Team Szeged @ EPE 2017 shared task -

First experiments in a generalized syntactic parsing framework

Zsolt Szanto, Richard Farkas
University of Szeged, Institute of Informatics
{szantozs, rfarkas}@inf.u-szeged.hu

Abstract

In this article, we describe the submissions
of Team Szeged for the EPE 2017 shared
task. We introduce three approaches and
first experiments to exploit the opportuni-
ties of the general dependency graph rep-
resentation of the shared task.

1 Introduction

The goal of the First Shared Task on Extrinsic
Parser Evaluation (EPE 2017) was to estimate “the
relative utility of different types of dependency
representations for a variety of downstream ap-
plications that depend heavily on the analysis of
grammatical structure.”

To enable different types of dependency repre-
sentations, the organizers of the shared task in-
troduced a very general graph-based representa-
tion of ’relational’ structure reflecting syntactic-
semantic analysis. The nodes of this graph cor-
respond to lexical units, and its edges repre-
sent labeled directed relations between two nodes.
Nodes can be defined in any terms of (in principle
arbitrary) sub-strings of the surface form of the in-
put sentence. This representation allows overlap-
ping and empty (i.e. zero-span) node sub-strings
as well. Moreover, nodes and edges are labeled by
attributevalue maps without any restriction on the
attribute set.

This very general graph-based representation
opens brand new ways for expressing syntactic or
semantic information besides the standard depen-
dency tree formalism. We understood the call of
the shared task in a generalized way and came up
with ideas which aim to leverage the opportunities
of the general representation beyond dependency
parse trees. We experimented with couple of such
ideas (instead of trying to achieve high scores in

the shared task) and we shall introduce them in
this paper.

The contribution of this work consists of three
independent pack of experiments in the EPE 2017
setting. We emphasize that these are only first ex-
perimental results and there is a plenty of space
for analyzing these approaches and also to come
up with other ideas leveraging the broadly under-
stood task specification.

In the first set of experiments (§2), we start from
the classic dependency parsing approach but in-
stead of a single dependency parse we express the
distribution of possible dependency parses given
a sentence in the graph-based general representa-
tion. In Section 3, we introduce a possible solution
for enriching the dependency parse by constituent
information given by a standard phrase-structure
parser. In this way, various syntactic representa-
tions can be represented in the graph and infor-
mation is not lost because the downstream appli-
cation can only accept a single dependency parse
tree. Furthermore, in the EPE 2017 setting we can
send a blended relational structure to the down-
stream task, like a parse distribution and blended
version of different syntactic approaches, and the
downstream application is able to machine learn
which type of syntactic structure or phenome or
even which combination of syntactic information
is useful for itself.

Our last batch of experiment (§4) is a conse-
quence of this objective, i.e. the relational repre-
sentation has to be useful for the downstream ap-
plication. Here, we tried to automatically recog-
nize which dependency parse labels are useful to a
downstream task and collapsed the useless ones.

(word1] [word2 | [word3]

(Word1] [Wword2 | [Word3 |

:[Word1] inrdz] [wOrdsi

(@)

()

(©)

Figure 1: Alternatives for representing constituent trees in the general dependecy graph format.

2 Parse Distribution as Input for
Downstream Applications

Standard dependency parsers output a single de-
pendency parse tree. Our hypothesis was that a
downstream application could profit from having
access to the distribution of possible parses and
not just to the most likely parse tree. The distribu-
tion over possible parses estimated by the parsing
model might be useful for a downstream applica-
tion because it might reveal that edges or their la-
bels are less confident or also point out relatively
highly probably dependencies which are not part
of the best single parse tree. The general graph-
based representation of EPE 2017 enables to ex-
press the distribution over possible edges and la-
bels, i.e. possible parses.

Getting out the density estimation from a par-
ticular parser is usually complicated because of
both theoretical and practical (software implemen-
tation) issues. Hence we decided to use an approx-
imation of edge and label likelihoods based on top-
K parses for our first experiments. Our assump-
tion here is that the top K output of a parser model
contains most of the useful bi-lexical dependen-
cies and the frequency of a particular dependency
counted among the K parses is a good enough ap-
proximation for its likelihood (this idea is similar
to constituent-level strategy of the Berkeley prod-
uct parser (Petrov, 2010)).

We added each edges from the k-best trees of a
parser to the general dependency graph. We also
added a new label to all edges whose value is the
frequency of the same edge label pairs among the
k parses. For these experiments we used the MST-
Parser (McDonald et al., 2005) what we trained
on Universal Dependencies v2 (Nivre et al., 2015)
and we asked for the 10-best trees with default pa-
rameters.

3 Constituents in the (Bi-Lexical)
Relational Representation

Constituency parsers focus on the
phrases/constituents and phrase structure of
the sentence, i.e. follow a non bi-lexical syntactic
representation. Several applications might prefer
bi-lexical representations (like the ones based
on predicate-argument structures) while others
might prefer constituency (like scope detection).
Fortunately, the general graph representation of
EPE 2017 enables us to put both the dependency
and constituency parse output into a blended
syntactic graph. Hence we do not have to choose
between the two approaches but the downstream
application can machine learn which syntactic
phenomena is useful for itself or even can learn
patterns in the graph consisting of information
from both constituency and dependency. Couple
of previous work has shown that the two syntactic
representation and their parsers can work together
efficiently cf. (Farkas and Bohnet, 2012). We
believe that is especially true for using them
jointly in downstream applications.

There are many possible ways how we can rep-
resent a constituent tree in the general dependency
graph format. Although these representations con-
tain the same information because of the feature
extractors of the downstream applications they can
have different effect in practice.

An interesting opportunity of the EPE 2017
general graph representaton is that it enables the
creation of virtual nodes. This feature gives the
posibility to create a new node for each non-
terminal in a constituent tree. Our three proposal
differs in the way these virtual nodes are linked to
the overt nodes in the graph.

1. In the first setup, shown by the Figure 1a, we
connect each of the children to their direct

PRN
49,99
NQ@%

5

Figure 2: Label adjustment graph.

parents. In this way our graphs will be very
similar to a constituent tree. In this example
the Word 2 and Word 3 are connected to an
NP, that NP and Word 1 is connected to the
another NP.

2. Another posibility is when each of the nodes
are connected to all ancestor non-terminals
(Figure 1b). In that case there is a direct rela-
tion between a constituent and their descen-
dants. In the current example the higher level
NP directly contains the children (Word 2,
Word 3) of its child. This representation has
the hope that the feature extractor of down-
stream applications can directly generate fea-
tures about the ancestors without recursive
rules

3. A different approach is where we give the
covering area for each new non-terminal
(Figure 1c). In these cases like in the previ-
ous we have not got direct information about
the connection between the nonterminals. On
the other hand, it can help for an application
which uses the position of a node.

For constituent parsing we used the Berkeley
Parser (Slav Petrov and Klein, 2006) with de-
fault parameters and pretrained model (eng-smo).
In our submission we used the second and third
methods in the dependency graph format.

4 Label Set Adjustment Driven by
Downstream Applications

Different downstream applications might utilize
different type of grammatical patterns. The sim-
plest case is that a downstream application might
extract important features from particular edge la-
bels while features over other edge labels are neg-
ligible in its machine learnt model. Moreover, dif-
ferent applications might utilize different type of

dependencies, see for example event recognition
versus negation scope detection.

We propose a simple procedure to recognize
edge labels which can be collapsed into other edge
labels because their discrimination does not give
any added value to the downstream application in
question. We start from the full set of edge labels
and systematically check what is the effect of col-
lapsing two particular labels evaluated through the
downstream application.

We calculated for all label pairs what is going
to happen if we replace one dependency label to
another. For our experiments we used the TEES
system, but because we did not have enough time
to retrain the TEES system for all combination, we
trained it once with the full label set and we did
the prediction part separatly to each dependency
label pairs. In this prediction part we replaced
each of the labels with each of another labels on
the full development set. We got a complete di-
rected graph where the nodes are the labels and
edges contains the scores from the TEES system
with the merged labels. For each node we kept the
outcoming edge with maximum weight i.e. when
the replace was the most efficient. When there
were two edges between two node we removed the
smaller.

Figure 2 contains the graph we got. (When
we ran the TEES system with default parame-
ters we got 49.76 with original labels). By us-
ing this graph we started replacing the nodes from
the highest edge weight to the lowest. We evalu-
ated the new labelset in every step and we found
the best result after three steps, 50.36, which is
slightly better than the best merged pair. After that
we did the three replace steps in the full dataset.
Because of lack of time, we cannot make the re-
placement in the full dataset and retrain the TEES
before the submission deadline. We sent the trees
with collapsed labelset. We found lower scores
than the baseline on the TEES test set. We also

Event Extraction

mate - baseline 47.84
mate + label adjustment 47.37
mate + constituent 46.71
mate + mst - baseline 46.69
mate + mst - k-best 45.96

Table 1: Final result in evalutaion set.

could not use this method for the other down-
stream applications.

5 Results

The Table 1 shows our official results achived on
the shared task. The baseline - mate is one of
our baselines where we just run the mate parser
(Bohnet, 2010) with pretrained model. The second
and third rows contain the result of label adjust-
ment and constituent parsing experiments. The
fourth row contains another baseline when we ap-
plied the MSTParser and the last row is shows the
scores of our k-best experiment (we used MST-
Parser here).

Unfortunatelly, the deeper analysis of results is
left for future work. For example, the reason why
the combination of k-best parse get lower result
in every task than the baseline-MST is maybe the
feature extractors were prepared for dependency
representations and not for distribution graphs.

5.1 Event Extraction

In the event extraction task we can not beat our
baselines, all of our modifications — including the
label adjustment which is optimized for this task
— get negative effect. The dependency label merg-
ing mechanism what we directly developed on this
task also failed.

5.2 Negation Resolution

One of the main motivation of the constituent
based approach was the negation resolution task.
The scope of the negations are usually a close
what can we identify with constituent parsers.
This constituency-based system got better result in
three out of four scope-focused evaluation metric
than our baseline. Table 2 shows the detailed com-
parison of the baseline and the constituent system.

The following example shows how can the con-
stituent parse help:

“I join in it because there is no other way in the
world by which justice can be gained.”

Negation Resolution Opinion Analysis
61.98 65.87
60.53 66.33
61.26 63.13
59.78 63.25
59.05 62.5
baseline mate + const
dev test dev test
Scope Match 78.42 80.00 77.98 81.14
Scope Tokens 86.64 89.17 87.38 89.27
Event Match 7547 6790 7290 65.20
Full Negation 62.15 61.98 5991 61.26

Table 2: Detailed results of the baseline - mate and
the mate + constituent systems in negation resolu-
tion task.

The scope of the no negation clue starts from the
there and end with the gained word. Our baseline
system marked the negation from the there to the
Jjustice, but the constituent based method found the
correct scope. If we look at the constituent tree we
see the full scope is covered by a constituent with
S label. Instead of scope detection the constituent
based information can’t help in the event detection
subtask.

5.3 Opinion Analysis

In the opinion analysis task the label adjustment
method imporved 0.5 percetage point against the
mate-baseline and got the best results in the shared
task in Holders (In Vitro) metric. It seems the la-
bel collapsions what our method found in the event
extraction task is more general than we expected.
On the other hand, it is still an open question why
this label collapsion did not work at the event ex-
traction task’s evalaution set.

6 Conclusions

We introduced the contribution of team Szeged to
the EPE 2017 Shared Task. We proposed three
approaches for relational representation of syntax
beyond the canonical dependency parse tree ap-
proach. Although these experiments are only the
very first tries for such representation we hope that
this might give ideas about the important topic of
syntactic and semantic parser solutions which aim
to be (automatically) fine-tuned for a particular

downstream applications demands.

Acknowledgments

We thank to the organizers of the EPE shared task
their hard work on extending the feature extrac-
tor of downstream applications according to our
weired ideas.

The research work of Richrd Farkas has been
supported by the Jnos Bolyai scholarship of the
Hungarian Academy of Sciences.

References

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, COL-
ING 10, pages 89-97.

Richard Farkas and Bernd Bohnet. 2012. Stacking of
dependency and phrase structure parsers. In Pro-
ceedings of COLING 2012. The COLING 2012 Or-
ganizing Committee, Mumbai, India, pages 849—
866.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Haji¢. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the Conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 523-530.

Joakim Nivre, Zeljko Agi¢, Maria Jesus Aranzabe,
Masayuki Asahara, Aitziber Atutxa, Miguel Balles-
teros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad
Bhat, Cristina Bosco, et al. 2015. Universal depen-
dencies 1.2 .

Slav Petrov. 2010. Products of random latent vari-
able grammars. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT 10, pages 19-27.

Leon Barrett Romain Thibaux Slav Petrov and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of
COLING-ACL. Association for Computational Lin-
guistics, Sydney, Australia, pages 433-440.

