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GPU accelerated investigation of a dual-frequency driven nonlinear oscillator
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Summary. The bifurcation structure of a dual-frequency driven, second order nonlinear oscillator (Keller–Miksis equation) isinvesti-
gated by exploiting the high computational resources of professional GPUs. The numerical scheme of the applied initialvalue problem
solver was the explicit, adaptive Runge–Kutta–Cash–Karp method with embedded error estimation using solutions of order 4 and5.
The four dimensional parameter space (amplitudes and frequencies of the driving) is explored by means of several high resolution
bi-parametric plots with the amplitudes as control parameters at fixed frequencies. The resolution of the control parameter plane is
500 × 500 with 10 initial conditions at each parameter pair (altogether2.5 million initial value problems in each bi-parametric plot).
The program code for one fine parameter scan runs approximately 50 times faster on a Tesla K20 GPU (Kepler architecture) than onan
Intel i7-4790 4 core CPU even applying double precision floating point operations.

High resolution bifurcation structure

The bifurcation structure of nonlinear harmonic oscillators has been intensively studied during the last decades. As a
function of a single control parameter, the dynamics of suchsystems is relatively well understood and the accumulated
knowledge is summarized in many textbooks [1]. The real challenge today is to extend the numerical investigation to
multi-dimensional parameter space. This requires orders of magnitude larger computational resources to determine the
fine bifurcation substructure of nonlinear oscillators confidently. Therefore, many numerical studies on high resolution
multi-dimensional parameter scans investigate iterated maps [2] or continuous systems where e.g. a simple4th order
Runge–Kutta scheme with fixed time step is sufficient [3]. In our case, however, an adaptive initial value problem solver
is mandatory due to the possible very different time scales of the solutions of our model. This makes the computations
more resource intensive. In order to obtain results within reasonable time, the very high floating point processing power
of professional GPUs were exploited.
The employed nonlinear oscillator was the Keller–Miksis equation
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Ṙ

cL
+

R

cL

d

dt

)

(pL − P∞ − p∞(t))

ρL
, (1)

pL = pG + pV −

2σ

R
− 4µL

Ṙ
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which is a second order ordinary differential equation describing the radial oscillation of a single spherical bubble,for
details see [4]. HereR(t) is the time dependent bubble radius. The parameter values during the computations (gas
bubble in water) were as follows: liquid densityρL = 997.1 kg/m3, sound speedcL = 1497.3m/s and viscosity
µL = 8.902−4Pa s; vapour pressurepV = 3166.8Pa; surface tensionσ = 0.072N/m; ambient (static) pressure
P∞ = 1bar; bubble sizeRE = 10µm; polytropic exponentn = 1.4 (adiabatic behaviour). The dual-frequency
driving of the system

p∞(t) = pA1 sin(ω1t) + pA2 sin(ω2t) (3)

is a time varying pressure field, wherepA1 andpA2 are the pressure amplitudes (also control parameters);ω1 andω2 are
the corresponding angular frequencies. During the simulations, the frequencies were normalized by the linear undamped
resonance frequencyω0 = 340 kHz of the system [4] (ωrel = ω/ω0).
The model was solved by an adaptive and explicit Runge–Kutta–Cash–Karp initial value problem solver with error esti-
mation of orders4 and5. To obtain reliable data for a thorough topological analysis of the bifurcation structure of the
system, several high resolution bi-parametric plots were simulated in thepA1-pA2 bi-parametric plane with10 randomly
chosen initial conditions at each parameter pair to reveal co-existing attractors. The resolution of the pressure amplitudes
was∆p = 0.01 bar in both directions (500 × 500 grid points). After the initial transient, the properties of a found at-
tractor were recorded (Poincaré points, Lyapunov exponent, winding number etc.). Due to the explicit numerical scheme
(only function evaluations are needed), the parameter studies of our problem (solution of2.5 million independent initial
value problems for each bi-parametric plot) are well suitedfor GPUs. The applied relative frequencies were selected from
ωrel = 1/10, 1/5, 1/3, 1/2, 1, 2, 3, 5, 10. Simulations were performed at every possible combinations of the frequency
values, which means altogether36 high resolution bi-parametric plots. Results at some pairsof relative frequencies are
shown in Fig. 1, where the Lyapunov exponent is plotted as a function of the control parameterspA1 andpA2. The
periodic (negative) and chaotic (positive Lyapunov exponent) solutions are indicated by the greyscale and coloured do-
mains, respectively. Although the presented diagrams are valuable for further investigation, it must be emphasized that the
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present study focuses only on performing the numerical simulations rather that the topological description of the plotted
bifurcation structure itself.
The available GPUs were a GeForce Titan Black (Kepler architecture), 2 Tesla K20 (Kepler architecture) and 5 Tesla
M2050 (Fermi architecture). The simulation times were approximately50 times faster on a Kepler architecture and25
times faster on a Fermi architecture than on an Intel i7-47904 core CPU, using double precision floating point operations.

Figure 1: High resolution Lyapunov exponent diagrams in thepA1-pA2 parameter plane describing the topology of simple
periodic (greyscale) and chaotic (colour) domains at different relative frequency combinations.

Acknowledgement

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) grant no. ME 1645/7-1, and by the János
Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

[1] Strogatz, S. H. (2014) Nonlinear Dynamics and Chaos withApplications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder,
Colorado.

[2] de Souza, S. L. T. and Lima, A. A. and Caldas, I. L. and Medrano-T, R. O. and Guimara̋es-Filho, Z. O. (2012) Self-similarities of periodic structures
for a discrete model of a two-gene system.Phys. Lett. A376:1290-1294.

[3] Gallas, J. A. C. (2015) Periodic oscillations of the forced Brusselator.Mod. Phys. Lett. B29:1530018.

[4] Lauterborn, W. and Kurz, T. (2010) Physics of bubble oscillations.Rep. Prog. Phys.73:106501.


