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Abstract 

Reduced graphene oxide (RGO) containing composite hydrogels, based on poly(N-

isopropylacrylamide) (PNIPA) were prepared by two different methods: i) by incorporating 

RGO directly into the polymer matrix; ii) applying a post-synthesis reduction of the graphene-

oxide (GO) already incorporated into the polymer. The samples were compared by various 

microscopic (small angle neutron scattering, differential scanning calorimetry, 
1
H NMR 

spectroscopy, thermogravimetry) and macroscopic (kinetic and equilibrium swelling 

properties and mechanical testing) techniques. Results from microscopic and macroscopic 

measurements show that the dispersity of the nanoparticles as well as their interaction with 

the polymer chains are influenced by their surface chemistry. Incorporation of nanoparticles 

limits the shrinkage and slows down the kinetics of the thermal response. Both 

thermogravimetric and solid-state 
1
H NMR measurements confirmed strong polymer – 

nanoparticle interaction when hydrophilic GO was used in the synthesis. In these cases, the 

slow thermal response may be explained by the decrease of the free volume inside the 

nanocomposite matrix caused by a hypernodal structure. Our results imply that both the 

chemistry and the concentration of incorporated graphene derivatives are promising in tuning 

the thermal responsivity of PNIPA. 
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1. Introduction 

Responsive hydrogels are in the focus of scientific attention in the last few decades owing to 

their numerous beneficial properties like high water content [1,2] and relatively good 

deformability. Moreover, thanks to the physiochemical similarity of their network to the 

native extracellular matrix they are potentially biocompatible. Their responsiveness originates 

from a reversible volume phase transition (VPT) that can be triggered by changes in certain 

environmental conditions [3,4] like composition [5] or pH [6] of the swelling medium, 

mailto:czakkelo@ill.fr


 2 

temperature [7], electromagnetic field [8], etc. This makes them very attractive for example in 

drug delivery [9,10], or as sensors [11], actuators [12,13], microvalves [14]. Poly(N-

isopropylacrylamide) (PNIPA) is one of the most popular temperature sensitive responsive 

hydrogel, owing to its peculiar volume phase transition temperature (VPTT) that is at ~34 °C, 

close to the temperature of the human body [9,15]. Despite the above mentioned advantages 

hydrogels have several limitations as well (e.g. poor mechanical strength). Carbon 

nanoparticles (CNP) are widely used for strengthening in polymer nanocomposites. Recently 

they also got into the focus of interest as components of polymer hydrogel nanocomposites, as 

the CNPs may act not only as reinforcing agents, but may also provide new or modified 

sensitivity to these complex systems.  

Graphene has many specific properties (e.g. excellent heat and electrical conductivity or light 

sensitivity) which would be beneficial, but its hydrophobicity hinders strongly the use in 

hydrogels. On the contrary, graphene oxide (GO), which is a damaged graphene layer, 

decorated with vacations and oxygen containing functional groups, forms stable aqueous 

suspension. However, due to the corrupted sp
2
 structure, its properties are far from those of 

graphene. Several chemical and physical routes are available for partially restoring the 

honeycomb structure and removing the functional groups [16]. The resulted reduced graphene 

oxide (RGO) can have great potential in hydrogel nanocomposites as its properties are close 

to that of the graphene, but its hydrophobicity is decreased [17]. 

Nowadays GO containing systems are in the focus of attention [18–21] and few attempts have 

been already made to prepare various RGO containing composite materials [22–26] as well. 

In practice, though, the decreased hydrophilicity of RGO (with respect to GO) complicates the 

preparation of stable aqueous suspensions and consequently causing inhomogeneous 

distribution of RGO in the composite [27]. If the synthesis procedure of the gel is not too 

sensitive for the environment, in situ reduction methods (i.e. reduction agent added to the 

initial precursor mixture) may be used [28,29]. An effective way to make RGO containing gel 

composites is to reduce the already incorporated GO inside the gel matrix [30,31], however 

the circumstances of the reduction (e.g. reducing agent, temperature) should be chosen with 

great care in order not to affect the physical/chemical properties of the gel. 

The preparation of RGO containing, PNIPA based, temperature sensitive hydrogels is 

challenging. As the free radical polymerisation of NIPA is extremely sensitive to the reaction 

circumstances, the application of even the mildest reducing agent for an eventual in-situ 

reduction of GO is excluded. On the other hand, incorporation of RGO nanoparticles into the 

gel matrix is limited owing to the above mentioned reduced hydrophilicity of RGO. In our 

paper we show that a treatment with L-ascorbic acid solution, which was proven to be an 

efficient and environmental friendly reducing agent of GO [32,33], can be used as a post 

treatment of GO containing PNIPA hydrogel nanocomposites to reduce GO within the gel 

matrix. Here we compare the microscopic and macroscopic character of differently prepared 

GO and RGO containing nanocomposite systems, based on results from small-angle neutron 

scattering (SANS), kinetic and equilibrium swelling properties, macroscopical mechanical 

tests and differential scanning calorimetry (DSC) measurements. Our results from solid state 
1
H NMR spectroscopy and thermal analysis help to shed light on the interactions that are 

formed between the nanoparticles and the gel matrix.  
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2. Materials and methods 

Nanoparticle synthesis 

Graphene oxide (GO) was obtained by the improved Hummer’s method [34] from natural 

graphite (originated from Madagascar). The GO content of the light brown suspension was ~1 

w/w%. The C/O ratio of this GO, determined by XPS, was 1.8. 

To prepare RGO we modified the method of Fernandez-Merino et al. [33]. The dry 

nanoparticles were suspended in L-ascorbic acid (AA) solution in the presence of NH3 at 20 

°C. In the reaction mixture the concentration of the GO, AA and NH3 was 1 mgml
-1

; 20 

mmoldm
-3

 and 1.1 moldm
-3

, respectively. After 1 week of soaking the nanoparticles were 

purified by multiple washing and filtering steps. The resulted RGO was then dried and later 

stored in a desiccator at ambient temperature. The C/O ratio of RGO, determined by XPS, 

was 3.6. For nanocomposite gel preparation, RGO nanoparticles were re-suspended in water 

by ultrasonication. 

Gel synthesis 

The pure PNIPA were synthesised from N-isopropylacrylamide (NIPA) monomer (Tokyo 

Chemical Industry, Japan) and N,N’-methylenebisacrylamide (BA) cross-linker (Sigma 

Aldrich) in aqueous medium at 20 °C by free radical polymerization, as reported 

previously [35,36]  

GO and RGO containing nanocomposite gels (GO@PNIPA and RGO@PNIPA, respectively) 

were prepared according to the method described earlier [35,36]. The GO loading was varied 

between 0 and 25 mg GO/g monomer, whereas the highest reachable concentration of RGO 

was only 11 mg/g monomer due to its poor dispersibility. 

The post-reduction treatment of GO@PNIPA gels were made by soaking dried samples in the 

AA media (composition is identical as used for GO nanoparticle reduction, described above) 

for 1 week at 20 °C. The ratio of the solid (S) and liquid (L) phases was kept constant 

(S/L=0.012). 

In all cases 2 mm thick films and 10 x10 mm isometric cylinders were prepared. All 

chemicals were used as received, except NIPA, which was recrystallized from a toluene-

hexane mixture. Doubly distilled water was used for the synthesis, purification and 

measurements, unless stated differently. 

The nomenclature of the prepared samples is given in Table 1. 
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Table 1. Nomenclature of the presented samples 

Sample name 
Nanoparticle content 

(mg/g monomer) 
Reduction of GO  

PNIPA - - 

GO2.5@PNIPA 2.5 - 

GO5@PNIPA 5 - 

GO10@PNIPA 10 - 

GO15@PNIPA 15 - 

GO25@PNIPA 25 - 

(PNIPA)R - inside the gel matrix 

(GO2.5@PNIPA)R 2.5 inside the gel matrix 

(GO5@PNIPA)R 5 inside the gel matrix 

(GO10@PNIPA)R 10 inside the gel matrix 

(GO15@PNIPA)R 15 inside the gel matrix 

(GO25@PNIPA)R 25 inside the gel matrix 

RGO3@PNIPA 3 prior to gel synthesis 

RGO11@PNIPA 11 prior to gel synthesis 

 

Methods 

Equilibrium swelling degree of the samples was measured on dried gel disks with a diameter 

of 7 mm, cut from the 2 mm thick film. After 1 week in pure water at 20.0±0.2 °C the 

equilibrium swelling degree was determined as m/m0, where m and m0 are the mass of the 

swollen and dry samples, respectively. 

Elastic modulus of the fully swollen samples was measured on isometric gel cylinders with an 

INSTRON 5543 mechanical testing equipment at ambient temperature. Samples were 

compressed by 10% of their initial height in steps of 0.1 mm with a relaxation time of 4×4 s 

and force threshold of 300 N. No barrel distortion was observed [37].  

The reported equilibrium swelling degree and elastic modulus data are result of averaging 3 

parallel measurements.  

XRD measurements were carried out on dry gel disks. An X’pert Pro MPD (PANanalytical) 

multi-purpose powder X-ray diffractometer were used. 

SANS measurements were performed on the D22 small angle instrument at the Institut Laue-

Langevin. The gels were swollen in D2O in order to enhance the scattering contrast between 

the polymer and the matrix, and to minimize the incoherent background scattering. The 

incident neutron wavelength was 6 Å. Two sample-detector distances (17 m and 2 m) were 

used to cover a Q-range of 0.004 – 0.5 Å
-1

. Raw SANS data were corrected for the empty cell, 

dark counts, sample thickness and detector efficiency. The corrected scattering data were 

normalized by the incident beam flux to obtain the scattered intensity in absolute units. Data 

reduction was done with the GRASansP v.7.04 program. In case of nanocomposite samples 

the weak signal from the corresponding nanoparticle suspension has been subtracted in order 

to obtain the pure polymer signal. 
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Solid-state magic angle spinning (MAS) spectra of samples were recorded on a Varian NMR 

system operating at a 
1
H frequency of 400 MHz with a Chemagnetics 3.2 mm narrow-bore 

double resonance T3 probe in. The spinning rate of the rotor was 8 kHz in all cases. For the 

one-dimensional 
13

C CP MAS (cross-polarization magic angle) and DE (direct excitation) 

spectra SPINAL-64 decoupling with 83 kHz of strength was used. The nanoparticles and the 

composite samples were measured with DE with 120 s of recycle delay. The CP MAS build 

up curves were recorded in the range of 0-4 ms with a recycle delay of 5 s, which is 5 times 

larger thanT1H.  

Thermal analysis (TA) was carried out on an STA6000 instrument (PerkinElmer) in high-

purity (99.9995%) nitrogen with the flow rate of 20 mLmin
-1

. Prior to the experiments gel 

samples were air-dried, ground in an agate mortar and stored in a desiccator over silica gel. 

Samples of about 10 mg were heated from 30 to 650 °C in nitrogen atmosphere with a 

scanning rate of 10 C min
-1

. The thermogravimetric (TG) curves were recorded. For the RGO 

and GO nanoparticles a slower scanning rate of 1.5 C min
-1

 was applied below 300 °C.  

Scanning microcalorimetry measurements were made on finely ground samples in a 

MicroDSCIII apparatus (SETARAM). About 10 mg of dry gel were placed in contact with 

500 l of Millipore water and kept at 20 °C for 2 h to allow the gels to equilibrate. The 

samples were heated to 50 °C with a scanning rate of 0.03 °C/min. The instrument software 

was used to determine the peak position. 

The kinetics of the temperature responsivity of the samples were studied on gel disks of 13 

mm diameter (D0) and 2 mm of thickness. The samples were first swollen in water at 20±0.2 

°C to reach equilibrium, then plunged into a water bath of 50±1 °C. The thermal shock 

induced shrinkage was followed by measuring regularly the diameter D of the disks during 33 

hours. Three parallel samples were measured at each case. Values of D were read in five 

positions for each sampling. Results are reported as 100×D/D0. 

 

3. Results and discussion 

The microscopic structure of the samples was explored by small angle neutron scattering 

(SANS) measurements [38] . As was shown earlier [36] SANS measurements can deliver 

structural information from the polymer matrix, whereas CNPs remain practically invisible. 

The corrected curves (typical examples are shown on Figure 1a) were fitted to the modified 

Ornstein-Zernike (OZ) expression [39,40] in the range of Q > 0.01 Å
-1

. The deviation in the Q 

< 0.01 Å
-1

 region stems from the well-known concentration inhomogeneities due to cross-

linking in gel networks [41] . In the OZ model the scattered intensity can be described by  

     
    

       
       (1) 

where I(0) and B are Q-independent constants,  is the static polymer–polymer correlation 

length and n is the fractal dimension of the polymer coils. As can be seen on Figure 1b, both 

the type and the concentration of the CNPs have pronounced effect on the correlation length  

of the polymer matrix.  
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Figure 1: a) Representative SANS response curves (symbols) of nanocomposite systems with 

different CNPs. Solid lines are fits of Eq 1. Note that the curves are shifted vertically for 

clarity. b) Influence of CNP content on the static correlation lengths at 25 °C. Solid lines are 

guides to the eye. 

 

Even the smallest amount of CNP present in the nanocomposites results in a significant drop 

of  In chemical gels, is usually interpreted as the size of cross-linked nods [42], and is 

inversely proportional to the cross-link density. In our previous work [36] we found, that at 

high GO content the architecture of the network is dominated by crosslink hypernodes and  

is significantly smaller than in pure PNIPA gel. Here we present a detailed concentration 

study, which reveals that the effect of the incorporated CNPs is complex. In case of 

GO@PNIPA and (GO@PNIPA)R the increase in CNP concentration resulted in an increase 

in as well. Nevertheless, even at the highest CNP concentration  remains significantly 

smaller than in the pure PNIPA. The increasing trend of  upon increasing CNP loading may 

indicate that at higher concentrations the GO nanoparticles sterically hinder each other, 

resulting a smaller effective concentration. As a consequence, they give rise to less 

hypernodes thus their structure modification effect is also smaller. Interesting to note, that 

XRD measurements excluded the formation of long-term reorganization of the nanosheets in 

the nanocomposites, so the decreased effective concentration cannot be explained by stacking 

of the GO sheets. After the post-reduction treatment  increased at all CNP concentrations 

(comparison of red squares and blue rhombi datasets on Figure 1b). On the other hand, no 

effect was observed in the pure CNP-free gel (red square and blue rhombi at 0 CNP 

concentration on Figure 1b) after the same treatment. The latter suggests that the pure 

polymer matrix is not affected by the reduction procedure, i.e. the chemical crosslinks are 

untouched. However, the change in  in the nanocomposite systems after the post-reduction 

treatment indicates that the hypernode structure of GO@PNIPA system was partially 

disrupted, possibly by breaking bonds between the nanoparticles and the polymer matrix. On 

the contrary to the other two cases, when RGO was directly incorporated into the polymer 

matrix decreased upon concentration increase. The structure modification effect at the 
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lowest concentration is much less pronounced than in the other two cases, which is possibly 

related to aggregation of RGO even at low concentrations.  

Beside the microscopic structure, the macroscopic properties of the nanocomposites are also 

significantly different. Similarly to earlier findings [35,36,43], the incorporation of GO 

effectively improved the mechanical properties and simultaneously decreased the swelling 

degree (Figure 2a and b). After the post-reduction treatment these properties remained almost 

unaffected. This may be because either the reinforcement is due to a simple mechanical effect 

(where surface chemistry and chemical interactions play no role); or, if there are chemical 

interactions between the GO and the polymer matrix, those interactions that determine the 

mechanical properties are unaffected by the applied treatment. On the contrary to GO, when 

RGO nanoparticles are incorporated directly to the PNIPA gel the mechanical and swelling 

properties of the nanocomposites remain practically unchanged. As RGO tends to form 

aggregates in aqueous media, its effective concentration within the gel matrix is much lower 

than the theoretical one, and in addition to that, it is not homogenously distributed (Figure 2c). 

This can explains the observed, very different behaviour of the RGO@PNIPA samples.  

 

Figure 2: (a) Elastic moduli and (b) Swelling degree of composite gels. (c) Representative 

pictures of pure PNIPA and the different nanocomposites. 

 

As was described above, both our SANS and macroscopic measurements suggest a strong 

interaction between the CNPs and the polymer matrix. A similar suggestion has been 

proposed earlier as well [25,43,44], however the nature of these interactions is still 

unrevealed. The possibilities are numerous, e.g. first order bonds with the oxygen containing 

functional groups or with the carbon lattice, secondary bonds (H-bonding) or entanglement of 

the polymer chains on the platelets [25,43,44]. To gain further knowledge, we have performed 

TA measurements which may help to shed light on this question. Although the shape of the 

TA curves was very similar for all the nanocomposite samples (Figure 3a), the obtained 

residual masses varied with the CNP type.  
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Figure 3: a) Thermograms of the pure PNIPA gel, GO nanoparticles and a GO-containing 

nanocomposite in N2 atmosphere. b) Calculated difference between the theoretical (TRM) and 

experimental (ERM) values of the residual masses. 

 

To quantify these differences, the theoretical residual mass (TRM) for independent 

decomposition was calculated from  

                                     (2) 

where cCNP is the nanoparticle concentration in weight percentage, mCNP and mPNIPA are the 

residual masses at 600 °C for the nanoparticle and the pure PNIPA, respectively. TRM 

implies an independent decomposition, i.e. no interaction between CNP and the polymer 

matrix. The relative deviation of the experimental values (experimental residual mass, ERM) 

from TRM was calculated by  

                       
       

   
        (3) 

Comparing this relative deviation for the different CNPs significant differences can be 

observed (Figure 3b). The discrepancy in the case of GO containing gels was more than 50%. 

This suggests strong, possibly even covalent bonds between the GO sheets and the polymer 

chains. However, in our previous work we showed, that the effect of GO is more complex 

[36] than acting as a simple crosslinking agent. Post reduction had no significant effect on the 

deviation of ERM, suggesting that majority of the formed interactions between GO and the 

polymer matrix are not affected by the treatment. This is in line with the macroscopic 

observations. On the contrary, in RGO@PNIPA samples the relative deviation is significantly 

smaller (ERM is close to the theoretical value) indicating that the interactions between the 

RGO sheets and the polymer are much weaker. 

As any future application of these systems rely on their responsiveness, the kinetics of an 

induced volume phase transition were also investigated. By following the shrinkage of the 

samples caused by a sudden increase of temperature from 20 to 50 °C it was found that 
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similarly to the macroscopic and microscopic structure, both the type and concentration of the 

CNPs have strong effect (Figure 4).  

 

 

Figure 4: a-c) Kinetics of temperature jump (20 to 50 °C) induced shrinkage of pure and 

nanocomposite hydrogels. d) Relative diameter values 1000 minutes after the temperature 

jump. Solid lines are guides to the eye. 

 

In all cases the shrinkage of the nanocomposite gel disks was less than that of the pure PNIPA 

gel after 1000 minutes, but the difference, as well as the shape of the shrinkage curves were 

different for the different systems. In cases where strong interaction is presumed between the 

CNPs and the polymer matrix (GO@PNIPA and (GO@PNIPA)R) the slower response may 

be explained by the decrease of the free volume inside the nanocomposite matrix [35,45] that 

is caused by the increasingly hypernode-like structure. The prolonged shrinkage of the 

samples suggests a complex process involving the deswelling of the gel matrix, the 

realignment of the CNP particles and the relaxation of the polymer chains [35,36].  

Comparing the effect of the GO concentration on the kinetic behaviour of the systems 

(Figure 4d), a trend (i.e. the curves are going through an extreme value at medium GO 

loading) similar to what is observed in the structure (Figure 1b) can be observed. In other 
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words, at medium GO concentrations the nanocomposites can shrink less for a given 

temperature jump in a given time window, which can be explained by the structural 

differences of the systems. The  values are the smallest at medium GO concentrations 

meaning that the hypernode structure is the most pronounced. This causes a significant 

decrease in the free volume within the gel matrix, which can hinder the expulsion of water 

during the volume phase transition. The above mentioned description holds for the post-

reduced systems ((GO@PNIPA)R) as well, suggesting that the decreased hydrophilicity of 

the RGO is still enough to provide the water with a way out of the polymer matrix. 

Nevertheless, the final deswelling ratios stayed slightly higher in these samples. Unlike the 

other two, RGO@PNIPA samples behave differently. Compared to pure PNIPA the timescale 

of the kinetic response is only slightly affected (Figure 4c), but the deswelling ratio remains 

higher after 1000 min. The influence of CNP concentration, however, is reversed, i.e. D/D0 

increases with increasing RGO concentration. This may be a result of the presence of large 

RGO aggregates in the system that may obstruct the adhesion of the PNIPA chains.  

In general, the VPTT of the PNIPA-based gels can be tuned by changing its hydrophilic/ 

hydrophobic balance, e.g., by copolimerization [46,47]. Our DSC measurements show no 

difference in the VPTT and the corresponding specific enthalpy (33.90.1 °C and 522 J/g, 

respectively) in the systems in Figure 5a. The unchanged specific enthalpy values suggest that 

the VPT is completed during the DSC conditions, which is not the case within the 1000 min 

period of the macroscopic thermal stress experiments. The lack of temperature depression can 

be explained by the low CNP concentration. Nevertheless, incorporation of CNP even in low 

amount alters the relaxation as revealed by the change of the peak widths.  

 

 

Figure 5: (a) Differential scanning calorimetry results of pure PNIPA and composite gels. 

Curves are shifted vertically for clarity. Broken vertical line indicates the peak position of 

pure PNIPA. (b) Full width at half maximum (FWHM) of the endothermic peaks from DSC 

as a function of the correlation length () of the polymer matrix. 
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This can be quantified by the full width at half maximum (FWHM), which also correlates 

well with the  values (determined from SANS) of the polymer matrix (Figure 5b) in the 

nanocomposite systems. As described above, the smaller  indicates a more developed 

hypernode structure, i.e., the reduced internal free volume can be responsible for the slower 

VPT in the nanocomposites.  

Solid-state 
1
H NMR investigations were carried out to get more information on the possible 

effects of GO/RGO on the properties of PNIPA composites. NMR spectroscopy is not only an 

important analytical method, but it is an effective technique that is widely used to characterize 

macromolecular systems, especially amorphous and mixed systems. Cross-polarization 
13

C 

MAS spectra of the gel samples were found to be the same, no new signal can be observed. 

On the basis of this finding, we can exclude the formation of large number of new chemical 

bonds. Signals of GO or RGO cannot be identified because of their small amount in the 

samples and their broad signal structure.  

Varying the contact time (t), in which the magnetization transfer occurs between the excited 

hydrogen atoms to the carbon atoms results the cross-polarization build-up curves. The shapes 

of the peak intensity (I(t)) vs t curves gives information on the proton environment of the 

carbon atoms and their mobility. The build-up curves have been fitted according to the I-I*-S 

model (Eq. 4) [48] 

           
  

   
                            

 
 

 
 
   

      
 

 

 
  

  
 

    

            (4) 

where, I0 corresponds to the plateau levels,    
  is the relaxation time constant of the 

1
H in 

contact with the lattice in the rotating frame,     is the proton spin-diffusion constant, T2 is 

the spin-spin relaxation time and  = 1/(n+1), where n is the number of 
1
H in the spin system. 

The build-up curves and the fitted parameters have been found to be the same for the 

isopropyl carbons, which suggests that the hydrophobic interactions between the isopropyl 

groups and the CNPs are negligible.  

The build-up curves of the carbonyl carbons are nevertheless different in shape, as Figure 6 

shows. Results of the fitting to Eq 4. are summarized in Table 2. The obtained    
  decreases 

at the GO@PNIPA and at the (GO@PNIPA)R in the same extent. This decrease indicates that 

the surrounding of the carbonyl group is more rigid then in pure PNIPA, which can be 

explained by strong interactions between PNIPA and GO nanoparticles. These interactions 

seem to be not affected by the post-reduction treatment. On the contrary, the increase of    
  

in the RGO@PNIPA sample suggests an increased mobility in the environment of the 

carbonyl groups. Change of the Tdf indicates changes also in the moeties of 
1
H atoms in the 

environment of carbonyl atoms. 
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Table 2. Fitted parameters from the I-I*-S model to the cross-polarization build-up curves of 

the carbonyl carbon. 

Sample  Tdf (ms)    
  (ms) T2 (ms) I0 

(a.u.) 

PNIPA 0.750.05 2.00.1 13.90.1 0.10.01 62 

GO@PNIPA 0.750.05 1.60.4 10.10.7 0.10.01 75 

RGO@PNIPA 0.750.05 1.30.4 23.22.0 0.10.01 76 

(GO@PNIPA)R 0.750.05 1.70.2 10.40.6 0.10.01 55 

: = 1/(n+1), where n is the number of 
1
H in the spin system;    : proton spin-diffusion 

constant;    
 : relaxation time constant of the 

1
H in contact with the lattice in the rotating 

frame; T2: spin-spin relaxation time; I0: plateau level 

 

Figure 6: Solid-state NMR Cross- polarization build-up curves of carbonyl 
13

C atoms. Solid 

lines are fits of Eq. 4 to the data points. 

 

4. Conclusions 

Reduced graphene oxide (RGO) containing composite hydrogels, based on poly(N-

isopropylacrylamide) were prepared by two different methods: i) by incorporating RGO 

directly into the polymer matrix; ii) applying a post-reduction treatment on graphene oxide 

(GO) containing polymer nanocomposites. The effect of the carbon nanoparticle (CNP) 

concentration and the preparation method was investigated. Direct incorporation of RGO is 

strongly limited by its reduced hydrophilicity, i.e., only a smaller concentration and hardly 

uniform distribution were achieved. The more homogeneous distribution of the hydrophilic 

GO particles even at higher CNP content was conserved in the post-synthesis reduction. We 

found that the aggregation tendency of RGO reduced prior to the polymerisation resulted in 

small structural modification in the nanocomposites. The swelling and mechanical properties 

remained almost unchanged compared to the pure PNIPA gel. On the other hand, when GO 
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was reduced within the gel matrix both structural and macroscopic properties showed strong 

variation on the concentration of the CNPs. Thermogravimetric and 
1
H NMR observations 

revealed strong interactions between GO and the polymer matrix, which are practically 

retained after the post-reduction treatment. Our results however show no clear evidence of 

covalent bonds. At the same time RGO interacts only weakly when incorporated directly into 

the gel. The vicinity of the PNIPA carbonyl groups is more rigid in the GO@PNIPA samples 

than in the pure PNIPA and this is not affected by the post-reduction. On the contrary, the 

mobility of the polymer in the same environment increases when RGO is directly 

incorporated into the polymer gel, implying a softening effect. 

GO loading slows down the macroscopic shrinkage of the gel and the time scale of the 

response is extended. This behaviour is conserved after the post-reduction treatment. Direct 

incorporation of RGO into the polymer matrix hardly affects the timescale of the macroscopic 

response, but the observed shrinkage is smaller than in pure PNIPA gels. 

The polymer-polymer correlation length (), decreases upon CNP incorporation due to the 

hypernodal structure developing around the CNPs. As at higher concentration CNPs may 

sterically hinder each other, i.e. their effective concentration is smaller than the nominal, the 

effect is not proportional to the nominal concentration. Correlation between DSC results and 

the values confirmed that the hypernodal structure may be responsible for the altered VPT. 

Our results show that the incorporated graphene derivatives improve the mechanical 

properties of the PNIPA gel. Both their chemistry and their concentration are promising 

means for tuning the thermal responsivity broadening the application fields of such 

nanocomposite systems. 
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