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Summary. The bifurcation structure of periodic solutions of a harisaty driven asymmetric nonlinear oscillator (Rayleigtesset
equation, describing bubble dynamics) is examined. Théraoparameters were the amplitude and frequency of thendyiwith
frequency values higher than the subharmonic resonargedney of the system. In the investigated parameter retiierendoskeleton
of the bifurcation structure, composed by solutions with fgeriodicities, can be described by an asymmetric Fardgrorg tree. To
each periodic domain, a sub-structure can be associatatedrby period-n tupling processes, whose topology arergedeby a
two-sided symmetric Farey tree. Higher order sub-strastapparently exhibit self-similar features.

Topology of the bifurcation structure

The extensive study of harmonically driven nonlinear datwrs has revealed several topological universalitighénast

few decades with respect to a single control parameter.ristaice, the standard Feigenbaum period doubling cascades
or the alteration of periodic and chaotic windows via criigs The topological description in two or more dimensional
parameter space, however, is less elaborated. The pragestigation intends to extend our knowledge on bi-paremet
bifurcation structure in the amplitude-frequency paranptane of the driving via thorough numerical analysis.

The mathematical model describing the radial oscillatiba single spherical gas bubble in water (Rayleigh—Plesset
equation [2]) can be written as

RR—l—gR?:piL(pg—f—pv—%—4uL%—POO—pAsin(wt)>, 1)
whereR(t) is the time dependent bubble radipg, = 997.1kg/m? is the liquid densityp¢ is the gas pressure inside
the bubble following a simple polytropic state of changge,= 3166.8 Pa is the vapour pressure,= 0.072 N/m is the
surface tensiorny;, = 8.902~% Pas is the viscosityP,, = 5458 Pa is the ambient pressurg, is the amplitude and is
the frequency of the driving.

Figure 1 shows the bifurcation structure of the periodizgohs as a function of the pressure amplitydeat fre-
guency approximately 3 times the linear eigenfrequencye bbld fractions denote the winding numbers [3] of the
saddle-node bifurcations of the corresponding periodicdais. The main periodic structure is governed by a winding
number sequenck/2, 1/3, ..., 1/9 with an increment of)/1 constituting an asymmetric Farey tree. The sub-structures
associated to each main periodic windows, however, fornubldcsided Farey tree. For instance, in case of the periodic
domain of orderl /3 (see the left hand side of Fig. 1}/7, 3/10, ... 1/3 ..., 5/18, 4/15, 3/12, 2/9. The increment
is exactlyl/3 from both sides. According to more detailed simulations, tlgher order sub-structures show the same
double-sided topological behaviour.
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Figure 1: First component of the Poincaré section of the dsimmless bubble radius as a function of the pressure ardglit
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