fluctu-
ations in the cutting force, a Γt̃ Gaussian white-noise process,
called Langevin force is introduced in the force model. The Γt
Gaussian white-noise process is independent of the position of
the tool, and has a constant power spectrum [12,13]. To describe
the regenerative effect, the ht̃ chip thickness is calculated using
the actual and a delayed tool position [14]:

ht̃ = h0− ỹt̃ + ỹt̃+τ̃ . (3)

The Stochastic Dimensionless Equation for Turning
To investigate the effect of the stochasticity in the material

properties the dimensionless form of the one degree of freedom
model of the turning process can be used without the loss of gen-
erality.

ÿt +2ζ ẏt + yt = κ (1+σΓt)(1− yt + yt−τ) , (4)
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FIGURE 3: ONE DEGREE OF FREEDOM MECHANICAL
MODEL FOR TURNING

where

t = ωnt̃, yt =
ỹt

h0
, κ =

k1w
mω2

n
, (5)

σ =
σ0√
ωn

,
∫ t+∆t

t
Γsds = ∆Wt . (6)

The
√

ωn in the denominator of σ in equation (5)-(6) comes from
the transformation of the time scale of the Γt̃ white noise process.
When changing time scales the intensity of the white noise has
to be adjusted:

Γt̃ =
1
√

ωn
Γt . (7)

To model the Gaussian white noise the Wiener process is used.
Its increment has the expected value E(dWt) = 0, the vari-
ance E

(
dW 2

t
)
= dt, and the increments are independent, thus

E(dWtdWs) = 0 for s 6= t. The process itself has the time depen-
dent normal distribution of Wt ∼N

(
0,σ2 = t

)
.

If the expected value is taken of both sides of the equa-
tion (4), an xt perturbation process can be introduced around the
E(yst) = κ equilibrium point of the equation, where E(xt) = 0,
as shown in (8).

yt = E(yst)+ xt . (8)

Substituting back (8) into (4) the evolution equation for the
xt perturbation process is gained:

ẍt +2ζ ẋt + xt = κ (1+σΓt)(xt−τ − xt)+κσΓt . (9)

Note, on the right hand side of (9) both multiplicative and addi-
tive noise are present.

Equation (9) can be rewritten into a first order increment
form:

dxt = (αααxt +βββxt−τ)dt +
(
σσσααα xt +σσσβββ xt−τ +σσσ

)
dWt , (10)

where

xt =

(
xt
ẋt

)
, ααα =

(
0 1

−(1+κ) −2ζ

)
, βββ =

(
0 0
κ 0

)
, (11)

σσσααα =

(
0 0
−κσ 0

)
, σσσβββ =

(
0 0

κσ 0

)
, σσσ =

(
0

κσ

)
. (12)

If the equation system is in the form shown in (10) a full-
discretization method [15] can be used to rewrite it to a discreet
mapping:

Xn+1 = AXn +BXn + c. (13)

where the 2(N + 1)-element state vector Xn contains the dis-
cretized solution of xt over the interval [tn− τ, tn] with tn = nτ/N.
The A matrix contains the discretized infinitesimal operator for
the drift (deterministic) part of the system, while B contains
the multiplicative and c the additive component of the diffusion
(stochastic) part.

Moment Stability
The discrete mapping for the first two moments can be writ-

ten using (13):

E(Xn+1) = AE(Xn) , (14)

E
(

Xn+1X>n+1

)
= E

(
(A+B)XnX>n (A+B)>

)
+ . . . , (15)

where the neglected components are independent of the sec-
ond moment.

In the equation (15) the two side multiplications can be
rewritten to a single matrix multiplication, if the elements of the
E
(
XnX>n

)
autocorrelation matrix are arranged into a vector ac-

cording to the following form, satisfying the properties of the
expected value of A and B.

E
(
(A+B)(”M”)(A+B)>

)
→
(

Ã+E
(

B̃
))

(”v”) . (16)

In equation (16) ”M” denotes a symmetric matrix and ”v”
denotes the vector of the independent elements of the ”M” ma-
trix. The λ spectral radius of the (Ã+E(B̃)) infinitesimal gener-
ator matrix determines the stability of the second moment while
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assuring the stability of the first moment: if λ < 1, then the sec-
ond moment is stable, if λ > 1 then it is unstable [15].

In case of the existence of the stable, stationary solution, the
stationary second moment can be calculated by the formula [15]:

v∗ =
(

I−
(

Ã+E
(

B̃
)))

c̃ (17)

For the detailed derivation of Xn, A, B, c and the infinitesi-
mal generator matrices for the second moment see [15].

TEST CASE
To analyze the effect of the stochastic material properties for

the stability of the turning process, a stability chart was calcu-
lated by the methods described above for a selected parameters:
σ = 0.1 and ζ = 0.1. The obtained stable area denoted with
color � dark blue in Fig. 4. To see effect of the noise, the sta-
bility boundary for the deterministic case is plotted with dashed
line, according to the analytical solution defined by the following
parametric curves [16]:

κ (ω) =
2ζ 2ω2

ω2−1
+

ω2−1
2

, (18)

τ (ω,m) =
2
ω

(
tan−1

(
1−ω2

2ζ ω

)
+mπ

)
, (19)

where ω is the vibration (chatter) frequency along the stability
boundary and m is the lobe number.

Altough the change in the linear stability boundary is in-
significant, the method predicts large amplitude vibrations near
the stability boundary, presented by the stationary second mo-
ment above the stability chart for κ = 0.3. These theoretical pre-
dictions are valid only for small amplitude vibration, due to the
nonlinear cutting force characteristics [17], and the fly-over ef-
fect [11]. The solutions with large second moment can jump into
a large amplitude chaotic attractor, which is the chatter-vibration,
and because of this phenomena the theoretical stability boundary
cannot be reached in practice [18]. It means that the measured
stability boundaries would shift towards smaller chip width val-
ues due this stochastic effect. To present this effect amplitude
limits are showed at σx,st = 1 and 2σx,st = 1 on Fig. 4, where the
amplitude of the tool position is smaller than h0 with 68.3% and
95.45% probability respectively (σx,st denotes the first element of
the stationary second moment vector v∗ in equation (17)). This
comes from the fact that the stationary distribution of the solu-
tion of equation (9) is also Gaussian distritubion. It is important
to note, that even the presence of a small additive noise through
the cutting force makes this type of resonance phenomena sig-
nificant [19]. Due to this effect the measurements between the
lobes can show a large amplitude vibration, despite of the system
being asymptotically stable.

FIGURE 4: SECOND MOMENT (SM) RATIO OF THE STA-
TIONARY SOLUTION ALONG κ = 0.3, σ = 0.1 AND STA-
BILITY MAP OF THE SECOND MOMENT FOR THE SAME
NOISE INTENSITY.

CONCLUSION
In the present study first we show that the cutting force

should be modeled as a stochastic process, driven by a Gaus-
sian white noise. Furthermore a possible explanation is given
for the measurement difficulties [20, 21] of the theoretically pre-
dicted stability boundaries with the use of a stochastic model,
but this needs to be validated through a series of orthogonal turn-
ing tests. The applied full discretization method gives a good
approximation for high discretization resolution, due to the very
slow convergence of the spectral radius of the second moment
generator matrices. An additional problem is that the computa-
tional complexity is proportional to the 4-th order of the number
of discretized points, which leads to high computational time.
Thus an important future task is to further improve the conver-
gence of the applied method.

REFERENCES
[1] Tlusty, J., and Spacek, L., 1954. Self-excited vibrations on

machine tools.

4 Copyright © 2017 by ASME



[2] Tobias, S., 1965. Machine-tool Vibration.
[3] Insperger, T., Mann, B. P., Surmann, T., and Stépán, G.,

2008. “On the chatter frequencies of milling processes with
runout”. International Journal of Machine Tools and Man-
ufacture, 48(10), aug, pp. 1081–1089.

[4] Insperger, T., Stépán, G., Bayly, P., and Mann, B., 2003.
“Multiple chatter frequencies in milling processes”. Jour-
nal of Sound and Vibration, 262(2), apr, pp. 333–345.

[5] Insperger, T., 2002. “Stability analysis of periodic delay-
differential equations modeling machine tool chatter”. PhD
thesis.
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