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Abstract

Background: Computational fusion approaches to drug-target interaction (DTI)
prediction, capable of utilizing multiple sources of background knowledge, were
reported to achieve superior predictive performance in multiple studies. Other
studies showed that specificities of the DTI task, such as weighting the
observations and focusing the side information are also vital for reaching top
performance.

Method: We present Variational Bayesian Multiple Kernel Logistic Matrix
Factorization (VB-MK-LMF), which unifies the advantages of (1) multiple kernel
learning, (2) weighted observations, (3) graph Laplacian regularization, and (4)
explicit modeling of probabilities of binary drug-target interactions.

Results: VB-MK-LMF achieves significantly better predictive performance in
standard benchmarks compared to state-of-the-art methods, which can be traced
back to multiple factors. The systematic evaluation of the effect of multiple
kernels confirm their benefits, but also highlights the limitations of linear kernel
combinations, already recognized in other fields. The analysis of the effect of
prior kernels using varying sample sizes sheds light on the balance of data and
knowledge in DTI tasks and on the rate at which the effect of priors vanishes.
This also shows the existence of “small sample size” regions where using side
information offers significant gains. Alongside favorable predictive performance, a
notable property of MF methods is that they provide a unified space for drugs
and targets using latent representations. Compared to earlier studies, the
dimensionality of this space proved to be surprisingly low, which makes the latent
representations constructed by VB-ML-LMF especially well-suited for visual
analytics. The probabilistic nature of the predictions allows the calculation of the
expected values of hits in functionally relevant sets, which we demonstrate by
predicting drug promiscuity. The variational Bayesian approximation is also
implemented for general purpose graphics processing units yielding significantly
improved computational time.

Conclusion: In standard benchmarks, VB-MK-LMF shows significantly improved
predictive performance in a wide range of settings. Beyond these benchmarks,
another contribution of our work is highlighting and providing estimates for
further pharmaceutically relevant quantities, such as promiscuity, druggability and
total number of interactions.

Availability: Data and code are available at http://bioinformatics.mit.bme.hu.

Keywords: drug-target interaction prediction; matrix factorization; multiple
kernel learning; variational Bayes; probabilistic graphical models
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Background
Drug-target interactions (DTI) or compound-protein interactions (CPIs) have be-

come a focal point in chemo- and bioinformatics. There are many factors behind

this trend, such as the direct, quantitative nature of bioactivity data [1], its unprece-

dented amount, public availability [2, 3], and variety including also phenotypic and

content-rich assays and screenings [4]. Further factors are the semantic, linked open

nature of the data [5, 6], collaborative initiatives in the pharmaceutical policy [1]

and the construction of DTI benchmarks [7, 8, 9, 10, 11, 12, 13].

An additional factor is the varying granularity and multiple facets of the DTI task:

it was already attacked in the 90’s in single target scenarios, e.g. by using neural

networks of that time [14] and subsequently by kernel methods [15, 16]. A series of

similarity-based methods were also developed for virtual screening [17, 18, 19]; in the

early 2000’s molecular docking became popular [20, 21]; from the late 2000’s matrix

factorization methods were developed [7, 22, 23]. As the importance of data and

knowledge integration in drug discovery was further emphasized [24, 25, 26, 1], the

incorporation of prior knowledge in DTI became mainstream and indeed improved

predictive performance [23, 27, 28, 29].

Computational data and knowledge fusion approaches in the DTI problem seem

to be especially relevant, as the growth of DTI datasets is limited by experimental

and publication time and cost, while the cross-linked repertoire of side information

expands at an enormous rate. This grand pool of information complementing the

DTI data and the full scope of the DTI fusion challenge is best illustrated by the

drug repositioning problem [30, 31]. In repositioning, i.e. in the finding of a novel

indication for an already marketed drug, extra information sources could also be

used, such as off-label drug usage patterns, patient-reported adverse-effects and

official side-effects [32]. Notably, this information pool can be linked back to early

stage compound discovery [33].

In this paper we investigate the multiple kernel-based fusion approach to the DTI

task from a computational fusion perspective, by adopting widely used benchmark

datasets, implementations and evaluation methodologies from Yamanishi et al. [7],

Gönen [22], Pahikkala et al. [8] and Liu et al. [34]. Our contributions are as follows:

1 VB-MK-LMF: We present a Bayesian matrix factorization method with a

novel variational Bayesian approximation, which unifies multiple kernel learn-

ing, importance weight for (positive) observations, network-based regulariza-

tion and explicit modeling of probabilities of drug-target interactions.

2 Performance in benchmarks: We report the results of a comparison against

three leading solutions using two benchmark datasets, in which VB-MK-LMF

achieved significantly better performance in most settings.

3 Effect of multiple kernels: We systematically investigate factors behind its top

performance, such as the type of the kernels, the role of neighborhood restric-

tion and Bayesian averaging. Finally, we evaluate the effect of priors using

varying sample sizes highlighting the regions where using side-information

improves predictive performance.

4 Posteriors for promiscuity and druggability: We show that probabilistic pre-

dictions from VB-MK-LMF can be used to quantify the expected values for

promiscuity or the number of hits in a DTI task.
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5 Dimensionality of the unified “pharmacological” space: We investigate the

learned unified latent representations of drugs and targets, and contrary to

many studies we argue that drastically smaller dimensions are sufficient. We

discuss the possibility that this low dimension, around 10, could be utilized

in visual analytics and exploratory data analysis.

6 Accessibility: We report the adaptation of the developed variational Bayesian

approximation to general purpose graphics processing units (GP-GPU). Eval-

uations show that 30× speed-up can be achieved using a standard GP-GPU

environment. To support the development of current DTI benchmarks to-

wards “computational DTI fusion”, we release the applied kernels, code and

parameter settings for academic use.

Figure 2 shows the overview of Variational Bayesian Multiple Kernel Logistic

Matrix Factorization (VB-MK-LMF).

Related works

To give an overview about related, earlier works [7, 35, 36, 37, 38, 39, 40, 27, 41, 28,

42, 43, 23, 44, 45, 29, 46, 47, 48, 49, 50, 51, 52, 53], we summarize the main properties

of their applied datasets, side information, methods and evaluation methodologies

in Additional file 2).

DTI data

Drug-target interaction data has become a fundamental resource in pharmaceuti-

cal research, which can be attributed to its public availability in and open, linked

format, see e.g. [5, 54, 6, 55, 56, 1, 57]. The relative objectivity of interaction ac-

tivities and the side information about drugs and targets renders a unique status

to the comprehensive tabular DTI data, even compared to media and e-commerce

data [58], despite the issues of quality [59, 60], duality of commercial and public

repositories [61, 62, 63] and selection bias related to the lack of negative samples [12]

and promiscuity [64]. However, at present the heterogeneous, real-valued activity

data are usually treated as binary relations, even though the use of raw data together

with information about the measurement context is expected in more realistic DTI

prediction scenarios [8, 45, 51]. Another largely overlooked property of the binary

drug-target interaction data is its possibly indirect nature, which influences the ap-

plicable target-target similarities, e.g. in the indirect case protein-protein networks

may have relevance (for the explicit treatment of direct and indirect relations, see

e.g. RBM [44]).

DTI prior knowledge

The molecular similarity property principle [65, 66], the drug-likeliness of a com-

pound [67, 68] and druggability of proteins [69] are essential concepts in the broader

drug discovery context, together with molecular docking [20, 21] and binding site,

pocket predictors [70], if structure information is available. However, their use as

priors in the computational DTI task is still largely unexplored. If the goal is the

discovery of indirect drug-target interactions, possibly including multiple paths,

which are especially relevant in polypharmacology [71], then the use of molecular

interaction and regulatory networks alongside protein-protein similarities is another

open issue.



Bolgár and Antal Page 4 of 22

Chemical similarity, the most widespread source of prior knowledge in DTI, was

the basis of many “guilt-by-association” approaches in chemo- and bioinformat-

ics. Earlier investigations helped to understand the use of multiple, heterogeneous

representations, similarity measures and introduced the concept of fusion methods

in ligand-based virtual screening [17, 18, 72, 73, 74]. Beyond chemical similarities,

target-based similarities can also be used to exceed activity cliffs [32]; moreover,

side-effect based and off-label usage based similarities can be constructed for com-

pounds using FDA-approved drugs as canonical bases in a group-representation [33].

Target-target similarities are another diverse and voluminous source of prior in-

formation, which can be defined using sequence similarities, common motifs and

domains, phylogenetic relations or shared binding sites and pockets [70]. In case of

indirect drug-target interactions, a broader set of target-target similarities could be

based on relatedness in pathways, protein-protein networks and functional annota-

tions, e.g. from Gene Ontology [75].

We concentrate on predicting presumably direct activities in this paper, thus we

demonstrate the capability of the developed method and the effect multiple infor-

mation sources using multiple chemical similarities, although the method can incor-

porate symmetrically multiple target-target similarities. Furthermore, the method

can also incorporate separate prior expectations about the success rates of drugs in

a given DTI, which could be combined with drug-likeliness [76], promiscuity pre-

diction [77] and decoy prediction in case of their use [78]. Symmetrically, it can also

incorporate separate prior expectations about the success rates of targets in a given

DTI, which could be combined with druggability predictions [69, 79, 80] and the

presence of pockets [81]. For an overview of available resources relevant for the DTI

task, see e.g. [82, 83].

DTI methods

The rapid growth, especially the public availability of tabular (dyadic) DTI data in

the last decade caused a dramatic shift of the applied statistical methods. For an

overview of classical single prediction oriented machine learning and data mining

in drug discovery, especially in DTI and ADME predictions, see e.g. [84], for large-

scale, comprehensive applications of DTI data, see e.g. [85]. The tabular nature of

the DTI data called for new methods not only handling this type of data natively,

but also capable of using side information. Transfer learning and multitask learning

paradigms addressed this challenge [86, 87, 8], but in the DTI context, two groups

of methods, the pairwise conditional methods and the matrix factorization based

generative methods proved to be particularly successful.

Pairwise conditional approaches or pairwise kernel methods flatten the dyadic

structure of the DTI data and use drug and target descriptors, optionally even

explanatory descriptors about the drug-target relations to predict interaction prop-

erties of drug-target pairs (for the assumptions behind the conditional approach,

see e.g. [88], for its early DTI application, see e.g. [89]). Classification and regres-

sion methods, such as MLPs, decision trees and SVMs remain directly applicable in

this conditional approach (not modeling the distribution of the drug-target pairs),

however, the high number of drug-target pairs is challenging for kernel based meth-

ods [90, 50], but recent developments in deep learning show promising results [91].
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Using multiple representations for drugs and targets is directly possible in this

pairwise approach, but the construction of an aggregate pair-pair (interaction-

interaction) similarity or an efficient set of pair-pair similarities from drug-drug

and target-target similarities is an open problem. In the case of single drug-drug

and target-target similarities, the Kroneckerian combination was proposed in the

work of van Laarhooven [90] with corresponding computational simplifications to

maintain scalability. Additionally, kernel techniques were extended to use multi-

ple kernels, which are potentially derived from heterogeneous representations and

similarities [50]. Recent extensions include non-linear kernel fusion in the RLS-KF

system [49] and using boosting to learn from unscreened controls [53].

Matrix factorization (MF) methods differ from pairwise approaches in multiple

properties crucial in the DTI task. The central operation of these methods is the

construction of a joint space with latent factors for drugs and targets and modeling

their interactions based on the inner product of the respective vectorial represen-

tations. Contrary, pairwise approaches, such as kernel methods or deep learning

cannot directly exploit the tabular prior constraint of the data. The MF approach

also allows the direct incorporation of drug-drug similarities and target-target sim-

ilarities. Additionally, the low dimensionality of the latent space supports data

visualization, although its interpretation is still in its infancy. Finally, probabilistic

MF methods construct a distribution over the latent representations of drugs and

targets, which in fact means that they are full-fledged generative models.

Matrix factorization methods were adopted early in gene expression data analy-

sis [92, 93]. They were used for dimensionality reduction and the construction of

a unified space for ligands and receptors [94], applied in biomedical text-mining

and [95] and chemogenomics [96]. Later in the 2000’s media and e-commerce rec-

ommendation applications dominated the research of matrix factorization meth-

ods [97] and many developments were motivated and reported in these contexts,

such as solutions for new items without interactions, selection bias, model regular-

ization, automated parameter selection and incorporation of side information from

multiple sources. An early work from Srebro et al. addressed the problems of us-

ing weights to represent importance or trust in the observations and the use of

logistic regression as a non-linear transformation to predict probabilities of binary

observations [98]. A special weighting of observations compared to unknowns were

investigated in [99]. Salakhutdinov introduced Bayesian matrix factorization, which

addressed regularization and automated parameter selection by Bayesian model

averaging, also indicating the principled and flexible options for prior incorpora-

tion [100]. Severinski demonstrated the advantages of the full Bayesian approach

versus a Maximum a Posteriori based alternative in this context [101]. Zhou intro-

duced Gaussian process priors over the latent dimensions to enforce two kernels over

row and column items [102]. Lobato et al. reported a variational Bayesian approach

for logistic matrix factorization [103].

In the DTI context, an early kernel regression-based method (KRM) was re-

ported in [7], and emphasized the advantages of a unified “pharmacological space”.

Gönen introduced a kernelized Bayesian matrix factorization (KBMF) [22], which

applies kernel-based averaging over the latent vectorial representations of rows and

columns. The paper also introduced an efficient variational Bayesian approxima-

tion and indicated the interpretability of the latent space. Zheng et al. proposed a
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non-probabilistic multiple kernel learning approach, which achieved superior per-

formance [23]. Multiple kernel learning was also realized in KBMF [27] and was also

extended towards regression [104]. Special non-missing-at-random DTI data mod-

els were proposed in [51], which applied Gaussian priors to incorporate multiple

kernels and used Gibbs sampling to approximate the posteriors. In an integrative

work, Liu et al. proposed the combination of special neighborhood restricted kernels,

network-based regularization, importance weights for the observations and logistic

link functions in a non-Bayesian framework [47]. A recent extension applied a non-

linear kernel diffusion technique to boost relevant, complementary information in

similarity matrices [48].

DTI benchmarks

The most widely used DTI benchmark from Yamanishi et al. [7] defined DTI pre-

diction as a binary prediction problem with a single source of drug-drug and a

target-target similarity, which induced the development of variety of methods and

datasets (see Additional file 2). These datasets are still in the range of 1000× 1000

and contain 10k interactions, but they inherit the problem of the selection bias

present in the DTI repositories [12, 64, 105, 106, 11, 82]. Pahikkala et al. stressed

the importance of fully observed bioactivity values in benchmarks [8], such as from

Davis [9], to avoid misleading results because of selection bias, indirect interactions

and the binary nature of the interactions. Liu et al. [47] reported a comprehen-

sive evaluation of methods and released a corresponding benchmark implementa-

tion, the pyDTI package. For real, experimental evaluation of DTI methods, see

e.g. [107, 108].

Methods
Our work directly builds upon Gönen’s work on kernel-based matrix factorization

using twin kernels (KBMF-MKL), which applied variational Bayesian approxima-

tions [27]. Another direct predecessor of our work is Liu et al’s neighborhood regu-

larized logistic matrix factorization [47].

Materials

To maintain consistency with earlier works, we evaluated the methods on the data

sets provided by Yamanishi et al. [7] and Pahikkala et al. [8]. While the latter comes

with multiple similarity matrices based on various molecular fingerprints, the for-

mer is one-kernel and therefore needed to be extended to properly test the MKL

performance. We used the RDKit package [109] to compute additional MACCS and

Morgan fingerprints for the molecules and used these in conjunction with the Tani-

moto and Gaussian RBF similarity measures. Target similarities were obtained from

Nascimento et al. [50] which utilized sequential, GO- and PPI-based similarities.

Probabilistic model

Let R ∈ {0, 1}I×J denote the matrix of the interactions, where Rij = 1 indicates

a known interaction between the ith drug and jth target. In order to formulate

a Bayesian model, we put a Bernoulli distribution on each Rij with parameter

σ(uTi vj) where σ is the logistic sigmoid function and ui, vj are the ith and jth
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columns of the respective factor matrices U ∈ RL×I and V ∈ RL×J . One can

think of ui and vj as L-dimensional latent representations of the ith drug and jth

target, and the a posteriori probability of an interaction between them is modeled

by σ(uTi vj).

Similarly to NRLMF, we utilize an augmented version of the Bernoulli distri-

bution parameterized by c ≥ 1 which assigns higher importance to observations

(positive examples). NRLMF also uses a post-training weighted average to infer in-

teractions corresponding to empty rows and columns in R (i.e. these would have to

be estimated without using any corresponding observations). We account for them

by introducing variables mu,mv ∈ {0, 1} indicating whether the row or column is

empty. In these cases, only the side information will be used in the prediction. The

conditional on the interactions can be written as

p(R | U,V, c,mu,mv) ∝
∏
i

∏
j

[(
σ
(
uTi vj

))cRij
(
1− σ

(
uTi vj

))1−Rij
]mu

i m
v
j

.

(1)

Specifying priors on U and V presents an opportunity to incorporate multiple

sources of side information. In particular, we can use a Gaussian distribution with

a weighted linear combination of kernel matrices Kn, n = 1, 2, . . . in the precision

matrix, which corresponds to a combined L2-Laplacian regularization scheme [36]

p(U | αu, γu,Ku) ∝
∏
i

∏
k

exp

{
−1

2

∑
n

γunKu
n,ik ‖ui − uk‖2

}
·
∏
i

exp

{
−α

u

2
‖ui‖2

}
.

(2)

The prior on V can be written similarly. To automate the learning of the optimal

value of kernel weights γun , we introduce another level of uncertainty using Gamma

priors:

p(γun | a, b) =
ba(γun)a−1e−bγ

u
n

Γ(a)
. (3)

Variational approximation

In the Bayesian approach, the combination of data R and prior knowledge through

kernel matrices Kn and hyperparameters defines the posterior

p(U,V, γu, γv|R,Ku
n, a

u, bu,R,Kv
n, a

v, bv, αu, αv, c).

In the variational setting [110], we obtain an approximation

q(U,V, γu, γv)
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by maximizing a lower bound on the expectation

p(R) =

∫
p(R | U,V)p(U | γu)p(V | γv)p(γu)p(γv)dUdVdγudγv,

with respect to U, V, γu, γv, where we suppressed the hyperparameters for nota-

tional simplicity. This is achieved by using a factorized variational distribution

q(U,V, γu, γv) = q(U)q(V)q(γu)q(γv)

and using the equality

ln p(R) = L(q) +KL (q || p) ,

where KL(· || ·) is the Kullback–Leibler divergence and L(·) is the expectation

lower bound. In particular,

L(q) =

∫
q(U)q(V)q(γu)q(γv) ln

{
p(R,U,V, γu, γv)

q(U)q(V)q(γu)q(γv)

}
dUdVdγudγv,

which is the quantity we aim to maximize with respect to q as it means an improved

approximation to the posterior (note that the quantity ln p(R) on the left side is

constant).

The optimal distribution satisfies

ln q∗(U) = EV,γu,γv [ln {p(R | U,V)p(U | γu)p(V | γv)p(γu)p(γv)}] + const.

which is non-conjugate due to the form of p(R | U,V) and therefore the integral

is intractable. However, by using Taylor approximation on the symmetrized logistic

function (Jaakkola’s bound [111, 103])

σ(z) ≥ σ̃(z, ξ) = σ(ξ) exp

{
z − ξ

2
− 1

2ξ

(
σ(ξ)− 1

2

)(
z2 − ξ2

)}
,

we can lower bound p(R | U,V) at the cost of introducing local variational parame-

ters ξij , yielding a new bound L̃ which contains at most quadratic terms. Collecting

the terms containing U gives (see the proof in Additional file 1):

ln q∗(U) = −1

2
tr
(
UTQuU

)
+
∑
i

uTi

∑
j

R̂ij ξ̂ijE
[
vjv

T
j

]ui +
∑
i

uTi

∑
j

R′ijE [vj ]


where

Qu =
E [γu]

2

(
KuT1−Ku

)
+
αu
2

I,

ξ̂ij = − 1

2ξij

(
σ(ξij)−

1

2

)
,

R̂ij = mu
i m

v
j ((c− 1)Rij + 1) ,

R′ij = mu
i m

v
j cRij +

1

2
R̂ij .
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Since this expression is quadratic in vec(U), we conclude that q∗ is Gaussian and

the parameters can be found by completing the square. In particular,

q∗(vec(U)) = N (vec(U) | φ,Λ−1)

Λ = Qu ⊗ I− 2 · blkdgi

∑
j

R̂ij ξ̂ijE
[
vjv

T
j

] , (4)

φ = Λ−1veci

∑
j

R′ijE [vj ]

 , (5)

where blkdgi denotes the operator creating an L · I × L · I block-diagonal matrix

from I L×L-sized blocks. The variational update for q(V) can be derived similarly.

The most computationally intensive operation is computing

E
[
vjv

T
j

]
= Cov(vj) + E [vj ]E [vj ]

T
(6)

which requires the inversion of Λ, performed using blocked Cholesky decomposition.

The optimal value of the local variational parameters ξij can be computed by writ-

ing the expectation of the joint distribution in terms of ξ and setting its derivative

to zero. In particular,

L̃(ξ) =
∑
i

∑
j

R̂ij

(
lnσ(ξij)−

ξij
2
− 1

2ξij

(
σ(ξij)−

1

2

)(
ξ2ij − E

[(
uTi vj

)2]))
,

from which [112, 103]

ξ2ij = E
[(

uTi vj
)2]

=
(
E [ui]

T
E [vj ]

)2
+
∑
l

E [Uli]
2
V [Vlj ] + V [Uli]E [Vlj ]

2
+ V [Uli]V [Vlj ] .

(7)

Since the model is conjugate with respect to the kernel weights, we can use the

standard update formulas for the Gamma distribution

q∗(γun) = Gamma(γun | a′, b′)

a′ = a+
I2

2
(8)

b′ = b+
1

2
EU

[∑
i

∑
k

Ku
n,ik ‖ui − uk‖2

]

= b+
1

2

∑
i

∑
k

Ku
n,ik

(
E
[
uTi ui

]
− 2E

[
uTi uk

]
+ E

[
uTk uk

])
, (9)

which also requires the explicit inversion of Λ. Figure 1 shows the pseudocode of

the algorithm.
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Results
We present the results of a systematic comparison with KBMF-MKL [27],

NRLMF [47] and KronRLS-MKL [50]. Subsequently, our results show the effect

of prior knowledge fading with increasing data size.

Experimental settings

Predictive performance was evaluated in a 5× 10-fold cross-validation framework.

To maintain consistency with the evaluations in earlier works, we utilized the CVS1-

CVS2-CVS3 settings as presented in [47] and calculated the average AUROC and

AUPRC values in each scenario. In particular, CVS1 corresponds to evaluating

predictive performance after randomly blinding 10% of the interactions and using

them as test entities. CVS2 corresponds to random drugs (entire rows blinded) and

CVS3 corresponds to random targets. We used the same folds as the PyDTI tool

to maximize comparability.

In the single-kernel setting, we compared the performance of the proposed method

to KBMF, NRLMF and KronRLS. The optimal parameters for NRLMF were ob-

tained from the original publication [47]. KBMF and KronRLS were parameterized

using a grid search method. VB-MK-LMF was used with 3 neighbors in each kernel,

αu = αv = 0.1, au = av = 1, bu = bv = 103 and c = 10. The number of latent

factors was set to L = 10 in the Nuclear Receptor dataset and L = 15 in the oth-

ers, and a more detailed investigation of this parameter was also conducted. The

number of iterations was chosen manually as 20 since the variational parameters

usually converged between 20− 50 iterations.

In the multiple-kernel setting, we compared the performance of the proposed

method to KBMF-MKL and KronRLS-MKL using MACCS and Morgan finger-

prints with RBF and Tanimoto similarities. Target kernels provided by KronRLS-

MKL did not improve the results in either case, thus only the ones computed by

Yamanishi et al. were utilized. We also investigated the weights assigned to the

kernels and tested robustness by introducing kernels with random values.

Systematic evaluation

Single-kernel results are shown in Table 1. In most cases, VB-MK-LMF significantly

outperforms NRLMF and one-kernel KBMF in terms of AUROC and AUPRC ac-

cording to a pairwise t-test. Overall, the improvement is more modest on the En-

zyme dataset, although still significant in some cases. This can be attributed to

the fact that this dataset is by far the largest, which can mitigate the benefits of

Bayesian model averaging and side information. On average, VB-MK-LMF yields

4.7% higher AUPRC values in the pairwise cross-validation setting than the second

best method. In the drug and target settings, this is 2% and 7.6%, respectively. The

lower AUROC and AUPRC values in these scenarios are explained by the lack of

observations for the test drugs or targets in the training set, resulting in a harder

task than in the pairwise scenario.

Following earlier investigations, we examined the number of latent factors, which

has a crucial role from computational, statistical and interpretational aspects. Con-

trary to earlier works [23], which recommend 50 − 100 as the number of latent

factors, we found that these values do not yield better results; in fact, the AUPRC
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values quickly become saturated. Conceptually, it is unclear what is to be gained

going beyond the rank of the original matrix, which corresponds to perfect factor-

ization with respect to the Frobenius norm when using SVD, and is also known

to lead to serious overfitting in unregularized cases [98, 100]. Although overfitting

is usually less of an issue with variational Bayesian approximations, a large num-

ber of latent factors significantly increases computational time. Figure 3 depicts

the AUPRC values on the smaller datasets with varying number of latent factors.

The Enzyme and Kinase datasets were not included in this experiment due to the

rapidly increasing runtime.

Multi-kernel AUPRC values are shown in Table 2. Compared to the previous

Table, it is clear that both VB-MK-LMF and KBMF benefits from using multiple

kernels. Moreover, there is also an improvement in predictive performance when one

combines instances of the same kernel but with different neighbor truncation values.

However, advantages of using both of these combination schemes simultaneously

are unclear as the results usually do not improve or even get worse (except for the

Kinase dataset). This is a known property of linear kernel combinations, i.e. using

large linear kernel combinations may not improve predictive performance beyond

that of the best individual kernels in the combination [113].

Table 3 shows the normalized kernel weights in each of the datasets. For illus-

tration purposes, we also included a unit-diagonal positive definite kernel matrix

with random values. In the first four datasets, the algorithm assigned more or less

uniform weights to the real kernels and a lower one to the random kernel. In the Ki-

nase dataset, the random kernel is almost zeroed out. This underlines the validity of

VB-MK-LMF’s kernel combination scheme. Setting L to I (the rank of the kernels)

yields an almost zero weight to the random kernel, i.e. allowing larger dimensions

also allows sufficient separation of the latent representations, which makes spotting

kernels with erroneous values easier for the algorithm. This property might also

justify increasing the number of latent factors beyond the rank of the interaction

matrix in the multi-kernel setting.

To understand the effect of priors behind the significantly improved performance,

which is especially pronounced at smaller sample sizes, we investigated the difference

in AUPRC and AUROC values while using and ignoring kernels, at varying training

set sizes. The results suggest the existence of a “small sample size” region where

using side information offer significant gains, and after which the effect of priors

gradually vanishes. Figure 4 depicts the learning curves.

Discussion
VB-MK-LMF introduces a matrix factorization model incorporating multiple kernel

learning, Laplacian regularization and the explicit modeling of interaction probabil-

ities, for which a variational Bayesian inference method is proposed. The algorithm

maps each drug and target into a joint vector space and interaction probabilities

are derived from the inner products of the latent representations. Despite the sug-

gested applicability of the unified “pharmacological space” [7], its semantics is still

unexplored (for an early application in a ligand-receptor space, see [94], for a proof-

of-concept illustration, see [22]). To facilitate a deeper understanding, we provide

visual analytics tools alongside the factorization algorithm and allow arbitrary an-

notations to be mapped onto the latent representations.
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We demonstrate this on the Ion Channel dataset. Using L = 2, the resulting

latent representations can be visualized in a 2D Cartesian coordinate system as

shown in Figure 5. Drugs are colored on the basis of their respective ATC classes,

where only the classes with more than 5 members were used. Targets are colored

according to their ion transporter activity as obtained from the Gene Ontology.

Known interactions are represented as edges. Even in this low-dimensional case,

drugs in the same class tend to cluster together. The only exception is the “Other

antiepileptics” class, which is easily explained by its heterogeneity, also indicated by

the name. Targets also cluster fairly nicely, albeit with somewhat more outliers. It

can be also observed that the targets exhibiting potassium and sodium transporter

activity are placed halfway between the sodium and potassium groups.

Similarly, Figure 6 depicts the joint space using a parallel coordinates visualization

with L = 10, where ion transporter activity is denoted by different colors. Most

of the dimensions tend to separate at least one class from the others and many

of them seem to distinguish between more than two classes. This indicates that

the algorithm manages to find biologically meaningful latent dimensions, possibly

encoding pharmacophore properties and the properties of binding sites, but we leave

it for further exploration.

From a more practical viewpoint, it is important to touch on the issue of drug

promiscuity and polypharmacology. This refers to the observation that some drugs

tend to act on multiple targets leading to distinct pharmacological effects, which

is often considered an undesirable property [85], although partly unavoidable and

potentially utilizable [114]. In either case, predicting the expected number of in-

teractions in a restricted set of targets is a unique property of probabilistic DTI

predictors, e.g. compared to ranking approaches. To illustrate this ability of VB-

MK-LMF, we computed the expected value of the total number of interactions for

every drug in all datasets, treating them independently, shown in Figure 7 together

with the number known targets. Overall, the expected value of further hits approxi-

mates the number of interactions already discovered rather closely, although it tends

to over-estimate, especially when only one or two interactions are known. We also

conducted a 10× cross-validation experiment for each drug in the GPCR dataset

and performed the same comparison with similar results (Figure 8). It is worth to

mention that the number of currently unobserved positive interactions in large-scale

settings and in comprehensive DTI repositories is vital for the pharmaceutical in-

dustry and an open scientific question, as indicated by research on drug-likeliness

and druggability. Assuming total independence, the expected value provides a raw

estimate for this. However, as the relative frequency of positive interactions among

the unobserved cases should influence the selection of weight for the observed cases

(c), and the value of c influences the expected value, resolving this circular situation

and tuning c requires further investigations.

We also performed a case-based evaluation by obtaining the top 5 novel predictions

in the incomplete datasets and examining whether they are present in the current

version of the DrugBank database. Most interactions were confirmed and some of

the unconfirmed hits are known to bind to other members of that particular protein

family. This shows the ability of VB-MK-LMF to predict novel interactions. The

predicted lists are similar to those of the NRLMF method. Table 4 illustrates these
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results and also contains the rank of the predicted interactions among the NRLMF

predictions.

Finally, we discuss computational issues. Due to the explicit computation of in-

verse matrices, the variational approximation is highly compute-intensive, however,

it is straightforward to parallelize and many steps can be written as BLAS opera-

tions. GPUs are particularly well-suited for this task. All computations presented in

this work can be performed on a mid-range graphics card. Figure 9 shows the run-

time of GPU and CPU implementations in terms of latent factors 200× 200 matrix

factorization task, which showed a 30× speedup using an NVIDA Titan X graphics

card. However, in larger dimensions or with many latent factors, one can quickly run

out of GPU memory, i.e. scaling remains an open question. Although GPUs provide

excellent performance with single precision, double precision performance typically

lags far behind, especially with modern consumer-level graphics cards. This raises

the issue of numerical stability. To cope with the memory footprint of the algorithm,

we provide a sparse implementation beside the standard dense solver. To address

the issue of numerical stability, we also provide a QR factorization-based implemen-

tation which is more stable but significantly slower than the default Cholesky-based

method. The computation in VB-MK-LMF is dominated by the inversion in Eq. 6,

which gives O(DL3 max(I3, J3)) for the total time complexity (D is the number

of iterations). Comparison with the time complexity of NRLMF, O(DLIJ), clearly

shows the burden of Bayesian computation in the current implementation and calls

for the usage of approximative inversion techniques, which we consider as a future

work.

Conclusion
We presented Variational Bayesian Multiple Kernel Logistic Matrix Factorization

(VB-MK-LMF), integrating multiple kernel learning, weighted observations, graph

Laplacian regularization, and explicit modeling of probabilities of binary drug-target

interactions. Compared to other state-of-the-art methods, VB-MK-LMF achieved

significantly better predictive performance in standard benchmarks.

Admittedly, benchmarking the pure predictive performance on a given dataset

gives a very focused view about the real-world applicability of the methods, but

helps comparability. On the other hand, the release of new and updated datasets

as shown in Additional file 2 in fact quickly create an impractical fragmentary

situation. In general, the definition of a standard background knowledge pool for a

benchmarking is even more complicated, as earlier attempts show in computational

fusion methods for gene prioritization [115, 116].

Additionally, currently the possible utilizations of a DTI prediction method in

real-world applications are at least as diverse as the methodological repertoire. For

example, DTI prediction methods could be applied in data quality control phase

for anomaly detection, especially in the case of merging different bioactivity values

from public and private sources. Screening design, hit triage and prioritization for

further validation [117], possibly in an active learning framework [16, 118], are

standard usages. Finally, DTI prediction methods may also provide essential data

to support visualization and visual data analytics, as we demonstrated in a new

range of dimensionality (10−20), which proved to be sufficient with VB-MK-LMF.
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Another key property of VB-MK-LMF is the explicit modeling of probabilities,

which allows the prediction of interaction probabilities and their credibility. We

demonstrated the use of probabilistic predictions by proposing DTI dataset specific

versions of promiscuity and druggability, through the expected number of hits in

a dataset for a drug or a target respectively. In general, the predicted posteriors

for the interactions can be seen as a probabilistic “data-analytic” knowledge base,

which allows new functionalities in post-processing, beyond enrichment methods

available for ranking methods [37, 33]. To utilize the Bayesian predictions of VB-

MK-LMF, we also plan to investigate their decision theoretic usage, when certainty

for expected gains and losses of prioritization of interactions is expected, e.g. in

functional validations.

Further interesting research directions are the regression version of VB-MK-LMF

directly approximating the continuous activity data [8, 51] and the use of multiple

instances of VB-MK-LMF for overlapping DTI matrices, which are linked to each

other by weighted common observations. The latter could improve the scalability of

the method using parallel implementations for mid-sized DTI tasks with 105 drugs

and 104 targets, going beyond the current benchmarks.
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Figure 1 Pseudocode of the VB-MK-LMF algorithm.

Figure 2 Overview of the VB-MK-LMF workflow. A priori information (left) are combined with
DTI data through a Bayesian model (middle). Learning is carried out using a Variational Bayesian
method which approximates the latent factors and optimal kernel weights. The model provides
quantitative predictions of interaction probabilities and estimates of drug promiscuity (right).
Finally, VB-MK-LMF supports the visualization and exploration of the unified “pharmacological”
space. Gray indicates functionalities which may also be utilized in the VB-MK-LMF model but not
explored in this paper.

Figure 3 AUPRC values on the three smallest datasets with varying number of latent factors.
The results become saturated around 10 dimensions.
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Figure 4 The effect of priors on predictive performance with varying sample sizes. The
difference between the values using and not using kernels gradually vanishes as the training size
increases. 95% confidence intervals are indicated by gray ribbons.

Figure 5 Latent representations of drugs and targets in the Ion Channel dataset using 2 latent
dimensions. Drugs are colored on the basis of their respective ATC classes and targets are colored
according to their ion transporter activity as obtained from the Gene Ontology. Known
interactions are represented as edges.

Figure 6 Parallel coordinates visualization of 10 latent dimensions in the Ion Channel dataset.
Each curve corresponds to a latent representation of a drug or a target. Targets are colored on the
basis of their ion transporter activity.

Figure 7 Drug promiscuity vs. the expected number of interactions. The number of targets of
each drug in the datasets are depicted on the horizontal axis. The expected number of
interactions as predicted by VB-MK-LMF are depicted on the vertical axis.

Figure 8 Expected number of interactions as predicted by VB-MK-LMF for each drug in the
GPCR dataset. The number of targets are depicted on the horizontal axis. A 10× cross-validation
setting was used.

Figure 9 Runtime of the GPU and CPU implementations in terms of the number of latent
factors. This benchmark was conducted on a 200× 200 matrix factorization. The GPU
implementation brings a 30× speedup on an NVIDIA GTX Titan X graphics card.
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Table 1 Single-kernel results on gold standard data sets.

AUROC (CV1)
VB-MK-LMF NRLMF KBMF

Nuclear Receptor 0.957± 0.010 0.949± 0.011 0.860± 0.024
GPCR 0.976± 0.003 0.960± 0.004 0.911± 0.004
Ion Channel 0.989± 0.001 0.984± 0.002 0.941± 0.003
Enzyme 0.987± 0.001 0.976± 0.002 0.887± 0.003
Kinase 0.921± 0.002 0.919± 0.001 0.916± 0.001

AUPRC (CV1)
VB-MK-LMF NRLMF KBMF

Nuclear Receptor 0.773± 0.030 0.723± 0.042 0.533± 0.047
GPCR 0.777± 0.016 0.703± 0.023 0.541± 0.012
Ion Channel 0.916± 0.007 0.863± 0.012 0.763± 0.009
Enzyme 0.890± 0.006 0.876± 0.007 0.656± 0.008
Kinase 0.850± 0.003 0.845± 0.003 0.844± 0.003

AUROC (CV2)
VB-MK-LMF NRLMF KBMF

Nuclear Receptor 0.939± 0.021 0.896± 0.023 0.845± 0.023
GPCR 0.878± 0.014 0.883± 0.012 0.847± 0.018
Ion Channel 0.812± 0.026 0.800± 0.026 0.785± 0.021
Enzyme 0.851± 0.021 0.811± 0.024 0.718± 0.028
Kinase 0.894± 0.004 0.891± 0.004 0.838± 0.004

AUPRC (CV2)
VB-MK-LMF NRLMF KBMF

Nuclear Receptor 0.593± 0.058 0.547± 0.053 0.447± 0.048
GPCR 0.368± 0.023 0.363± 0.023 0.365± 0.024
Ion Channel 0.345± 0.035 0.343± 0.033 0.287± 0.035
Enzyme 0.349± 0.042 0.360± 0.041 0.269± 0.037
Kinase 0.803± 0.009 0.797± 0.010 0.735± 0.009

AUROC (CV3)
VB-MK-LMF NRLMF KBMF

Nuclear Receptor 0.917± 0.026 0.847± 0.029 0.735± 0.050
GPCR 0.941± 0.009 0.920± 0.014 0.839± 0.020
Ion Channel 0.966± 0.007 0.958± 0.008 0.911± 0.012
Enzyme 0.962± 0.005 0.947± 0.006 0.859± 0.012
Kinase 0.767± 0.018 0.763± 0.018 0.740± 0.022

AUPRC (CV3)
VB-MK-LMF NRLMF KBMF

Nuclear Receptor 0.601± 0.081 0.456± 0.079 0.352± 0.070
GPCR 0.596± 0.040 0.553± 0.040 0.437± 0.047
Ion Channel 0.826± 0.021 0.788± 0.028 0.695± 0.024
Enzyme 0.794± 0.017 0.808± 0.018 0.573± 0.028
Kinase 0.608± 0.039 0.597± 0.038 0.594± 0.039

CV indicates the cross-validation setting (pairwise, drug and target, respectively). AUROC and
AUPRC values were averaged over 5× 10 runs and 95% confidence intervals were computed. In most

cases, VB-MK-LMF significantly outperforms the other methods using t-test.
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Table 2 AUPRC values on gold standard data sets in the pairwise cross-validation setting.

Nuclear Receptor (KBMF-MKL: 0.566, KronRLS-MKL: 0.522)
Neighbors MrgRbf MrgTan McsRbf McsTan Orig All
2 0.749 0.758 0.742 0.735 0.754 0.779
3 0.744 0.771 0.761 0.734 0.773 0.775
5 0.732 0.757 0.739 0.724 0.755 0.756
2+3 0.750 0.765 0.754 0.736 0.757 0.758
2+3+5 0.760 0.765 0.740 0.738 0.764 0.760

GPCR (KBMF-MKL: 0.622, KronRLS-MKL: 0.696)
Neighbors MrgRbf MrgTan McsRbf McsTan Orig All
2 0.743 0.759 0.754 0.762 0.764 0.793
3 0.755 0.774 0.772 0.780 0.777 0.802
5 0.762 0.787 0.782 0.783 0.787 0.796
2+3 0.763 0.782 0.781 0.786 0.785 0.802
2+3+5 0.777 0.798 0.793 0.789 0.796 0.800

Ion Channel (KBMF-MKL: 0.826, KronRLS-MKL: 0.885)
Neighbors MrgRbf MrgTan McsRbf McsTan Orig All
2 0.909 0.911 0.910 0.911 0.910 0.909
3 0.911 0.914 0.915 0.914 0.912 0.916
5 0.915 0.914 0.913 0.916 0.916 0.917
2+3 0.912 0.914 0.916 0.914 0.913 0.909
2+3+5 0.912 0.915 0.915 0.915 0.916 0.906

Enzyme (KBMF-MKL: 0.704, KronRLS-MKL: 0.893)
Neighbors MrgRbf MrgTan McsRbf McsTan Orig All
2 0.885 0.887 0.879 0.883 0.888 0.884
3 0.885 0.890 0.885 0.882 0.890 0.895
5 0.883 0.886 0.880 0.881 0.884 0.883
2+3 0.888 0.889 0.880 0.881 0.888 0.881
2+3+5 0.887 0.889 0.881 0.878 0.888 0.875

Kinase (KBMF-MKL: 0.846, KronRLS-MKL: 0.561)
Neighbors - 2D 3D ECFP All
2 0.850 0.849 0.849 0.850
3 0.850 0.848 0.850 0.851
5 - 0.850 0.849 0.850 0.851
2+3 0.850 0.850 0.850 0.853
2+3+5 0.851 0.851 0.850 0.854

Rows correspond to the cut-off value of the number of closest neighbors and the combinations of the
resulting truncated kernels. Columns correspond to individual kernels. The last column was obtained

by combining all kernels.

Table 3 Normalized kernel weights with an extra positive definite, unit-diagonal, random valued
kernel matrix.

MrgRbf MrgTan McsRbf McsTan Yam Random
Nuclear Receptor 0.175 0.176 0.175 0.175 0.175 0.123
GPCR 0.173 0.173 0.172 0.172 0.172 0.138
Ion Channel 0.176 0.176 0.176 0.176 0.176 0.120
Enzyme 0.176 0.176 0.176 0.176 0.176 0.119

- 2D 3D ECFP Random
Kinase - 0.300 0.283 0.398 0.019

The number of latent factors was not altered in this experiment. Setting the number of latent factors
to I (the rank of the kernel matrix) zeroes out the weight of the random kernel.
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Table 4 Top 5 predicted interactions which are not present in the datasets.

Nuclear Receptor
Probability Drug Target Drug name Target name DrugBank NRLMF

0.943 D00316 hsa6096 Etretinate RARB yes 1
0.671 D01132 hsa6097 Tazarotene RARC *RARB 6
0.662 D01132 hsa190 Tazarotene NR0B1 18
0.529 D00898 hsa2100 Dienestrol ESR2 yes 7
0.445 D00094 hsa6095 Tretinoin RARA yes 26

GPCR
Probability Drug Target Drug name Target name DrugBank NRLMF

0.966 D00283 hsa1814 Clozapine DRD3 yes 1
0.956 D00110 hsa1813 Cocaine DRD2 188
0.938 D02358 hsa154 Metoprolol ADRB2 yes 2
0.937 D02614 hsa154 Denopamine ADRB2 yes 4
0.937 D04625 hsa154 Isoetharine ADRB2 yes 3

Ion Channel
Probability Drug Target Drug name Target name DrugBank NRLMF

0.990 D00538 hsa6331 Zonisamide SCN5A yes 9
0.986 D00294 hsa3767 Diazoxide KCNJ11 yes 244
0.985 D00552 hsa6331 Tetracaine SCN5A yes 5
0.983 D00438 hsa779 Nimodipine CACNA1S yes 2
0.983 D00649 hsa8911 Amiloride CACNA1I 83

Enzyme
Probability Drug Target Drug name Target name DrugBank NRLMF

0.999 D00542 hsa1571 Halothane CYP2E1 yes 1
0.995 D00097 hsa5743 Salicylic acid PTGS2 yes 4
0.995 D00437 hsa1559 Nifedipine CYP2C9 yes 5
0.987 D00501 hsa50940 Pentoxifylline PDE11A *PDE5A 2
0.986 D00501 hsa5150 Pentoxifylline PDE7A *PDE5A 3

Many of the hits were confirmed by the current version of DrugBank. The * symbol indicates a
known interaction with another member of the protein family. The last column denotes the rank of

the interaction among the NRLMF predictions.
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