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The cost optimal scheduling of a household refrigerator is presented in this work. The fundamental approach is 
the model predictive control methodology applied to the piecewise affine model of the refrigerator. 
The optimisation could not be solved using off-the-shelf tools, e.g. Multi-Parametric Toolbox, so a binary tree-
based optimal scheduling algorithm has been developed for this problem. 
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1. Introduction 

Environmental awareness is trendy in modern societies. 
Policy-makers tend to prefer green energy, e.g. solar, 
wind, etc. in order to decrease carbon footprints. The 
demand-and-supply-based nature of the electricity 
market has led to hourly electricity prices in day-ahead 
markets [1]. Most people seek the cheapest solution by 
using their appliances during low price periods, 
however, there are certain devices, e.g. refrigerators 
work all day long. In this case, the only opportunity lies 
in the optimal scheduling of the cooling periods. The 
prescribed inside temperature of the refrigerator makes 
the problem difficult to solve. 

                                                             
*Correspondence: balint.roland@virt.uni-pannon.hu  

2. Problem Statement 

In a day-ahead market, the service provider provides the 
hourly electricity price for the next day. The problem to 
be solved is the optimal scheduling of a given 
refrigerator based on the forthcoming electricity prices. 
As a constraint, the refrigerator temperature must be 
kept within given boundary values. 

2.1. Energy Price 

The service provider provides the electricity price for 
the next 24 hours (DAM: day-ahead market). Fig.1 
shows the electricity price [2] over a week, each line 
corresponds to the price of a day.  

 

 
Figure 1. Electricity price of a day-ahead market over a week [2]. 

Day: 
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Friday 
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2.2. Refrigerator Model  

In order to describe the dynamics of the thermal 
behaviour of the refrigerator, the electric substitution 
model of Fig.2 can be used, where the red voltages 
correspond to the inner air temperature (Uair) and the 
cooled back wall (Uwall). The blue elements are the 
inputs to the system: the outer air temperature (Uout) and 
the on/off switch (S). The capacitors demonstrate the 
heat capacity of the back wall (Cwall) and the inner air 
(Cair) while the resistors are the heat transfer coefficients 
between the components.  

2.2.1. Cooling Dynamics 

The first case is when the switch S is closed, i.e. the 
refrigerator is cooling. The dynamics of the system can 
be described by the state-space model of the form 
outlined in Eqs.(1) and (2), where the state and input 
vectors are given in Eqs.(3) and (4). 

 𝑥 = A x + B u (1) 

 y = C x + D u (2) 

 𝒙 =  𝑇!"#
𝑇!"##

 (3) 

 𝒖 =  𝑇!"#𝑆  (4) 

The parameters of the state-space model of the 
cooling dynamics are given as follows: 
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!!∙!!∙!!"#

!
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0
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 𝐂 =  1 0
0 1  (7) 

 𝐃 =  0 0
0 0  (8) 

2.2.2. Reheating Dynamics 

The second case is when the switch S is open, i.e. the 
refrigerator is reheating to environmental temperature. 
The system is still linear and time invariant as outlined 
in Eqs.(3) and (4). The parameters of the state-space 
model are given in Eqs.(9)-(12). 

 𝐀!"" =  
− !!!!!
!!∙!!∙!!"#

!
!!∙!!"#

!
!!∙!!"##

− !
!!∙!!"##

 (9) 

 𝐁!"" =  
!

!!∙!!"#
0

0 0
 (10) 

 𝐂 =  1 0
0 1  (11) 

 𝐃 =  0 0
0 0  (12) 

2.3. Control Aim 

The aim of this study is to schedule refrigerator's 
operation to minimise the operational costs with the 
following assumptions: 

• the operational cost is the energy consumption 
of the refrigerator during the day; 

• the price of electricity changes hourly; 
• the energy price is known for 24 hours in 

advance; 
• the temperatures must be between the 

following operating constraints: 
o the inner air temperature should be 

between 0.1 ºC and 5.5 ºC; 
o the cooled back wall temperature 

should be between -19 ºC and 7 ºC; 
• the outer air temperature is constant; 
• the input variable is binary (On/Off); 
• the models should be chosen based on the 

value of the input. 
The main objective is to minimize the operational 

costs, defined as 

 𝑐𝑜𝑠𝑡 =  𝑝! ∙ 𝑈!!!!
!!!  (13) 

where pk is the price of electricity and Uk is the input at 
time Ts ⋅ k (Ts: sample time). 

3. Optimal scheduling 

To find the optimal scheduling of a system the model 
predictive control approach is used. Afterwards a novel 
heuristic optimisation technique is presented. 

3.1. Model Predictive Control of the System 

For optimization, the Multi-Parametric Toolbox 3.0 
(MPT) [3] is used first, because in this Matlab Toolbox 
we can find all the necessary options can be found:  

• ‘Piecewise Affine’ (PWA) modelling for linear 
time invariant (LTI) systems; 

• optimal controller design for PWA systems. 

 
Figure 2. Electric substitution model of a refrigerator. 
S symbolizes the switch of the devices controlled by a 
thermostat in an ordinary refrigerator. 
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The solver uses a cost function as follows:  

 𝑚𝑖𝑛 | 𝑸!𝒙! |! + | 𝑸!𝒖! |!!!!
!!! , (14) 

where variables xk and uk are the state and input vectors 
at the kth step of the prediction horizon N. The || · ||p 
expression is the standard p vector norm, and Qx and Qu 
are penalty matrices. 

The MPT toolbox for the PWA system description 
uses discrete time models, thus initially the continuous 
time model must be discretised. However, there are two 
problems to solve:  

• the penalty matrices (Qx and Qu) cannot be 
changed, so the actual electricity price cannot 
be used in this form; 

• the time information of the system, e.g. system 
time, is unknown. 

To handle these problems, two supplementary state 
variables have been introduced. The first counts the 
time and the second stores the actual energy price. If the 
refrigerator is switched off the energy price is zero, 
otherwise it provides the actual price value. One pair of 
(On/Off) systems for every price of each hour needs to 
be created, during the calculation the model parameters 
and the price are constants. Thus, the choice is based on 
the state of the binary input and the time value of the 
state vector. The modified LTI state-space models are 
the following: 

 𝒙 =  

𝑇!"#
𝑇!"##
𝑡
𝑝

 (15) 

 u = [ S ] (16) 

 Φon= 

0.9998 0.0001 0 0
0.0004 0.9977 0 0
0 0 1 0
0 0 0 0

 (17) 

 𝚪on= 

-0.0024
-0.045
0
𝑝!

 (18) 

 Φoff= 

0.9998 0.0001 0 0
0.0010 0.9988 0 0
0 0 1 0
0 0 0 0

 (19) 

 𝚪off= 

0
0
0
𝑝!

 (20) 

 𝒇 = 

0.0022
0.028
1
0

 (21) 

 𝐂 =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (22) 

 𝐃 =  

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (23) 

The hourly changing energy prices are denoted by 
ph in matrices Γ, so there are 24 models with two system 
dynamics (On and Off) in total. The model actually used 
is chosen based on the input (On and Off states) and the 
third element of the state vector (t: define the model 
over time so the energy price value). Based on the two 
variables the necessary model is chosen:  

• if the refrigerator operates, its value is the 
actual energy price; 

• if the refrigerator is switched off, it is zero. 
By the summation of the values of x4 the 

operational cost is obtained (in €/kWhr) for the 
operating period. The piecewise affine model of the 
system is given by Eq.(24). 

 𝒙!!! =
𝚽!"𝒙! + 𝚪!"𝒖! + 𝒇 , if 𝑺 = 1 
𝚽!""𝒙! + 𝚪!""𝒖! + 𝒇 , if 𝑺 = 0  (24) 

The simulation is very sensitive to some design 
parameters. These parameters are the sampling time 
(TS), the prediction horizon size, and the cycle number 
of the simulation horizon. The correlation between 
horizon size and simulation time is outlined in Table 1 
(TS = 5 min). If the horizon is bigger than 12 – 15, the 
simulation will end in deadlock. The sample time value 
cannot be too large because the change in one step 
would be too high and the algorithm would not be able 
to function properly. The multiplication of the sample 
time and the horizon yields to predicted time horizon. If 
the sample time and the horizon are small, the algorithm 
runs quickly, but with a small pre-determined time 
interval and cannot calculate the forthcoming electricity 
prices. As Nsim increases, the running accelerates. In the 
PWA system, only the systems of the simulated time 
interval are present. If Nsim is small, the number of 
models is small so the algorithm must choose from 
fewer systems but in that case, the cycle has to run 
repeatedly as the new PWA system is defined.  

3.2. Heuristic Search Algorithm using Binary 
Tree Growing 

The general optimizer in the MPT is very slow due to 
several problem-specific assumptions, e.g. binary input, 
and the horizon size is bounded so another optimisation 
algorithm is needed that runs faster and uses problem-
specific heuristics.  

Table 1. The simulation time in minutes versus 
horizon size. 

Size of horizon, - 8 10 12 13 
Calculation time, min 2 8 59 111 
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3.2.1. Base of Algorithm  

In order to find the optimal solution, all input 
combinations need to be counted over time. Trivially, 
this number can be reduced by deleting those 
combinations where the system exceeds the operating 
constraints. In this case, in all steps, the states are 
duplicated and 1 or 0 (On or Off) is added to input 
vectors so the number of combinations grow 
exponentially and the simulation time of one cycle 
grows, too (Fig.3). Without additional heuristics, the 
running time of the 18th loop was as high as the MPT 
simulation with a horizon size of 13.  

Model-related heuristics can be applied to decrease 
the number of combinations. This rule is simple: 
between any two input combinations, if the 
corresponding air and wall temperatures are higher and 
also the operational cost is greater than or equal to one 
of the examined combinations then this input 
combination is not optimal, i.e. it can be ignored. The 
pseudo code of the algorithm is summarized by 
Algorithm 1. With these heuristics, the number of 
combinations and the running time of the simulation can 
be reduced. Fig.4 shows the running time of the nth 
cycle with and without this filtering. This figure shows 
that without the filter, the simulation time of the 20th 

cycle is more than 30 minutes but with the filter it is a 
maximum of 1.5 minutes.  
 
Algorithm 1 Heuristic algorithm  

procedure OPTIMUM SEARCHING 
define:  

X0 ← initial state 
�bounds ← bounds of temperatures 
ph ← electricity prices of a day � 
h = 1 (actual hour of day) � 
Ts ← sample time [hour] � 
SimTime ← simulation time 
cost = 0 
�sys1 ← reheating DT-LTI system 
sys2 ← cooling DT-LTI system 
U0,0 =[] 

create: � 
PWA ← PWA system from sys1 and sys2  

loop: 
�for i = 0 : 1 : SimTime/Ts do 

Ui,all = [Ui−1,all; Ui−1,all] (duplicate U) 
n = size(U) (number of combinations) � 
k ∈ {1, 2, ..., n} 
�if 1 < k <= n/2 then 

Ui,k = [Ui,k, 1];  
else 

Ui,k =[Ui,k, 0];  
Xi+1,k = PWA(Xi,k,Ui,k) 
cost ← update cost 
�k ∈ {1, 2, ..., n} 
�if Xi+1,k ∈/ bounds then 

delete Xall,k, Xall,k and costk 
n = size(U) 
k,l∈{1, 2, ..., n} � 
if Xi+1,k > Xi+1,l and costk > costl then 

delete Xall,k, Xall,k, costk 
else 

if Xi+1,l > Xi+1,k and costl > costk then  
delete Xall,l, Xall,l, costl 

n = size(U) � 
k ∈ {1, 2, ..., n} � 
opt = min(costk) 

�      optimal solution = Uall,opt 

3.2.2. Algorithm with Horizon 

The algorithm of the MPT uses a horizon to reduce the 
calculation time for fast online implementation. In the 
investigated problem, the maximum usable horizon 
available in MPT is too small. The previous algorithm 
calculates the optimal solution during a whole day, so 
the horizon is 24 hour, e.g. if the sample time is 5 
minutes then the size of the horizon is 288. This large 
horizon size causes slow simulations. To decrease this 
simulation time, a horizon as in the MPT algorithm is 
defined. This step causes a very large reduction in 
running time. This time is proportional to the horizon 
size, but if the horizon is too small the solution would 
not be optimal. The running times and calculated costs are 
collected in Table 2.  

 
Figure 3. Running time and number of combinations 
vs number of cycles. 

 
Figure 4. Without the heuristic algorithm, the 
simulation time of the 20th cycle is more than 30 
minutes, but with the heuristic algorithm, it has a 
maximum of 1.5 minutes. 
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The running times in Table 2 show that by 
increasing the horizon size the simulation time 
increases, too. The operating cost increases, but it is 
uncertain whether a bigger horizon is better. Based on 
this, the suggested heuristic search-based optimization 
algorithm can be used as a basis for a special model 
predictive scheduling/control algorithm. 

4. Results and Discussion 

The model predictive control algorithm in the MPT did 
not work correctly due to the serious limitations 
connected to the control task. By increasing the horizon 
size, the simulation becomes slow with maximum 
horizon size of 13.  

The proposed optimization algorithm has been 
developed to find the optimal scheduling. Table 2 shows 
the difference between simulation times and operating 
costs if the horizon size is changed. Fig.5 shows the 
calculated optimal scheduling for Wednesday. Fig.6 
shows the energy prices and the number of input 

combinations of the ith cycle without and without a 
horizon size of 4 hours. There is a correlation between 
the monotonous energy price and the number of input 
combinations. If the price is increased the number opf 
combinations increases, too. 

Simulations of energy prices for a whole week 
with and without horizon size of 4 hours (TS = 5 
minutes) have also been performed. The results are 
shown in Table 3. The simulation times were reduced 
by 70-90% while the costs grew only by 1-2%. 

Table 2. The size of horizon, the simulation time in 
minutes and the cost of best solution. 

Size of 
horizon 

Running 
time 

Cost Deviation 
from optimal 

none (∞) 75.0 0.20235  0% 
24 5.7 0.20427  +0.95% 
36 12.6 0.20433  +0.98% 
48 16.9 0.20394  +0.79% 
60 25.9 0.20413  +0.88% 
72 31.0 0.20456  +1.09% 

 

 
Figure 5. The optimal scheduling for Wednesday’s energy prices. 

 
Figure 6. Wednesday energy prices and the number of input combinations of the ith cycle with and without a horizon size of 
4 hours. 
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5. Conclusion 

A heuristic search algorithm has been implemented for 
the optimal scheduling of a refrigerator model. This 
work was initiated by the fact that the optimization 
algorithm of the MPT did not work correctly with large 
horizon sizes for the applied piecewise affine system. 
The proposed algorithm calculates the optimal input 
sequence for a whole day with any horizon size but it 
also works with an infinitely large horizon. The 
calculation time is fast compared to that of the Matlab 
MPT solver.  

Our own heuristic algorithm is faster without a 
horizon than the MPT solver with horizon size of 13 
hours. I can be run with a larger horizon size, and can 
yield the absolute optimum without a prediction 
horizon. The operating cost of the solution is 12 percent 
less with the aid of a heuristic search. This cost is 25 
percent cheaper than the cost of traditional refrigerator 
control.  

The suggested heuristic search-based optimization 
algorithm can be used as a basis of a special model 
predictive scheduling/control algorithm. The present 
work is based on an ideal refrigerator model. As a future 
step, the validation of the model and the scheduling 
algorithm in an MPC framework will be investigated. 
Testing the control scheme in a real situation with 
random disturbances, e.g. opening the refrigerator’s 
door, etc. will also be performed. 

SYMBOLS  

A state matrix 
B input matrix 
C output matrix 
Cair heat capacity of the inside of the refrigerator 
Cwall heat capacity of the back-wall 
DAM Day-Ahead Market 
DT-LTI Discrete Time Linear Time Invariant 
f constant input or disturbance 
Φ off off state discrete time state matrix 
Φ on on state discrete time state matrix 
Γ off off state discrete time input matrix 
Γ on on state discrete time input matrix 
LTI Linear Time Invariant 
MPC Model Predictive Control 
MPT Multi-Parametric Toolbox 

PWA Piecewise Affine 
Qu penalty matrix of u vector in MPT 
Qx penalty matrix of x vector in MPT 
Rcool heat resistance of the back-wall 
Re heat resistance between back-wall and inner 

air 
Ri insulation of refrigerator 
S binary state switch 
Tair inner air temperature of refrigerator 
Tout outer room temperature 
Twall cooled back-wall temperature of refrigerator 
u input vector 
uk input vector value in kth sample moment in 

DT 
Uair voltage corresponding to inner air 

temperature 
Ucool voltage corresponding to minimum reachable 

back-wall temperature 
Uout voltage corresponding to outer air 

temperature 
Uwall voltage corresponding to cooled back-wall 

temperature 
x state vector 
xk state vector value in kth sample moment in 

DT 
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Table 3. Differences in optimal operating cost and simulation time with and without a horizon. 

 without horizon 4 hour horizon difference in percent 
Day of the week cost, 1/kW time, min cost, 1/kW time, min cost, 1/kW time, min 

Monday 0.20235  75  0.20394  16.9  +0.79  -77.47  
Tuesday 0.20200  1013.2  0.20650  78.9  +2.23  -92.21  
Wednesday 0.27748  234  0.28111  48.8  +1.31  -79.18  
Thursday 0.22255  116.1  0.22739  38.3  +2.17  -67.04  
Friday 0.23127  267.7  0.23618  32.3  +2.12  -87.93  
Saturday 0.25819  222.3  0.26281  45.1  +1.79  -79.70  
Sunday 0.27286  100.4  0.27488  18.7  +0.74  -81.34  

 


