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GPU accelerated investigation of a dual-frequency driven nonlinear oscillator
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SummaryThe bifurcation structure of a dual-frequency driven, secorder nonlinear oscillator (Keller—Miksis equation)rigesti-
gated by exploiting the high computational resources ofgagional GPUs. The numerical scheme of the applied inisilsie problem
solver was the explicit, adaptive Runge—Kutta—Cash—Kagthod with embedded error estimation using solutions oéiotdand 5.
The four dimensional parameter space (amplitudes and draigs of the driving) is explored by means of several higioltgion
bi-parametric plots with the amplitudes as control paranseat fixed frequencies. The resolution of the control patanplane is
500 x 500 with 10 initial conditions at each parameter pair (altogethérmillion initial value problems in each bi-parametric plot)
The program code for one fine parameter scan runs approxjnitéimes faster on a Tesla K20 GPU (Kepler architecture) thaaron
Intel i7-4790 4 core CPU even applying double precision it@ppoint operations.

High resolution bifurcation structure

The bifurcation structure of nonlinear harmonic osciltatbas been intensively studied during the last decades. As a
function of a single control parameter, the dynamics of ssydtems is relatively well understood and the accumulated
knowledge is summarized in many textbooks [1]. The reallehgk today is to extend the numerical investigation to
multi-dimensional parameter space. This requires ordensagnitude larger computational resources to determiae th
fine bifurcation substructure of nonlinear oscillators fidently. Therefore, many numerical studies on high resmhut
multi-dimensional parameter scans investigate iteratadsj2] or continuous systems where e.g. a simpleorder
Runge—Kutta scheme with fixed time step is sufficient [3]. uin case, however, an adaptive initial value problem solver
is mandatory due to the possible very different time scatdéhesolutions of our model. This makes the computations
more resource intensive. In order to obtain results witeaspnable time, the very high floating point processing powe
of professional GPUs were exploited.

The employed nonlinear oscillator was the Keller—Miksisa&tipn
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which is a second order ordinary differential equation déstg the radial oscillation of a single spherical bublita,
details see [4]. Herdi(t) is the time dependent bubble radius. The parameter valudsgdilne computations (gas
bubble in water) were as follows: liquid densijty, = 997.1kg/m?, sound speed; = 1497.3m/s and viscosity
pur = 8.902*Pas; vapour pressurgy = 3166.8 Pa; surface tensiom = 0.072 N/m; ambient (static) pressure
P, = 1bar; bubble sizeRg = 10 um; polytropic exponent: = 1.4 (adiabatic behaviour). The dual-frequency
driving of the system

Doo(t) = pai sin(wit) + pas sin(wat) 3)
is a time varying pressure field, whesg, andp 4, are the pressure amplitudes (also control parametersggndw, are
the corresponding angular frequencies. During the sinmugt the frequencies were normalized by the linear unddmpe
resonance frequenay, = 340 kHz of the system [4]&,.; = w/wo).
The model was solved by an adaptive and explicit Runge—KGaah—Karp initial value problem solver with error esti-
mation of orderst and5. To obtain reliable data for a thorough topological analyai the bifurcation structure of the
system, several high resolution bi-parametric plots weneikated in thep 41-p a2 bi-parametric plane with0 randomly
chosen initial conditions at each parameter pair to reve&histing attractors. The resolution of the pressure dot#s
wasAp = 0.01 bar in both directions §00 x 500 grid points). After the initial transient, the propertielseofound at-
tractor were recorded (Poincaré points, Lyapunov expoménting number etc.). Due to the explicit numerical scheme
(only function evaluations are needed), the parameterestud our problem (solution df.5 million independent initial
value problems for each bi-parametric plot) are well suitedGPUs. The applied relative frequencies were selectad fr
wrer = 1/10,1/5,1/3,1/2,1,2,3,5,10. Simulations were performed at every possible combinatafrthe frequency
values, which means altogett#t high resolution bi-parametric plots. Results at some pirglative frequencies are
shown in Fig. 1, where the Lyapunov exponent is plotted asnatfon of the control parametegsy;; andpas. The
periodic (negative) and chaotic (positive Lyapunov expapsolutions are indicated by the greyscale and coloured do
mains, respectively. Although the presented diagramsaduabile for further investigation, it must be emphasized the
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present study focuses only on performing the numerical lsitiauns rather that the topological description of the {gldt
bifurcation structure itself.

The available GPUs were a GeForce Titan Black (Kepler axchite), 2 Tesla K20 (Kepler architecture) and 5 Tesla
M2050 (Fermi architecture). The simulation times were agpnately50 times faster on a Kepler architecture azid
times faster on a Fermi architecture than on an Intel i7-478@&re CPU, using double precision floating point operations
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Figure 1: High resolution Lyapunov exponent diagrams inpthep 4o parameter plane describing the topology of simple
periodic (greyscale) and chaotic (colour) domains at diffierelative frequency combinations.
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