
Approximation schemes for parallel machine scheduling
with non-renewable resources

Péter Györgyia,b, Tamás Kisb,∗

aDepartment of Operations Research, Loránd Eötvös University, H1117 Budapest, Pázmány
Péter sétány 1/C, Hungary

bInstitute for Computer Science and Control, H1111 Budapest, Kende str. 13–17, Hungary

Abstract

In this paper the approximability of parallel machine scheduling problems with

resource consuming jobs is studied. In these problems, in addition to a paral-

lel machine environment, there are non-renewable resources, like raw materials,

energy, or money, consumed by the jobs. Each resource has an initial stock,

and some additional supplies at a-priori known moments of times and in known

quantities. The schedules must respect the resource constraints as well. The

objective is the minimum schedule length or makespan. Polynomial time ap-

proximation schemes are provided under various assumptions, and it is shown

that the problem becomes APX-hard if the number of machines is part of the

input even if there are only two resources.

Keywords: Scheduling, parallel machines, non-renewable resources,

approximation schemes

1. Introduction

In this paper we study various parallel machine scheduling problems with

resource consuming jobs. In these problems, in addition to machines, there are

non-renewable resources (like raw materials, energy, or money) consumed by

the jobs. Each non-renewable resource has an initial stock, which is replenished5

∗ Corresponding author
Email addresses: gyorgyi.peter@sztaki.mta.hu (Péter Györgyi),

kis.tamas@sztaki.mta.hu (Tamás Kis)

Preprint submitted to European Journal of Operational Research August 13, 2015

at a-priori known moments of time and in known quantities. We will consider

two types of parallel machine environments: (i) the standard parallel machine

environment, where each job can be scheduled on any machine, and the job

processing times do not depend on the machines assigned, and (ii) the one with

dedicated machines, where each job can be executed only on one of the machines.10

In all problems considered the machines can perform only one job at a time, and

preemption of jobs is not allowed. The objective is to minimize the maximal

completion time of the jobs, or in other words the makespan of the schedule.

More formally, there are m parallel machines, M = {M1, . . . ,Mm}, a finite

set of n jobs J = {J1, . . . , Jn}, and a finite set of non-renewable resources R15

consumed by the jobs. Each job Jj has a processing time pj ∈ Z+, a release

date rj , and resource requirements aij ∈ Z+ from the resources i ∈ R. The

resources are supplied in q different time moments, 0 = u1 < u2 < . . . < uq; the

vector b̃` ∈ Z|R|+ represents the quantities supplied at u`. A schedule σ specifies

a machine and the starting time Sj of each job and it is feasible if (i) in every20

machine the jobs do not overlap in time, (ii) Sj ≥ rj for all j ∈ J , and if (iii)

at any time point t the total material supply from every resource is at least

the total request of those jobs starting not later than t, i.e.,
∑

(` : u`≤t) b̃`i ≥∑
(j : Sj≤t) aij , ∀i ∈ R. The objective is to minimize the makespan, i.e., the

completion time of the job finished last.25

Assumption 1.
∑q
`=1 b̃`i =

∑
j∈J aij , ∀i ∈ R, holds without loss of generality.

Since the makespan minimization problem with resource consuming jobs on

a single machine is NP-hard even if there are only two supply dates (Carlier,

1984), all problems studied in this paper are NP-hard.

The combination of scheduling and logistic, that is, considering e.g., raw30

material supplies in the course of scheduling, has a great practical potential, as

this problem frequently occurs in practice according to the experience of the

authors.

2

1.1. Main results

If the number of the machines is part of the input, then we have the following35

non-approximability result:

Theorem 1. Deciding whether there is a schedule of makespan 2 with two non-

renewable resources, two supply dates and unit-time jobs on arbitrary number

of machines (P |rm = 2, q = 2, pj = 1|Cmax ≤ 2) is NP-hard. Consequently, it

is NP-hard to approximate this problem better than 3/2− ε for any ε > 0.40

By assumption 1, the optimum makespan is at least uq, therefore, a straight-

forward two-approximation algorithm would schedule all the jobs after uq. There-

fore, we have the following

Corollary 1. P |rm = 2, q = 2, pj = 1|Cmax is APX-hard.

In case of constant number of machines, we provide polynomial time approx-45

imation schemes (PTAS) for various special cases of Pm|rm|Cmax. In all cases,

we allow that jobs have distinct release dates. Note that the problem with arbi-

trary number of resources is APX-hard even in case of a single machine (Györgyi

& Kis (2015a)), thus we need the constraint rm = const.

If the number of resources is a constant, then there is a PTAS under the50

condition that the number of machines is fixed:

Theorem 2. Pm|rm = const., q = const., rj |Cmax admits a PTAS.

If the jobs are dedicated to machines we have an analogous result:

Theorem 3. Pm|rm = const., q = const., rj , ddc|Cmax admits a PTAS.

Since P |ddc|Cmax and thus Pm|ddc|Cmax are trivially solvable in polyno-55

mial time, the complexity of the this problem stems from the addition of non-

renewable resource constraints.

In case of a single machine, if there is a single resource and a constant

λ > 0 such that aj = λpj , then we have a PTAS for the makespan minimization

problem even if the number of supply dates is arbitrary (Györgyi & Kis, 2015a).60

3

Luckily, this property carries over to the more general parallel machine case.

The constant λ of course depends on the problem instance. This assumption

may be quite reasonable in some practical applications. Since we can get an

equivalent problem by dividing all the supplies, and all the resource requirements

of a problem instance by the (instance specific) constant λ, from now on we65

consider the case aj = pj only. Notice that in the above transformation, the b̃`

may become fractional after dividing by λ. However, this does not create any

difficulty for the approximation algorithm proposed below.

Theorem 4. Pm|rm = 1, aj = pj , rj |Cmax admits a PTAS.

We can deal with dedicated jobs as before:70

Theorem 5. Pm|rm = 1, aj = pj , rj , ddc|Cmax admits a PTAS.

1.2. Structure of the paper

In Section 2 we summarize previous work on machine scheduling with non-

renewable resources. In Section 3 we provide a problem formulation in terms of

mathematical program which will be used throughout the paper. In Sections 4,75

5, 6, 7 and 8 we prove Theorems 1, 2, 3, 4 and 5, respectively.

1.3. Terminology

An optimization problem Π consists of a set of instances, where each instance

has a set of feasible solutions, and each solution has a cost. In a minimization

problem a feasible solution of minimum cost is sought, while in a maximization80

problem one of maximum cost. An ε-approximation algorithm for an optimiza-

tion problem Π delivers in polynomial time for each instance of Π a solution

whose objective function value is at most (1 + ε) times the optimum value in

case of minimization problems, and at least (1− ε) times the optimum in case

of maximization problems. For an optimization problem Π, a family of approxi-85

mation algorithms {Aε}ε>0, where each Aε is an ε-approximation algorithm for

Π is called a Polynomial Time Approximation Scheme (PTAS) for Π.

4

2. Previous work

Scheduling problems with resource consuming jobs were introduced by Car-

lier (1984), Carlier & Rinnooy Kan (1982), and Slowinski (1984). In (Carlier,90

1984), the computational complexity of several variants with a single machine

was established, while in (Carlier & Rinnooy Kan, 1982) activity networks re-

quiring only non-renewable resources were considered. In (Slowinski, 1984) a

parallel machine problem with preemptive jobs was studied, and the single non-

renewable resource had an initial stock and some additional supplies, like in95

the model presented above, and it was assumed that the rate of consuming the

non-renewable resource was constant during the execution of the jobs. These

assumptions led to a polynomial time algorithm for minimizing the makespan,

which is in strong contrast to the NP-hardness of all the scheduling problems

analyzed in this paper. Further results can be found in e.g., Toker et al. (1991),100

Neumann & Schwindt (2003), Laborie (2003), Grigoriev et al. (2005), Briskorn

et al. (2010), Briskorn et al. (2013), Gafarov et al. (2011), Györgyi & Kis (2014),

Györgyi & Kis (2015b), Györgyi & Kis (2015a), Morsy & Pesch (2015). In

particular, Toker et al. (1991) proved that scheduling jobs requiring one non-

renewable resource on a single machine with the objective of minimizing the105

makespan reduces to the 2-machine flow shop problem provided that the single

non-renewable resource has a unit supply in every time period. Neumann &

Schwindt (2003) study general project scheduling problems with inventory con-

straints, and propose a branch-and-bound algorithm for minimizing the project

length. In a more general setting, jobs may consume as well as produce non-110

renewable resources. In Grigoriev et al. (2005) and Gafarov et al. (2011) the

complexity of several variants was studied and some constant ratio approxi-

mation algorithms were developed in Grigoriev et al. (2005). Briskorn et al.

(2010), Briskorn et al. (2013) and Morsy & Pesch (2015) examined scheduling

problems where there is an initial inventory, and no more supplies, but some of115

the jobs produce resources, while other jobs consume the resources. In Briskorn

et al. (2010) and Briskorn et al. (2013) scheduling problems with the objec-

5

tive of minimizing the inventory levels were studied. Morsy & Pesch (2015)

designed approximation algorithms to minimize the total weighted completion

time. In Györgyi & Kis (2014) a PTAS for scheduling resource consuming jobs120

with a single non-renewable resource and a constant number of supply dates

was developed, and also an FPTAS was devised for the special case with q = 2

supply dates and one non-renewable resource only. In Györgyi & Kis (2015b)

it was shown, among other results, that there is no FPTAS for the problem of

scheduling jobs on a single machine with two non-renewable resources and q = 2125

supply dates, unless P = NP , which is in strong contrast with the existence of

an FPTAS for the special case with one non-renewable resource only Györgyi

& Kis (2014). These results have been extended in Györgyi & Kis (2015a): it

contains a PTAS under various assumptions: (1) both the number of resources

and the number of supplies dates are constants, (2) there is only one resource,130

arbitrary number of supply dates, but the resource requirements are propor-

tional to job processing times. It also proves the APX-hardness of the problem

when the number of resources is part of the input. In Table 1 we summarize the

known and new results of scheduling resource consuming jobs in single machine

as well as in parallel machine environments, when preemption of processing is135

not allowed, and the resources are consumed right at starting the jobs.

3. A mathematical program

We can model P |rm|Cmax with a mathematical program with integer vari-

ables. LetM denote the set of the machines and let T be the union of the set of

supply dates and job release dates, i.e., T := {u` | ` = 1, . . . , q} ∪ {rj | j ∈ J }.140

Suppose T has τ elements, denoted by v1 through vτ , with v1 = 0. We define

the values b`i :=
∑
ν : uν≤v` b̃νi for i ∈ R, that is, b`i equals the total amount

supplied from resource i up to time point v`.

We introduce τ ·|J ||M| binary decision variables xj`k, (j ∈ J , ` = 1, . . . , τ, k ∈

M) such that xj`k = 1 if and only if job j is assigned to machine k and to the

time point v`, which means that the requirements of job j must be satisfied by

6

#Machines #Supplies #Resources Release PTAS FPTAS

m q rm dates rj

1 2 1 no yesb yesbc

1 2 1 yes yesd ?

1 2 const. ≥ 2 no yesb noc

1 2 const. ≥ 2 yes yesd noc

1 2 arbitrary yes/no nod nod

1 const. ≥ 3 1 yes/no yesd ?

1 const. ≥ 3 const. ≥ 2 yes/no yesd noc

1 arbitrary 1* yes/no yesd noa

const ≥ 2 const. ≥ 3 const. ≥ 2 yes/no yes (Sect. 5) noa

const ≥ 2 arbitrary 1* yes/no yes (Sect. 7) noa

arbitrary 2 2 yes/no no (Sect. 4) noa

* under the condition aj = λpj
a Grigoriev et al. (2005) b Györgyi & Kis (2014)

c Györgyi & Kis (2015b) d Györgyi & Kis (2015a)

Table 1: Known approximability results for scheduling problems with resource con-

suming jobs if P 6= NP. In the column of Release dates ”yes / no” means that the

result is valid in both cases. The question mark ”?” indicates that we are not aware

of any definitive answer.

the resource supplies up to time point v`. The mathematical program is

C∗max = min max
k∈M

max
v`∈T

v` +
∑
j∈J

τ∑
ν=`

pjxjνk

 (1)

s.t.∑
k∈M

∑
j∈J

∑̀
ν=1

aijxjνk ≤ b`i, v` ∈ T , i ∈ R (2)

∑
k∈M

τ∑
`=1

xj`k = 1, j ∈ J (3)

xj`k = 0, j ∈ J , v` ∈ T such that rj > v`, k ∈M (4)

7

xj`k ∈ {0, 1}, j ∈ J , v` ∈ T , k ∈M. (5)

The objective function expresses the completion time of the job finished last

using the observation that for every machine there is a time point, either a145

release date of some job, or when some resource is supplied from which the

machine processes the jobs without idle times. Constraints (2) ensure that the

jobs assigned to time points v1 through v` use only the resources supplied up to

time v`. Equations (3) ensure that all jobs are assigned to some machine and

time point. Finally, no job may be assigned to a time point before its release150

date by (4). Any feasible job assignment x̄ gives rise to a set of schedules which

differ only in the ordering of jobs assigned to the same machine k, and time

point v`.

Notice that in a feasible solution x̂ of (1)-(5) there can be more than one

jobs assigned to the same machine k and time point v`. We obtain a schedule of155

the jobs by putting them on machine k in the order of their assignment to the

time points in T (we do the same for every k ∈M). That is, first we schedule in

non-increasing processing time order without idle times the jobs with x̂j1k = 1

from time v1 on. Let C1(k) be the completion time of these jobs. In a general

step ` ≥ 2, we schedule the jobs with x̂j`k = 1 in non-increasing processing time160

order after max{C`−1(k), v`}, and we denote by C`(k) the completion time of

the job finished last in this group on machine k. The non-increasing processing

time order is due to technical reasons, the makespan of a schedule is the same

in case of any order. The schedule obtained in this way is feasible, and its

makespan is the completion time of the job finished last, which is necessarily165

equal to the objective function value of solution x̂. Let Cmax(x̂) denote this

value.

Sometimes we need to create a (partial) assignment from a (partial) schedule.

That is the following: if Jj is scheduled on Mk at Sj and v` ≤ Sj < v`+1, then

let xj`k = 1 and xj`′k′ = 0 if (`′, k′) 6= (`, k). Notice that, the value of this170

(partial) assignment is at most the makespan of the (partial) schedule.

Note that the number of the different assignments is at most O((mτ)n).

8

If ε ≤ 1/n in a PTAS, then we can check every assignment in O((mτ)n) ≤

O((mτ)1/ε) time, which is polynomial in the size of the input, thus from now

we assume175

Assumption 2. ε > 1/n.

4. APX-hardness of P |rm = 2, q = 2, pj = 1|Cmax

In this section we prove Theorem 1. We reduce the EVEN-PARTITION

problem to the problem P |rm = 2, q = 2, pj = 1|Cmax, and argue that deciding

whether a schedule of makespan two exists is as hard as finding a solution180

for EVEN-PARTITION. Recall that an instance of the EVEN-PARTITION

problem consists of 2t items, for some integer t, of sizes a1, . . . , a2t ∈ Z+. The

decision problem asks whether there is a subset of items S of cardinality t such

that
∑
i∈S ai =

∑
S̄ ai? This problem is NP-hard in the ordinary sense, see

Garey & Johnson (1979). Clearly, a necessary condition for the existence of set185

S is that the total size of all items is an even integer, i.e.,
∑2t
i=1 ai = 2A, for

some A ∈ Z+.

Proof of Theorem 1 We map an instance I of EVEN-PARTITION to the fol-

lowing instance of P |rm = 2, q = 2, pj = 1|Cmax. There are n := 2t jobs, and

m := t machines. All the jobs have unit processing time, i.e., pj = 1 for all j.190

The job corresponding to the jth item in I has resource requirements a1,j := aj

and a2,j := A − aj . The initial supply at u1 = 0 from the two resources is

b̃1,1 := A and b̃1,2 := (t − 1)A, and the second supply at time u2 = 1 has

b̃2,1 := A, and b̃2,2 := (t − 1)A. We have to decide whether a feasible schedule

of makespan two exists.195

First, suppose that I has a solution S. Then we schedule all the jobs cor-

responding to the items in S at time 0, each on a separate machine. Since

S contains t items, and the number of machines is t as well, this is feasible.

Moreover, the total resource requirement from the first resource is precisely A,

whereas that from the second one is
∑
j∈S a2,j =

∑
j∈S(A − aj) = (t − 1)A.200

9

The rest of the jobs are scheduled at time 1. Since their number is t, and since

u2 = 1 is the second and last supply date, all the resources are supplied and the

jobs can start promptly at time 1.

Conversely, suppose there is a feasible schedule of makespan two. Then,

there are t jobs scheduled at time 0, and the remaining t jobs at time 1. The205

resource requirements of those jobs scheduled at time 0 equal the supply at

time u1 = 0, hence these jobs define set S, a feasible solution of the EVEN-

PARTITION problem instance.

5. PTAS for Pm|rm = const, q = const, rj|Cmax

In this section we prove Theorem 2. First, note that we can simplify the210

problem: it is enough to deal with the case where the number of distinct release

dates is a constant. There are several techniques that we can use for this sim-

plification, see e.g. section 5 in Györgyi & Kis (2015a) or section 2 in Hall &

Shmoys (1989).

Let psum :=
∑
j∈J pj and note that psum ≤ mC∗max. For a fixed ε > 0, let215

B := {j ∈ J |pj ≥ εpsum} be the set of big jobs, and S := J \ B be the set of

small jobs. We divide further the set of small jobs according to their release

dates, that is, we define the sets Sb := {j ∈ S | rj < uq}, and Sa := S \ Sb. Let

T b := {v` ∈ T | v` < uq} be the set of time points v` before uq. The following

observation reduces the number of solutions of (1)-(5) to be examined.220

Proposition 1. From any feasible solution x̂ of (1)-(5), we can obtain a solu-

tion x̃ with Cmax(x̃) ≤ Cmax(x̂) such that each job Jj is assigned to some time

point v` (
∑
k∈M x̃j`k = 1), satisfying either v` < uq, or v` = max{uq, rj}.

The above statement is a generalization of the single machine case treated

in Györgyi & Kis (2015a), and its proof can be found in the Appendix.225

An assignment of big jobs is given by a partial solution xbig ∈ {0, 1}B×T ×M

which assigns each big job to some machine k and time point v`. An assignment

xbig of big jobs is feasible if the vector x = (xbig , 0) ∈ {0, 1}J×T ×M satisfies (2),

10

(4) and also (3) for the big jobs. Consider any feasible assignment xbig of big

jobs. If we fix the assignment of the big jobs in (2)-(4) to xbig , then the supply230

from any resource i up to time point v` is decreased by the requirements of those

big jobs assigned to time points v1 through v`. Hence, we define the residual

resource supply up to time point v` as b̄`i := b`i−
∑
k∈M

∑
j∈B aij

(∑`
ν=1 x

big
jνk

)
.

Further on, let C̄B` (k) := maxν=1,...,`(vν +
∑`
κ=ν

∑
j∈B pjx

big
jκk) denote the earli-

est time point when the big jobs assigned to v1 through v` may finish on machine235

k. Notice that C̄B` (k) ≥ v` even if no big job is assigned to v`, or to any time

period before v`.

In order to assign approximately the small jobs, we will solve a linear pro-

gram and round its solution. Our linear programming formulation relies on the

following result.240

Proposition 2. There exists an optimal solution (x̂big , x̂small) of (1)-(5) such

that for each v` ∈ T b, k ∈M:∑
j∈Sb

pj x̂
small
j`k ≤ max{0, v`+1 − C̄B` (k)}+ εpsum. (6)

The above statement is a generalization of the single machine case treated

in Györgyi & Kis (2015a), and its proof can be found in the Appendix.

For every feasible big job assignment we will determine a complete solution

of (1)-(5). We search these solution in two steps: first we assign the small jobs245

to time moments and then to machines. Let xj` :=
∑
k∈M xj`k. Now, the linear

program is defined with respect to any feasible assignment xbig of the big jobs:

max
∑
v`∈T b

∑
j∈Sb

pjx
small
j` (7)

s.t.∑
j∈Sb

∑̀
ν=1

aijx
small
jν ≤ b̄`i, v` ∈ T b, i ∈ R (8)

11

∑
j∈Sb

pjx
small
j` ≤

∑
k

max{0, v`+1 − C̄B` (k)}+mεpsum, v` ∈ T b (9)

∑
v`∈T b∪{uq}

xsmallj` = 1, j ∈ Sb (10)

xsmallj` = 0, j ∈ Sb, v` ∈ T such that v` < rj , or v` > uq (11)

xsmallj` ≥ 0, j ∈ Sb, v` ∈ T . (12)

The objective function (7) maximizes the total processing time of those small

jobs assigned to some time point v` before uq. Constraints (8) make sure that

no resource is overused taking into account the fixed assignment of big jobs as250

well. Inequalities (9) ensure that the total processing time of those small jobs

assigned to v` ∈ T b does not exceed the total size of all the gaps on the m

machines between v` and v`+1 by more than mεpsum. Due to (10), small jobs

are assigned to some time point in T b ∪ {uq}. The release dates of those jobs

in Sb, and Proposition 1 are taken care of by (11). Finally, we require that the255

values xsmallj` be non-negative.

Notice that this linear program always has a finite optimum provided that

xbig is a feasible assignment of the big jobs. Let x̄small be any feasible solution

of the linear program. Job j ∈ Sb is integral in x̄small if there exists v` ∈ T with

x̄small
j` = 1, otherwise it is fractional. After all these preliminaries, the PTAS is260

as follows.

Algorithm A

1. Assign the big jobs to time points v1 through vτ and to machines 1 through

|M| in all possible ways which satisfies Proposition 1, and for each feasible

assignment xbig do steps 2 - 7 :265

2. Define and solve linear program (7)-(12), and let x̄small be an optimal

basic solution.

3. Round each fractional value in x̄small down to 0, and let xsmall := bx̄smallc

12

be the resulting partial assignment of small jobs, and U ⊂ Sb the set of

fractional jobs in x̄small .270

4. The next algorithm assigns a machine for every small job that is assigned

to a time point before uq. For each ` ∈ T b do:

i) Put the small jobs with x̄smallj` = 1 into a list in an arbitrary order.

ii) For k = 1, . . . ,m do the following steps:

a) Let t be such that the total processing time of the first t jobs from275

the ordered list is in [max{0, v`+1− C̄B` (k)}+εpsum,max{0, v`+1−

C̄B` (k)} + 2εpsum]. If there is no such t, then let t be the number

of the small jobs in the ordered list.

b) Assign the first t jobs to machine k and delete them from the

ordered list.280

5. Create a (partial) schedule Spart of the jobs that have already been as-

signed to a time period and a machine. Let Cpartmax denote the makespan

of this schedule.

6. Order the remaining jobs into a non-decreasing order of their release dates

(J1, J2, . . .). We will schedule these jobs one by one. Let Jj be the next285

job to be scheduled. Let Mk be a machine with the earliest idle time after

max{uq, rj} in the current schedule. Schedule Jj on this machine at that

time. If necessary, push to the right the later jobs and proceed with the

next unscheduled job.

7. If the makespan of the complete schedule of all the jobs is better than the290

best solution found so far, then update the best solution.

8. After examining each feasible assignment of the big jobs, output the best

complete solution found.

See Figure 1 for illustration. We will prove that the solution found by the

previous algorithm is feasible for (1)-(5), its value is not far from the optimum,295

and the algorithm runs in polynomial time.

13

M3 t

M2

M1

v2 v4v1 v3 = uq Cpartmax

t

v2 v4v1 v3 = uq Cpartmax

Figure 1: A partial schedule on the left (big jobs are blue, small jobs are hatched) and a

complete schedule on the right. The jobs scheduled at Step 6 are white. Each job scheduled

after v4 has a release date v4, since M3 is idle before v4.

Lemma 1. Every complete solution (xbig , xsmall) constructed by the algorithm

is feasible for (1)-(5).

Proof. At the end of the algorithm each job is scheduled exactly once sometime

after its release date, thus the solution satisfies 3, 4 and 5. The algorithm300

examines only feasible assignments of the big jobs, hence these jobs cannot

hurt the resource constraints. Since x̄small is a feasible solution of 7 - 12 and∑
k∈M xj`k = xj`, (∀j ∈ J), thus the assignment corresponds to Spart satisfies

2. Finally, since uq is the last time point when some resource is supplied, thus

when the algorithm schedules the remaining jobs at Step 6, the constraints 2305

remain feasible.

To prove that the makespan of the schedule found by the algorithm is near

to the optimum, we need Propositions 3 and 4. From these we conclude that

the fractionally assigned jobs and the ’errors’ in (9) do not cause big delays. We

utilize that the number of the release dates before uq is a constant. From310

the second proposition, we can deduce that, in case of appropriate big job

assignment, Cpartmax is not much bigger than C∗max. If the found makespan is

larger than Cpartmax , then the machines finish the assigned jobs nearly at the same

time, thus we can prove that there are no big delays relative to an optimal

solution in the solution found by the algorithm.315

Proposition 3. In any basic solution of the linear program (7)-(12), there are

14

at most (|R|+ 1) · |T b| fractional jobs.

Proof. Let x̄small be a basic solution of the linear program in which f jobs of

Sb are assign fractionally, and e = |Sb|−f jobs integrally. Clearly, each integral

job gives rise to precisely one positive value, and each fractionally assigned

job to at least two. This program has |Sb| · |T b| decision variables, and γ =

|Sb|+(|R|+1)·|T b| constraints. Therefore, in x̄small there are at most γ positive

values, as no variable may be nonbasic with a positive value. Hence,

e+ 2f ≤ |Sb|+ (|R|+ 1) · |T b| = e+ f + (|R|+ 1) · |T b|.

This implies

f ≤ (|R|+ 1) · |T b|

as claimed.

Proposition 4. Consider a big job assignment after Step 1, let Sbig denote the

partial schedule of this assignment and CBmax denote its makespan.320

1. If a big job Jj is assigned to v` at Step 1, then Spartj ≤ Sbigj + 2(min{`−

1, |T b|})εpsum.

2. Cpartmax ≤ max{uq, CBmax}+ 2|T b|εpsum.

Proof. Recall that the jobs assigned to the same time point and machine are in

non-increasing processing time order.325

1. The algorithm can push to the right a start time of big job at Step 4(ii)a,

or in other words, when it assigns small jobs before v`. At every turn,

this step pushes to the right Jj with at most 2εpsum. This event happens

min{`− 1, |T b|} times, thus the proposition follows.

2. Imagine a fictive big job starts at max{uq, CBmax}, and apply the first part330

of the proposition.

15

Lemma 2. The algorithm constructs at least one complete assignment (xbig , xsmall)

whose value is at most (1 +O(ε)) times the optimum makespan C∗max.

Proof. Consider an optimal schedule S∗ = (x̂big, x̂small) of (1)-(5) that satisfies335

Proposition 2. The algorithm will examine x̂big, since it is a feasible big job

assignment. Let Cmax denote the makespan of the schedule S found by the

algorithm in this case. The observation below follows from Proposition 4:

Observation 1. Cpartmax ≤ C∗max + 2|T b|εpsum.

If no small job scheduled at Step 6 starts after Cpartmax − εpsum, then the340

statement of the lemma follows from Observation 1 since psum ≤ mC∗max and

Cmax ≤ Cpartmax + εpsum, thus Cmax ≤ (1 + (2|T b|+ 1)mε)C∗max.

From now on, suppose that at least one small job scheduled at Step 6

starts after Cpartmax − εpsum. For similar reasons, also suppose that Cmax >

max{Cpartmax , vτ} + εpsum (this means that for every machine there is at least345

one small job that starts after max{Cpartmax , vτ} and scheduled at Step 6).

Observation 2. The difference between the finishing time of two arbitrary ma-

chines is at most εpsum.

We prove the statement of the lemma with Claims 1, 2 and 3.

Claim 1. If there is no gap on any machine, then Cmax ≤ (1 +mε)C∗max.350

Proof. According to Observation 2 each machine is working between 0 and

(Cmax − εpsum). Therefore C∗max ≥ Cmax − εpsum which implies Cmax ≤ (1 +

mε)C∗max.

Claim 2. If the last gap finishes after uq, then Cmax ≤ (1+(2|T b|+1)mε)C∗max.

Proof. Note that this gap must finish at a release date rj0 . Notice that each355

small job scheduled after rj0 has a release date at least rj0 or else we would have

scheduled that job into the last gap, thus

Observation 3. The small jobs starting after rj0 in S are scheduled after rj0

in S∗.

16

Consider an arbitrary machine Mk and the last big job Jj that is starting360

before rj0 on this machine in S∗. If Spartj < uq or there is no gap between uq

and Spartj in Spart, then we have not scheduled any job on Mk before Jj at Step

6, thus the starting (and the completion) time of Jj is at most 2|T b|εpsum later

in S than in S∗ (Proposition 4). Otherwise the starting time of Jj is the same

in Spart and in S∗ (Spartj = S∗j), since we can suppose that the jobs assigned365

to the same time point and machine are scheduled in the same non-increasing

processing time order. If we push Sj at Step 6 once, then we cannot schedule

any more jobs before Sj later, thus we can push Sj by at most εpsum in total,

thus

Observation 4. If Jj ∈ B, then Sj ≤ S∗j + 2|T b|εpsum.370

Suppose that a job Jj is scheduled from S′j to C ′j = S′j + pj in a schedule S′

and S′j ≤ t ≤ C ′j . In this case we can divide Jj into two parts: to the part of Jj

that is scheduled before t (it has a processing time of t−S′j) and to the part that

is scheduled after t (it has a processing time of C ′j − t). Suppose that t is fixed

and we divided all the jobs such that S′j ≤ t ≤ C ′j into two parts. Let P
(t)
b (S′)375

denote the total processing time of the jobs and job parts that are scheduled

before t in S′ and P
(t)
a (S′) denote the same after t (P

(t)
b (S′) +P

(t)
a (S′) = psum).

Observation 5. P
(rj0+2|T b|εpsum)
a (S) ≤ P

(rj0)
a (S∗) (follows from Observations

3 and 4).

Let P := P
(rj0+2|T b|εpsum)
a (S). Since there is no gap after rj0 in S, Cmax ≤380

rj0 + 2|T b|εpsum + (P/m + εpsum) follows from Observation 2. Since C∗max ≥

rj0 + P/m (from Observation 5), thus Cmax ≤ C∗max + (2|T b| + 1)εpsum ≤

(1 + (2|T b|+ 1)mε)C∗max, therefore we have proved Claim 2.

For a schedule S′, let S′B denote the schedule of the big jobs (where the big

jobs have the same starting times as in S′ and the small jobs are deleted from385

S′) and S′S denote the schedule of the small jobs (similarly).

17

Claim 3. If each gap finishes before uq, then Cmax ≤ (1+((2|T b|+1)m+(|R|+

1) · |T b|)ε)C∗max.

Proof. Note that, each machine is working between uq and Cmax − εpsum.

Since x̄small is an optimal solution of (7)-(12) and according to Proposition390

2 x̂small is a feasible solution, thus
∑
j∈S:S∗j≤uq

pj ≤
∑
j∈S:scheduled at Step 5 pj +∑

j∈U pj , therefore P
(uq)
b (S∗S) ≤ P

(uq+2|T b|εpsum)
b (SS) +

∑
j∈U pj (Proposition

4). P
(uq)
b (S∗B) ≤ P

(uq+2|T b|εpsum)
b (SB) follows also from Proposition 4, thus

P
(uq)
b (S∗) ≤ P (uq+2|T b|εpsum)

b (S)+
∑
j∈U pj , which implies P

(uq)
a (S∗) ≥ P (uq+2|T b|εpsum)

a (S)−∑
j∈U pj . Let PS∗ := P

(uq)
a (S∗) and PS := P

(uq+2|T b|εpsum)
a (S).395

Note that Cmax ≤ uq + 2|T b|εpsum +PS/m+ εpsum (Observation 2), C∗max ≥

uq+PS∗/m and PS ≤ PS∗+
∑
j∈U pj . From these, Cmax ≤ C∗max +2|T b|εpsum +∑

j∈U pj/m+ εpsum follows. Since
∑
j∈U pj ≤ (|R|+ 1) · |T b|εpsum (Proposition

3), thus Cmax ≤ (1 + ((2|T b|+ 1)m+ (|R|+ 1) · |T b|)ε)C∗max, therefore we have

proved Claim 3.400

The lemma follows from Claims 1, 2 and 3.

Lemma 3. For any fixed ε > 0, the running time of the algorithm is polynomial

in the size of the input if |T b| is a constant.

Proof. Since the processing time of each big job is at least εpsum, the number

of the big jobs is at most b1/εc, a constant, since ε is a constant by assumption.405

Thus, the total number of assignments of big jobs to time point in T b is also

constant. For each feasible assignment, a linear program of polynomial size in

the input must be solved. This can be accomplished by the Ellipsoid method

in polynomial time, see Gács & Lovász (1981). The remaining steps (rounding

the solution, machine assignment and scheduling the small jobs) are obviously410

polynomial.

Proof of Theorem 2. As we described above we can assume that the number

of the distinct release dates is a constant, thus |T b| is also a constant. The

polynomial time complexity of the algorithm in the size of the input was shown

18

in Lemma 3. According to Lemma 2, the performance ratio of the algorithm is415

(1 + O(ε)), where the constant factor c in O(·) does not depend on the input.

Hence, to reach a desired performance ratio δ, we let ε := δ/c, and perform the

computations with this choice of ε.

Remark 1. Note that if a job is assigned to a v`, then Sj ≥ v` at the end of

the algorithm and each schedule such that this is true cannot hurt the resource420

constraint. Suppose that we fixed a big job assignment and solved the LP. Let

• If j ∈ Sa, then let r̄j := rj.

• If j ∈ Sb ∪ B and ∃` : xj` = 1, then let r̄j := v`.

• Otherwise let r̄j := uq.

After that, use the PTAS of Hall & Shmoys (1989) for the problem P |r̄j |Cmax.425

It is easy to prove that the schedule obtained is feasible and its makespan is at

most (1 + ε) times the makespan of the schedule created by Algorithm A, thus

it is also a PTAS for our problem.The algorithm of Hall and Shmoys works for

arbitrary number of machines, however this number must be a constant when

applied to our problem, otherwise the error bound breaks down.430

6. Pm|rm = const, q = const, rj, ddc|Cmax

Suppose that there is a dedicated machine for each job, or in other words,

the assignment of jobs to machines is given in the input. As before, we can

assume that the number of distinct release dates is a constant. Let Mkj denote

the machine on which we have to schedule Jj and Jk denote the set of jobs435

dedicated to Mk. We can model this problem with the IP (1)-(5) if we drop all

the variables xj`k where k 6= kj . Let us denote this new IP by (1’)-(5’). We

prove that there is a PTAS for this problem. The main idea of the algorithm is

the same as in the previous section, however there are important differences.

Let ε > 0 be fixed, we divide the set of jobs into big and small ones (B440

and S), and schedule them separately. These sets are the same as in Section

19

5. We assign the big jobs to time points in all possible ways (cf. Proposition

1). Notice that since |B| ≤ 1/ε, which is a constant because ε > 0 is fixed,

the number of big job assignments is polynomial in the size of the input. We

do the remaining part of the algorithm for each big job assignment. The first445

difference from the previous PTAS is the following: now we assign each small

job in Sa to its release date and then we create the schedule S1 from this partial

assignment. Let C1
max denote the makespan of S1 and Ik denote the total idle

time on machine k between uq and C1
max (if C1

max ≤ uq, then Ik = 0 for all

k ∈M).450

We need to schedule the small jobs in Sb. We will schedule them in a

suboptimal way and finally we choose the schedule with the lowest makespan.

We will prove that the best solution found by the algorithm has a makespan of

no more than (1 + ε)C∗max and the algorithm has a polynomial complexity.

For a fixed partial schedule we define the following linear program:

min P̄ (13)

s.t.∑
j∈Sb,v`=uq

pjx
small
j`k ≤ Ik + P̄ , k ∈M (14)

∑
k∈M

∑
j∈Sb

∑̀
ν=1

aijx
small
jνk ≤ b̄`i, v` ∈ T b, i ∈ R (15)

∑
j∈Sb

pjx
small
j`k ≤ max{0, v`+1 − C̄B` (k)}+ εpsum, v` ∈ T b, k ∈M (16)

∑
v`∈T

xsmallj`k = 1, j ∈ Sb (17)

xsmallj`k = 0, j ∈ Sb, v` ∈ T such that v` < rj , or v` > uq (18)

P̄ ≥ 0 (19)

xsmallj`k ≥ 0, j ∈ Sb, v` ∈ T . (20)

The variable xsmallj`k exists only if Jj is dedicated to machine k, otherwise the455

notations are the same as before. Our objective (P̄) is to minimize the increase

of the makespan compared to C1
max. The PTAS is as follows:

20

Algorithm B

1. Assign the big jobs to time points v1 through vτ which satisfies Proposi-

tion 1, and for each feasible assignment xbig do steps 2 - 7 :460

2. Assign each small jobs in Sa to its release date. Create the partial schedule

S1 of the big jobs and the jobs in Sa and let C1
max denote its makespan.

3. Define and solve linear program (13)-(20), and let x̄small be an optimal

basic solution.

4. Round each fractional value in x̄small down to 0, and let xsmall := bx̄smallc465

be the resulting partial assignment of small jobs, and U ⊂ Sb the set of

fractional jobs in x̄small .

5. Create a (partial) schedule Spart of the jobs that we have already assigned

to a time period. Let Cpartmax denote the makespan of this schedule.

6. We need to schedule the fractionally assigned small jobs: do the following470

steps for every machine:

i) Order the remaining jobs into an arbitrary order (J1, J2, . . .). We will

schedule these jobs one by one:

ii) Schedule Jj at the earliest idle time after uq in the current schedule.

If necessary, push to the right the later jobs and proceed with the475

next unscheduled job.

7. If the makespan of the complete schedule of all the jobs is better than the

best solution found so far, then update the best solution.

8. After examining each feasible assignment of big jobs, output the best

complete solution found.480

Lemma 4. Every complete solution (xbig , xsmall) constructed by the algorithm

is feasible for (1’)-(5’).

21

Proof. (2’) follows from (15) (the jobs scheduled after uq cannot hurt this con-

straint), while the other constraints obviously met.

Proposition 5. In any basic solution of the linear program (7)-(12), there are485

at most (|R|+ 1) · |T b| fractional jobs.

Proof. Similarly to Proposition 3.

Proposition 6. 1. If a job Jj is assigned to v` at Step 1 or 2, then Spartj ≤

S1
j + min{`− 1, |T b|}εpsum.

2. Cpartmax ≤ max{uq, C1
max}+ P̄ + |T b|εpsum.490

Proof. Similarly to Proposition 4.

Lemma 5. The algorithm constructs at least one complete assignment (xbig , xsmall)

whose value is at most (1 +O(ε)) times the optimum makespan C∗max.

Proof. Consider an optimal schedule S∗ = (x̂big, x̂small) of (1’)-(5’) that satisfy

the condition of Proposition 1. The algorithm will examine x̂big, since it is a495

feasible big job assignment. The partial assignment of the small jobs in Sb in

S∗ determines a feasible solution of (13)-(20), thus max{uq, C1
max}+ P̄ ≤ C∗max.

According to Proposition 6 Cpartmax ≤ max{uq, C1
max} + P̄ + |T b|εpsum, and

Cmax ≤ Cpartmax + (|R| + 1) · |T b|εpsum follows from Proposition 5. Therefore

Cmax ≤ (1 + ((|R|+ 2) · |T b|)mε)C∗max.500

Lemma 6. For any fixed ε > 0, the running time of the algorithm is polynomial

in the size of the input.

Proof. Similarly to Lemma 3.

Theorem 6. There is a PTAS for the problem P |ddc,m = const., rm =

const., q = const.,#{rj : rj < uq} = const.|Cmax.505

Proof. Follows from Lemmas 5 and 6.

22

Remark 2. Suppose that, there is a dedicated machine for each job in a given

set J ′ ⊂ J and we can schedule each job in J \ J ′ on any machine. We still

have a PTAS for this case: the main difference is that at Step 6 we first have

to schedule the jobs in J ′ and then the remaining jobs similarly to Step 6 in510

Algorithm A.

7. Pm|rm = 1, pj = aj, rj|Cmax

Suppose that we have only one resource and pj = aj for each j ∈ J . We

prove that there is a PTAS for this problem even if the number of the supplies

is part of the input and the jobs have release dates. Briefly, the algorithm515

is the following: consider each big job assignment in turn, and for each of

them we guess approximately the makespan by a logarithmic search, and try to

schedule the small jobs within the guessed makespan. Let pSsum denote the total

processing time of the small jobs. Formally, the algorithm is as follows:

Algorithm C520

1. Assign the big jobs to time points v1 through vτ and to machines 1 to

|M| in all possible ways which satisfy Proposition 1, and for each feasible

assignment xbig do steps 2 - 4 :

2. Create a partial schedule Spart of the big jobs. Let Cpartmax denote the

makespan of this schedule.525

3. Let C−max := max{vτ , Cpartmax } and C+
max := C−max + pSsum/m + 2εpsum. Do

logarithmic search for Cmax:

i) If C−max ≥ C+
max, then return with the best schedule found so far.

ii) Let C̄max := b(C−max+C+
max)/2c. Invoke Algorithm C2 with the partial

schedule and C̄max.530

iii) If the output of Algorithm C2 is a complete schedule, then let C+
max :=

C̄max and go to Step 3i.

23

iv) If the output is ’NO’, then let C−max := C̄max + 1 and go to Step 3i.

4. If the makespan of the complete schedule of all the jobs is better than the

best solution found so far, then update the best solution.535

5. After examining each feasible assignment of big jobs, output the best

complete solution found.

Algorithm C2

Input: a partial schedule and C̄max.

Output: a feasible complete schedule (that ’contains’ the partial schedule)540

with a makespan of C̄max or ’NO’.

1. If Cpartmax > C̄max, then stop with the answer ’NO’. Otherwise, put the

remaining (small) jobs into an ordered list in a non-increasing release date

order: J1, J2, We will schedule these jobs as follows:

2. Let Ck := C̄max for all k ∈M. For ` = τ, τ − 1, . . . , 1 do Step 3.545

3. For k = 1, . . . ,m do the following steps:

i) Let t be the maximal index such that the total processing time of the

first t jobs from the ordered list is at most Ck − C̄B` (k).

ii) Schedule the first t jobs on machine k before Ck without idle time

and delete them from the ordered list. Push to the right the big jobs550

assigned to v` so that there will be no idle time after them. If this new

partial schedule hurts (2) or (4) then return with ’NO’. Otherwise, let

Ck be the starting time of the first job that starts after v` on machine

k.

4. If we have scheduled every job, then return with this complete schedule.555

Otherwise return with ’NO’.

See Figure 2 for an illustration.

24

M3 t

M2

M1

v2v1 v3 Cpartmax

t

v2v1 v3 C̄max

Figure 2: A partial schedule on the left and the schedule was created by Algorithm C2 after

` = 2 on the right.

Remark 3. It is enough to consider only the integer solutions, since by delaying

some jobs less than one can cause at most O(ε)C∗max increase in the objective

function: we have assumed (Assumption 2) that ε > 1/n, thus ε > 1/(mC∗max),560

therefore C∗max + 1 = C∗max(1 + 1/C∗max) < C∗max(1 +mε).

Lemma 7. Every complete schedule constructed by Algorithm C is feasible for

(1)-(5).

Proof. Algorithm C only examines feasible big job assignments, while Algorithm

C2 does not give a schedule that hurts (2), thus every complete schedule is565

feasible for (2). Any complete schedule found is obviously feasible for the other

constraints.

Observation 6. For every k ∈M, if there is at least one unscheduled small job

after Algorithm C2 updates Ck in some iteration `, then max{C̄B`−1(k), v`} ≤

Ck ≤ max{C̄B`−1(k), v`}+ εpsum.570

Proposition 7. If C̄max ≥ C∗max + εpsum and the partial schedule Spart is part

of an optimal schedule (i.e. every big job is assigned to the same v` in S∗ and

Spart), then Algorithm C2 returns a feasible schedule of makespan C̄max.

Proof. Let S∗ be an optimal schedule. Since C̄max ≥ C∗max ≥ Cpartmax , thus the

algorithm does not stop at Step 1. For every ` = q, q − 1, . . . , 1, the algorithm575

can do three things at Step 3: (i) creates a schedule without any idle time

between Ck and C̄max (∀k ∈M); (ii) schedules every small job after v`; or (iii)

returns with ’NO’.

25

Claim 4. For every `, the total resource requirement (processing time) of the

small jobs starting after v` in S∗ is at most the total resource requirement of the580

small jobs scheduled after v` by the algorithm.

Proof. If every small job is scheduled by the algorithm after v`, then the claim

is trivial. Otherwise each machine is working between Ck and C̄max. Since

C̄max ≥ C∗max + εpsum, the statement follows from Observation 6.

Therefore the algorithm cannot hurt (2) or (4) at Step 3. Applying Claim585

4 with ` = 1 we get that every small job is scheduled in this case, thus the

proposition follows.

Proposition 8. If the partial schedule Spart is part of an optimal schedule,

then C∗max ≤ max{vτ , Cpartmax }+ pSsum/m+ εpsum.

Proof. Create schedule S′ from Spart as follows: put the small jobs in arbitrary590

order, and schedule them one by one at the earliest possible time moment after

max{vτ , Cpartmax } on any machine. Since the difference between the finishing time

of two arbitrary machines is at most εpsum, then the makespan of S′ is at most

max{vτ , Cpartmax } + pSsum/m + εpsum. Since S′ is feasible, thus the proposition

follows.595

Lemma 8. Algorithm C constructs at least one complete schedule whose makespan

is at most (1 +O(ε))C∗max.

Proof. Let S∗ be an optimal schedule that satisfies the condition of Proposition

1. The algorithm will examine its big job assignment since it is feasible. If

C̄max ≥ C∗max + εpsum, then Algorithm C2 creates a feasible schedule (Propo-600

sition 7) with a makespan of C̄max. We claim that Algorithm C invokes Algo-

rithm C2 with C̄max = C∗max +dεpsume = (1+O(ε))C∗max (since psum ≤ mC∗max).

However this claim follows from Proposition 8 since max{vτ , Cpartmax } ≤ C∗max ≤

max{vτ , Cpartmax }+ pSsum/m+ εpsum, thus C−max ≤ C∗max + dεpsume ≤ C+
max.

Lemma 9. For any fixed ε > 0, the running time of Algorithm C is polynomial605

in the size of the input.

26

Proof. The number of the big jobs is at most 1/ε, thus the number of the big

job assignments is polynomial. For a fixed big job assignment the algorithm

invokes Algorithm C2 at most dlog(pSsum/m+ εpsum)e times. The running time

of Algorithm C2 is at most O(n log n+ qmn).610

Theorem 7. There is a PTAS for the problem Pm|rm = 1, pj = aj |Cmax.

Proof. Follows from Lemmas 7, 8 and 9.

8. P |rm = 1, pj = aj, rj, ddc|Cmax

In this section we sketch a PTAS for the problem of Section 7 in case of

dedicated machines. We only have to modify the Algorithm C and C2 at some615

steps:

• At Step 1 in Algorithm C, we do not have to assign the big jobs to ma-

chines. At Step 3, let C+
max := maxk∈M{Cpartmax (k) +

∑
j∈Sk pj} + εpsum,

where Cpartmax (k) is the finishing time of machine k in Spart and Sk := Jk∩S.

• At Step 1 in Algorithm C2, we create m lists, the list k contains the small620

jobs dedicated to machine k. At Step 3 we always choose (and delete) jobs

from the appropriate list.

The proofs are similar to those in Section 7. We can generalize this result

in case of partly dedicated jobs as before.

Appendix625

Proof of Proposition 1. Let J a(x̂) be the subset of jobs with x̂j`k = 1 for some

v` > uq and k ∈ M. We define a new solution x̃ in which those jobs in J a(x̂)

are reassigned to new time points (but to the same machine) and show that

Cmax(x̃) ≤ Cmax(x̂). Let x̃ ∈ {0, 1}J×T ×M be a binary vector which agrees

with x̂ for those jobs in J \ J a(x̂). For each j ∈ J a(x̂), let x̃j`k = 1 for

v` = max{uq, rj} and for a k such that ∃`′ : x̂j`′k = 1, and 0 otherwise. We

claim that x̃ is a feasible solution of (1)-(5), and that Cmax(x̃) ≤ Cmax(x̂).

27

Feasibility of x̃ follows from the fact that uq is the last time point when some

resource is supplied, and that no job is assigned to some time point before its

release date. As for the second claim, consider the objective function (1). We

will verify that for each k ∈M and ` = 1, . . . , τ ,

v` +
∑
j∈J

τ∑
ν=`

pj x̃jνk ≤ v` +
∑
j∈J

τ∑
ν=`

pj x̂jνk, (21)

from which the claim follows. If v` ≤ uq, the left and the right-hand sides in (21)

are equal. Now consider any ` with v` > uq. Since no job in J a(x̂) is assigned

to a later time point in x̃ than in x̂, the inequality (21) is verified again.

Proof of Proposition 2. Suppose (x̂big , x̂small) is an optimal solution which does

not meet the property claimed. Without loss of generality, we may assume that630

in the optimal schedule corresponding to (x̂big , x̂small), for each vk ∈ T , small

jobs assigned to vk follow the big ones assigned to vk. Let v` ∈ T b be the

smallest time point for which (6) is violated. Then some small jobs assigned

to v` necessarily start after v`+1 in any schedule corresponding to (x̂big , x̂small).

Since all small jobs are of processing time less than εpsum, we can reassign some635

of the small jobs from time point v` to v`+1 until (6) is satisfied for v`. Clearly,

such a reassignment of small jobs does not increase the length of the schedule.

Then we proceed with the next time point in T until we get a schedule meeting

(6).

Acknowledgments640

This work has been supported by the OTKA grant K112881, and by the

National Development Agency, Hungary, Grant No. ED 13-2-2013-0002. The

research of Tamás Kis has been supported by the János Bolyai research grant

BO/00412/12/3 of the Hungarian Academy of Sciences.

Briskorn, D., Choi, B.-C., Lee, K., Leung, J., & Pinedo, M. (2010). Complexity645

of single machine scheduling subject to nonnegative inventory constraints.

European Journal of Operational Research, 207 , 605–619. doi:10.1016/j.

ejor.2010.05.036.

28

http://dx.doi.org/10.1016/j.ejor.2010.05.036
http://dx.doi.org/10.1016/j.ejor.2010.05.036
http://dx.doi.org/10.1016/j.ejor.2010.05.036

Briskorn, D., Jaehn, F., & Pesch, E. (2013). Exact algorithms for inventory

constrained scheduling on a single machine. Journal of Scheduling , 16 , 105–650

115. doi:10.1007/s10951-011-0261-x.

Carlier, J. (1984). Problèmes d’ordonnancements à contraintes de ressources:

algorithmes et complexité. Thèse d’état . Université Paris 6.

Carlier, J., & Rinnooy Kan, A. H. G. (1982). Scheduling subject to nonrenewable

resource constraints. Operational Research Letters, 1 , 52–55. doi:10.1016/655

0167-6377(82)90045-1.

Gács, P., & Lovász, L. (1981). Khachiyan’s algorithm for linear programming.

Mathematical Programming Studies, 14 , 61–81.

Gafarov, E. R., Lazarev, A. A., & Werner, F. (2011). Single machine schedul-

ing problems with financial resource constraints: Some complexity results660

and properties. Mathematical Social Sciences, 62 , 7–13. doi:10.1016/j.

mathsocsci.2011.04.004.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide

to the Theory of NP-Completeness. San Francisco, LA: Freeman.

Grigoriev, A., Holthuijsen, M., & van de Klundert, J. (2005). Basic scheduling665

problems with raw material constraints. Naval Research of Logistics, 52 ,

527–553. doi:10.1002/nav.20095.

Györgyi, P., & Kis, T. (2014). Approximation schemes for single machine

scheduling with non-renewable resource constraints. Journal of Scheduling ,

17 , 135–144. doi:10.1007/s10951-013-0346-9.670

Györgyi, P., & Kis, T. (2015a). Approximability of scheduling problems with

resource consuming jobs. submitted , (pp. –).

Györgyi, P., & Kis, T. (2015b). Reductions between scheduling problems with

non-renewable resources and knapsack problems. Theoretical Computer Sci-

ence, 565 , 63–76. doi:10.1016/j.tcs.2014.11.007.675

29

http://dx.doi.org/10.1007/s10951-011-0261-x
http://dx.doi.org/10.1016/0167-6377(82)90045-1
http://dx.doi.org/10.1016/0167-6377(82)90045-1
http://dx.doi.org/10.1016/0167-6377(82)90045-1
http://dx.doi.org/10.1016/j.mathsocsci.2011.04.004
http://dx.doi.org/10.1016/j.mathsocsci.2011.04.004
http://dx.doi.org/10.1016/j.mathsocsci.2011.04.004
http://dx.doi.org/10.1002/nav.20095
http://dx.doi.org/10.1007/s10951-013-0346-9
http://dx.doi.org/10.1016/j.tcs.2014.11.007

Hall, L., & Shmoys, D. B. (1989). Approximation schemes for constrained

scheduling problems. In Proceedings of the 30th Annual Symposium on Foun-

dations of Computer Science (pp. 134–139). IEEE. doi:10.1109/SFCS.1989.

63468.

Laborie, P. (2003). Algorithms for propagating resource constraints in ai plan-680

ning and scheduling: Existing approaches and new results. Artificial Intelli-

gence, 143 , 151–188. doi:10.1016/S0004-3702(02)00362-4.

Morsy, E., & Pesch, E. (2015). Approximation algorithms for inventory con-

strained scheduling on a single machine on the same problem. Journal of

Scheduling , (pp. –). doi:10.1007/s10951-015-0433-1.685

Neumann, K., & Schwindt, C. (2003). Project scheduling with inventory

constraints. Mathematical Methods of Operations Research, 56 , 513–533.

doi:10.1007/s001860200251.

Slowinski, R. (1984). Preemptive scheduling of independent jobs on parallel

machines subject to financial constraints. European Journal of Operational690

Research, 15 , 366–373. doi:10.1016/0377-2217(84)90105-X.

Toker, A., Kondakci, S., & Erkip, N. (1991). Scheduling under a non-renewable

resource constraint. Journal of the Operational Research Society , 42 , 811–814.

doi:10.2307/2583664.

30

http://dx.doi.org/10.1109/SFCS.1989.63468
http://dx.doi.org/10.1109/SFCS.1989.63468
http://dx.doi.org/10.1109/SFCS.1989.63468
http://dx.doi.org/10.1016/S0004-3702(02)00362-4
http://dx.doi.org/10.1007/s10951-015-0433-1
http://dx.doi.org/10.1007/s001860200251
http://dx.doi.org/10.1016/0377-2217(84)90105-X
http://dx.doi.org/10.2307/2583664

	Introduction
	Main results
	Structure of the paper
	Terminology

	Previous work
	A mathematical program
	APX-hardness of P|rm=2, q=2, pj=1|Cmax
	PTAS for Pm|rm=const,q=const, rj|Cmax
	Pm|rm=const,q=const,rj,ddc|Cmax
	Pm|rm=1,pj=aj,rj|Cmax
	P|rm=1,pj=aj,rj,ddc|Cmax

