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Whereas high amounts of reactive oxygen species (ROS) contribute to cardiac damage

following ischemia and reperfusion (IR), low amounts function as trigger molecules in the

cardioprotection by ischemic preconditioning (IPC). The mitochondrial translocation and

contribution of the hydrogen peroxide-generating protein p66shc in the cardioprotection

by IPC is unclear yet. In the present study, we investigated themitochondrial translocation

of p66shc, addressed the impact of p66shc on ROS formation after IR, and characterized

the role of p66shc in IR injury per se and in the cardioprotection by IPC. The amount

of p66shc in subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) isolated from

wildtype mouse left ventricles (LV) was determined after 40 min normoxic perfusion and

after 30 min ischemia and 10 min reperfusion (IR) without and with IPC. The p66shc

content in SSM (in % of normoxic controls, n = 5) was 174 ± 16% (n = 6, p < 0.05)

after IR, and was reduced to 128 ± 13% after IPC (n = 6, p = ns). In IFM, the amount

of p66shc remained unchanged (IR: 81 ± 7%, n = 6; IPC: 110 ± 5%, n = 6, p = ns).

IR induced an increase in ROS formation in SSM and IFM isolated from mouse wildtype

LV, which was more pronounced in SSM than in IFM (1.18 ± 0.18 vs. 0.81 ± 0.16, n =

6, p < 0.05). In mitochondria from p66shc-knockout mice (p66shc-KO), the increase in

ROS formation by IR was not different between SSM and IFM (0.90 ± 0.11 vs. 0.73 ±

0.08, n= 6, p= ns). Infarct size (in % of the left ventricle) was 51.7± 2.9% in wildtype and

59.7 ± 3.8% in p66shc-KO hearts in vitro and was significantly reduced to 35.8 ± 4.4%

(wildtype) and 34.7 ± 5.6% (p66shc-KO) hearts by IPC, respectively. In vivo, infarct size

was 57.8 ± 2.9% following IR (n = 9) and was reduced to 40.3 ± 3.5% by IPC (n = 11,

p < 0.05) in wildtype mice. In p66shc-knockout mice, infarct sizes were similar to those

measured in wildtype animals (IR: 56.2 ± 4.3%, n = 11; IPC: 42.1 ± 3.9%, n = 13,

p < 0.05). Taken together, the mitochondrial translocation of p66shc following IR and
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IPC differs between mitochondrial populations. However, similar infarct sizes after IR and

preserved infarct size reductions by IPC in p66shc-KOmice suggest that p66shc-derived

ROS are not involved in the cardioprotection by IPC nor do they contribute to IR injury

per se.

Keywords: ischemia/reperfusion, ischemic preconditioning, reactive oxygen species, mitochondria, p66shc

INTRODUCTION

An imbalance in the formation and removal of reactive oxygenQ6

species (ROS) leads to oxidative stress, which plays a role in
the development of cardiovascular diseases, such as hypertension
(Chen et al., 2017), hypertrophy (Dai et al., 2011; Sag et al.,
2014), heart failure (Akhmedov A. T. et al., 2015), andmyocardial
injury following ischemia and reperfusion (IR) (Granger and
Kvietys, 2015). During IR, a certain amount of ROS is generated
during ischemia, whereas the majority of ROS is formed at
the onset of reperfusion (Zweier et al., 1987; Bolli et al.,
1989). High amounts of ROS contribute to myocardial injury
and ultimately cell death via detrimental effects on proteins
and lipids and also on the histone-free mitochondrial DNA.
However, ROS do not only participate in myocardial damage,
they also function as trigger molecules in the cardioprotection by
ischemic preconditioning (IPC). Here, a modest ROS formation
is suggested to activate signal transduction cascades which finally
confer protection against the burst of ROS at reperfusion. Indeed,
ROS scavenging during the preconditioning cycles of IR as well
as prior to reperfusion abolish the infarct size reduction by
IPC (Skyschally et al., 2003; Liu et al., 2008). It is generally
accepted that mitochondria represent the predominant source
of ROS. Within mitochondria, ROS are formed by the electron
transport chain (ETC)—especially from ETC complexes I, II and
III (Barja, 1999)—with around 0.2% of the oxygen consumed
by the ETC used for ROS formation (St-Pierre et al., 2002).
In addition to the ETC, mitochondrial ROS are also produced
by monoamino oxidases (MAO), which transfer electrons from
amine compounds to oxygen and thereby generate hydrogen
peroxide.

Another protein contributing to mitochondrial ROS
formation is p66shc, an ubiquitously expressed member of the
spontaneous human combustion (shc) family. Together with
p46shc and p52shc, p66shc represents an isoform encoded by
the human shcA locus. The structure of p66shc includes an
aminoterminal CH2 domain (collagen homology domain),
followed by a phosphotyrosine binding (PTB) domain, another
collagen-homology (CH1) domain, and a carboxyterminal
src-homology (SH2) domain. The PTB domain allows the
interaction with tyrosine-containing peptides, the CH1 domain
of p66shc contains two major tyrosine phosphorylation sites,
whereas the SH2 domain is important for protein-protein
interactions. The important phosphorylation site serine 36 is
located in the CH2 domain of p66shc. Under basal conditions,
the majority of p66shc resides in the cytosol, but translocates into
the mitochondria upon stress signals (Pinton et al., 2007). For
this translocation, the phosphorylation of p66shc at serine 36 by
protein kinase C beta (PKCβ) is important (Pinton et al., 2007).

Within mitochondria, p66shc is present in the intermembrane
space. Here, p66shc oxidizes reduced cytochrome c and thereby
catalyzes the reduction of oxygen to hydrogen peroxide (Giorgio
et al., 2005). Accordingly, p66shc-deficient cells have decreased
levels of ROS (Trinei et al., 2002; Carpi et al., 2009). The
reduced ROS formation in p66shc-deficient mice has been
suggested to prolong the life span of these animals (Migliaccio
et al., 1999), however, when the mice are housed under more
natural conditions this effect is abolished (Giorgio et al., 2012).
p66shc-mediated ROS formation is linked to cardiovascular
pathologies such as hypertrophy (Graiani et al., 2005) and heart
failure (Rota et al., 2006) (for review see Di Lisa et al., 2017).
Also, heart-rupture is reduced in p66shc-deficient mice following
myocardial infarction (Baysa et al., 2015). The measurement
of myocardial damage following IR in wildtype and p66shc-
knockout mice shows conflicting results: whereas in one study
the ablation of p66shc elicits cardiac protection (Carpi et al.,
2009), another study displays larger infarcts in p66shc-deficient
mice following IR (Akhmedov A. et al., 2015). Studies on the role
of p66shc in the cardioprotection by IPC in vivo are still lacking.

In the present study, we investigated the translocation of the
protein into mitochondrial subpopulations after IR and IPC.
Also, the p66shc-mediated ROS formation induced by IR was
studied. In addition, we characterized the impact of p66shc on
the cardioprotection by IPC in mouse hearts in vitro and in vivo.

MATERIALS AND METHODS

Animals
The present study conforms to the Guide for the Care and Use Q7

of Laboratory Animals published by the US National Institutes
of Health (NIH publication No. 85–23, revised 1996) and was
approved by the animal welfare office of the Justus-Liebig-
University Giessen as well as the National Scientific Ethical
Committee on Animal Experimentation, Budapest, Hungary. In
the study, 12–22 weeks old male and female C57Bl6/J mice (25–
30 g, Janvier, Le Genest-Saint-Isles, France) and p66shc knockout
(p66shc-KO) mice were used. Mice were kept in dark/light cycles
of 12 h each and had free access to standard chow and drinking
water.

Ischemia/Reperfusion in Vitro
Mice were anesthetized with 5% isoflurane and killed by
cervical dislocation. Thereafter, hearts were rapidly excised
and the aorta was cannulated for retrograde perfusion with
an Aortic Cannula for mouse hearts (Ø 1mm, Hugo Sachs
Elektronik-Harvard Apparatus, March, Germany) connected to
a Langendorff perfusion system. Hearts were perfused with
37◦C warm modified Krebs Henseleit buffer (containing in mM:
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NaCl 118, KCl 4.7, MgSO4 0.8, KH2PO4 1.2, glucose 5, CaCl2
2.5, NaHCO3 25, pyruvate 1.9, continuously gased with 95%
O2, 5% CO2, pH 7.4) at a constant perfusion pressure of 70
mmHg (transduced by a Replacement Transducer Head for
APT300 Pressure Transducer, Hugo Sachs Elektronik-Harvard
Apparatus). A balloon was inserted into the left ventricle and
was connected to a pressure transducer (Combitrans 1-fach
Set Mod.II University Giessen, B. Braun, Melsungen, Germany)
for assessment of ventricular performance. The balloon was
inflated to yield a left ventricular end-diastolic pressure of
12–14 mmHg, which was kept constant thereafter. Hearts
were paced during measurements at 600 bpm. Left ventricular
developed pressure (LVDP, systolic pressure—diastolic pressure)
was recorded. Perfused hearts were left to stabilize for 5 min.
Ischemia was induced by stopping flow and pacing. The following
protocols were performed:
a) p66shc translocation and ROS formation
Normoxia: 40 min normoxia
IR: 30 min ischemia, 10 min reperfusion
IPC: Three times 3 min ischemia, 5 min reperfusion, followed by
30 min ischemia and 10 min reperfusion
At the end of the protocol, hearts were used to isolate
mitochondria
b) Infarct size determination
IR: 45 min ischemia, 120 min reperfusion
IPC: Three times 3 min ischemia, 5 min reperfusion, followed by
45 min ischemia and 120 min reperfusion
After 120 min of reperfusion, the hearts were removed from
the perfusion apparatus and frozen at −20◦C for 30 min.
Subsequently, hearts were cut in 7–8 slices and incubated in 1.2%
triphenyl-tetrazolium chloride for 20 min at 37◦C. Heart slices
were then fixated in 7% formalin at room temperature overnight.
Digital images were taken from both sides of the heart slices
with a M60 microscope (Leica, Wetzlar, Germany) at 2.5-fold
magnification. Infarct size was determined by planimetrie using
the Leica Application Suite LAS version 4.6 (Leica).

The use of either 30 or 45 min ischemia was due to the
necessity to compare data of p66shc translocation with previous
studies (were 30 min ischemia were analyzed, Yang et al., 2014)
and to induce substantial myocardial infarction in order to
demonstrate effective cardioprotection by IPC (45min ischemia).

Ischemia/Reperfusion in Vivo
Mice were weighed (weight range 22.1 ± 1.0–24.7 ± 1.1
g, p = ns between groups) and anesthetized with sodium
pentobarbital (Euthasol, Produlab Pharma b.v., Raamsdonksveer,
The Netherlands; 90 mg/kg bolus dose followed by 15–20
mg/kg when required during the experiment). The hair in
the neck and chest area was removed by using a depilatory
cream. Maintenance of body core temperature was assisted
using a constant temperature heating pad. The trachea was
intubated with a plastic cannula connected to a rodent ventilator
(Model Minivent 845, Harvard Apparatus, Holliston, MA).
The animals were ventilated with room air, volume and rate
set-ups accorded to the recommendation of the manufacturer
(100–240 µL, 120–150 breath/min according to the weight
of the animal). Surface-lead ECG and body core temperature

were monitored throughout the experiments to ensure the
stability of the preparation (Haemosys data acquisition system,
Experimetria, Budapest, Hungary). The heart rates ranged from
429 ± 17 to 451 ± 20 bpm and were not significantly different
between groups. The chest was opened at the 4th intercostal
space and an 8-0 Prolene suture was placed around the middle
portion of the left anterior descending branch (LAD) of the
left coronary artery. Then the suture was looped and a piece
of PE-10 cannula was placed into the loop. For coronary artery
occlusion and reperfusion, both strands of the suture were
pulled and fixed thereby pressing the plastic cannula onto the
surface of the heart directly above the coronary artery, and then
released. Mice were subjected to 45 min occlusion of the left
coronary artery (test ischemia) and then released to develop acute
myocardial infarction. In IPC groups, mice were subjected to
5 min ischemia/5 min reperfusion in four cycles prior to test
ischemia. To ensure recanalization of the occluded vessel, sodium
heparin was administered i.p. at 100U/kg dose three times during
the surgeries: 45 min before test ischemia; 5 min before the onset
of reperfusion, and at the 115th min of reperfusion.

After 120 min of reperfusion, risk area was re-occluded, and
mice were injected with 0.4 ml of 2% Evans blue dye through
the apex of the left ventricle. Following Evans staining, hearts
were isolated, right ventricle was removed and left ventricles (LV)
were cut into seven transversal slices. Heart slices were washed in
PBS buffer for 1 min to remove excess dye and then incubated in
1% triphenyl-tetrazolium-chloride for 10 min at 37◦C followed
by formalin fixation for 10 min. Digital images were taken from
both surface of heart slices by a Nikon DSLR camera (Nikon
Corporation, Tokyo, Japan). Planimetric evaluation was carried
out to determine infarct size using InfarctSizeTM software version
2.5, (Pharmahungary, Szeged, Hungary).

Isolation of Mitochondria
Subarcolemmal (SSM) and interfibrillar mitochondria (IFM)
were isolated as previously described (Boengler et al., 2009). All
steps were performed at 4◦C. Hearts were washed in buffer A
(100mM KCl, 50mM 3-[N-Morpholino]-propanesulfonic acid
(MOPS), 5mM MgSO4, 1mM ATP, 1mM EGTA, pH 7.4),
weighed, the tissue was minced in 10 ml/g buffer A with
scissors and was then disrupted with a Potter-Elvejhem tissue
homogenizer. The homogenate was centrifuged for 10 min at
800 g. The resulting supernatant, which contained the SSM, was
centrifuged for 10 min at 8,000 g. The sedimented mitochondria
were washed in buffer A and were resuspended in a small
volume of buffer A. The sediment of the first centrifugation,
which contained the IFM, was resuspended in buffer A (10 ml/g
tissue). The protease nagarse was added (Bacterial type XXIV,
Sigma, 8 U/g), incubated at 4◦C for 1 min and the samples
were then disrupted using a Potter-Elvejhem tissue homogenizer.
Subsequently, samples were centrifuged for 10 min at 800 g,
and IFM were collected by centrifugation of the supernatant
for 10 min at 8,000 g. The sedimented IFM were washed by
resuspension in buffer A and centrifugation (8,000 g for 10 min),
and were finally resuspended in buffer A. These mitochondrial
preparations were used to study ROS formation. To analyse
the amount of p66shc in SSM and IFM by Western Blot,
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mitochondria were further purified by layering them on top of
a 30% Percoll solution in isolation buffer (in mM: sucrose 250;
HEPES 10; EGTA 1; pH 7.4) and subsequent ultracentrifugation
at 35,000 g for 30 min at 4◦C. The mitochondrial band was
collected, washed twice in isolation buffer by centrifugation at
8,000 g for 5 min, and the purified mitochondria were stored at
−80◦C.

ROS Formation
ROS formation was measured as described previously (Boengler
et al., 2017). Fifty microgram mitochondria (SSM and IFM)
isolated after normoxia or IR were transferred to incubation
buffer supplemented with 5mM glutamate and 2.5mM
malate, 50 µM Amplex UltraRed (Invitrogen, Eugene, OR),
and 0.1 U/ml horseradish peroxidase. The fluorescence
was measured continuously for 4 min with a Cary Eclipse
spectrophotometer (Agilent Technologies, Santa Clara, CA) at
the excitation/emission wavelengths of 565/581 nm, respectively.
As positive control served control mitochondria supplemented
with 2 µM of the complex I inhibitor rotenone. Background
fluorescence of the buffer without mitochondria was subtracted
and the slope fluorescence in arbitrary units/time (4 min) was
calculated.

Western Blot Analysis
Isolated SSM, IFM, or left ventricular tissue sections were lysed
in 1 × Cell Lysis buffer (25mM Tris, 150mM NaCl, 1mM
EDTA, 1% NP-40, 5% glycerol, pH 7.4) supplemented with 1X
PhosStop and Complete inhibitors (Roche, Basel, Switzerland)
as well as 1 µM neocuproine. Protein concentration was
determined using the Lowry assay. Thirty microgram proteins
were electrophoretically separated on 10% Bis/Tris gels and
proteins were transferred to nitrocellulose membranes. After
blocking, membranes were incubated with rabbit polyclonal
anti-human/rat SHC antibodies (BD Biosciences), rabbit
polyclonal anti-human voltage dependent anion channel
(VDAC, Acris, Rockville MD), or rabbit polyclonal anti-human
manganese superoxide dismutase antibodies (MnSOD, Merck
Millipore, Darmstadt, Germany). After washing and incubation
with the respective secondary antibodies, immunoreactive
signals were detected by chemiluminescence (SuperSignal
West Femto or SuperSignal West Pico Chemiluminescent
Substrate, ThermoFisher) and quantified using Scion Image
software (Frederick, MD). The purity of the mitochondrial
preparations was determined as the absence of immunoreactivity
for Na+/K+-ATPase (sarcolemma), sarcoplasmic/endoplasmic
reticulum calcium ATPase (sarcoplasmic reticulum), histone
deacetylase 2 (nucleus), and glycerinaldehyde-3-phosphate
dehydrogenase (cytosol), data not shown.

Statistics
Data are shown as mean ± SEM and a p < 0.05 is considered
to indicate a significant difference. Data on the mitochondrial
content of p66shc in SSM and IFM (basal, following IR and IPC)
were compared by non-parametric Rank Sum test. Data on ROS
formation, EDP, LVDP, the recovery of LVDP, area at risk in vivo,
as well as on infarct size determination in vitro and in vivo were

analyzed by two-way ANOVA, following Bonferroni corrections.
The program SigmaStat 3.5 (Systat, Software GmbH, Erkrath,
Germany) was used for statistical analysis.

RESULTS

To study the mitochondrial translocation of p66shc, isolated
mouse hearts were perfused under normoxic conditions or
subjected to IR (30 min ischemia, 10 min reperfusion) without
and with IPC. SSM and IFM were isolated and analyzed for their
p66shc content by Western blot (Figure 1). In SSM, IR induced
an increased translocation of p66shc into the mitochondria,
however, following IPC the p66shc content was reduced to that
of normoxic controls. In contrast to SSM, the amount of p66shc
in IFM was not affected by IR or IPC.

To investigate whether or not the mitochondrial amount
of p66shc correlates with the ROS formation following IR,
isolated hearts from wildtype (WT) or p66shc knockout mice
(p66shc KO) underwent normoxia or IR. Subsequently, SSM
and IFM were isolated and ROS formation was measured as
the increase in the Amplex UltraRed fluorescence (Figure 2).
Under normoxic conditions, ROS formation tended to be higher
in SSM compared to IFM isolated from both WT and p66shc
KO hearts without reaching statistical significance. Following IR,
ROS formation increased in both SSM and IFM from WT and
p66shc KO hearts, however, the raise in ROS formation in SSM
compared to IFM was more pronounced in WT than in p66shc
KO mitochondria. When ROS formation was stimulated by the
addition of rotenone, there were no differences in the slope of the
Amplex UltraRed fluorescence (in arbitrary units/min) between
SSM and IFM isolated fromWT (SSM Nx: 1.6± 0.2; SSM IR: 1.8
± 0.2; IFM Nx: 2.3 ± 0.5; IFM IR: 1.9 ± 0.3, n = 6, p = ns) and
p66shc KO hearts (SSM Nx: 2.16 ± 0.3; SSM IR: 2.2 ± 0.2; IFM
Nx: 1.9± 0.3; IFM IR: 2.5± 0.3, n= 6, p= ns).

The impact of p66shc on left ventricular function was
determined in isolated WT and p66shc KO hearts subjected to
IR without or with IPC. Under baseline conditions (i.e., at the
end of the stabilization period), end-diastolic pressure and LVDP
were not different between groups (Table 1). The recovery of the
LVDP at the end of reperfusion was more pronounced in WT
hearts undergoing IPC than in p66shc KO hearts (Figure 3A,
Table 1). However, the improved functional recovery was not
a consequence of altered infarct size, since IPC induced a
similar infarct size reduction in WT and in p66shc KO hearts
in vitro (Figure 3B). Myocardial infarction after IR alone was not
different between WT and p66shc KO hearts.

To study the role of p66shc in the cardioprotection by IPC in
vivo, the LAD branch of the left coronary artery was reversibly
occluded in WT and p66shc KO mice to induce IR without and
with IPC. The area at risk (in % of the left ventricle) was not
different between groups (WT, IR: 23.2 ± 2.4, n = 9; WT IPC:
34.5± 5.2, n= 11; p66shc KO IR: 26.9± 2.5, n= 11; p66shc KO
IPC: 27.9 ± 2.7, n = 13, p = ns). Also, there was no significant
difference in infarct size after IR between WT and p66shc KO
mice (Figure 4). However, with IPC infarct size was significantly
reduced in bothWT and p66shc KOmice demonstrating effective
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FIGURE 1 | Mitochondrial p66shc translocation following ischemia/reperfusion or ischemic preconditioning. Western blot analysis was performed for p66shc and theQ4Q5

mitochondrial marker protein MnSOD (manganese superoxide dismutase) on SSM (A) and IFM (B) isolated from wildtype mice undergoing normoxia (Nx),

ischemia/reperfusion (IR) or IR with ischemic preconditioning (IPC). Bar graphs represent the ratios of p66shc over MnSOD in SSM (C) and IFM (D) isolated after Nx,

IR, or IPC.

cardioprotection not only in WT but also in p66shc KO mice
in vivo (Figure 4).

DISCUSSION

The present study demonstrates that the translocation of p66shc
after IR or IPC differs between mitochondrial subpopulations.
An increase in the mitochondrial level of p66shc in SSM is
associated with enhanced ROS formation after IR. However,
the altered mitochondrial amounts of p66shc after IR or IPC
had no consequences for infarct development per se or the
cardioprotection, since p66shc knockout hearts showed an
effective infarct size reduction by IPC both in vitro and in vivo.

The presence of p66shc has been described in mitochondria
of several cell types, including mouse embryonic fibroblasts
(Nemoto et al., 2006), human endothelial cells (Paneni et al.,
2015; Spescha et al., 2015; Zhu et al., 2015), and mitochondria
isolated from cardiac tissue (Yang et al., 2014). Cardiomyocytes
contain at least two mitochondrial subpopulations, the SSM and
IFM, which differ in form and function (Palmer et al., 1977, 1986;
Boengler et al., 2009). When analyzing the presence of p66shc in
mitochondria of ventricular origin, only SSM have been studied
so far (Yang et al., 2014). In the present study, we detected p66shc
not only in cardiac SSM but also in IFM. Under basal conditions,

themajority of p66shc resides in the cytosol and a translocation of
the protein into the mitochondrial intermembrane space occurs
under stress conditions, among them IR (Giorgio et al., 2005; Zhu
et al., 2015). A previous study demonstrates that the translocation
of p66shc into SSM is dependent on the duration of IR in guinea
pig hearts (Yang et al., 2014). Here, 30 min of ischemia were
not sufficient to increase the mitochondrial amount of p66shc,
whereas 30 min ischemia and 10 min reperfusion enhanced
the mitochondrial content of the protein. In the present study,
the increased mitochondrial amount of p66shc after 30 min
ischemia and 10 min reperfusion in SSM was confirmed, but
this translocation was specific for SSM since the mitochondrial
amounts of p66shc in IFM was not affected by IR.

The import of p66shc into mitochondria requires the
phosphorylation at serine 36 by protein kinase C beta
(PKCβ), and the subsequent prolyl-isomerization by peptidyl-
prolyl cis-trans isomerase 1 (Pin1) is important. Indeed,
it has already been shown that 30 min IR induces the
activation/phosphorylation of PKCβ and simultaneously that of
p66shc at serine 36, and that the inhibition of PKCβ decreases
p66shc phosphorylation and the mitochondrial translocation
of the protein (Kong et al., 2008; Yang et al., 2014).
However, serine 36 phosphorylation of p66shc may also
require c-Jun terminal kinase activity (Khalid et al., 2016). In
human umbilical vein endothelial cells, hypoxia/reoxygenation
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FIGURE 2 | ROS formation in SSM and IFM isolated from mouse hearts following normoxia or ischemia/reperfusion in vitro. Original traces showing Amplex UltraRed

fluorescence in SSM and IFM isolated after normoxia (Nx) or ischemia/reperfusion (IR) in wildtype (WT, A) or p66shc knockout (p66 KO, B) hearts in vitro. Bar graphs

represent the slope of the Amplex UltraRed fluorescence measured for 4 min in WT (C) and p66 KO (D) mitochondria.

TABLE 1 | Summary of the baseline parameters and hemodynamic data throughout ischaemia-reperfusion protocols in vitro.Q5

Genotype Protocol n-

value

Body

weight (g)

Heart

weight/body

weight (mg/g)

EDP (mm Hg) LVDP (mm Hg)

basal 10 min

reperfusion

End of

reperfusion

basal 10 min

reperfusion

End of

reperfusion

WT IR in vitro 7 28.9 ± 1.2 6.25 ± 0.27 12.8 ± 0.4 51.4 ± 6.1 26.3 ± 4.1 107.0 ± 3.7 59.8 ± 11.9 56.7 ± 2.8

WT IPC in vitro 7 27.7 ± 1.5 6.51 ± 0.24 11.1 ± 0.7 25.7 ± 2.5* 14.2 ± 0.9* 101.8 ± 7.7 67.5 ± 4.2 59.5 ± 6.4

p66 KO IR in vitro 5 25.2 ± 0.5 6.91 ± 0.51 12.0 ± 1.0 62.7 ± 11.3 31.0 ± 4.4 90.6 ± 10.5 32.7 ± 8.3* 36.0 ± 2.7*

p66 KO IPC in vitro 5 26.0 ± 0.9 6.30 ± 0.48 11.6 ± 0.9 33.8 ± 16.0 19.0 ± 7.4 95.4 ± 10.3 31.0 ± 8.1** 38.7 ± 3.5**

Enddiastolic pressure (EDP) and left ventricular developed pressure (LVDP) in wildtype and p66shc knockout (p66 KO) hearts undergoing IR without and with ischemic preconditioning

(IPC). Basal data were collected at the end of the stabilization period. *p < 0.05 vs. I/R WT, **p < 0.05 vs. IPC WT.

is associated with increased phosphorylation and mitochondrial
translocation of p66shc (Zhu et al., 2015). Here, the increased
p66shc phosphorylation is attributed to decreased activity of
phosphatase 2A rather than to increased activity of PKCβ.
The mitochondrial translocation of p66shc after intestinal
IR injury is abrogated following the inhibition of Pin1
leading to improved survival (Feng et al., 2017). Under high
glucose conditions, the phosphorylation and mitochondrial
translocation of p66shc is facilitated by a Sirtuin 1-regulated
lysine acetylation (Kumar et al., 2017). Although we tried to
measure serine 36 phosphorylation of p66shc by Western blot
and immunoprecipitation in the present study, but were unable
to detect specific signals with available antibodies (data not

shown), we cannot correlate p66shc phosphorylation with the
mitochondrial amount of the protein.

The ablation of p66shc is associated with a reduced ROS
formation after IR in the brain (Spescha et al., 2013) as
well as in the heart (Carpi et al., 2009). However, one
study also shows that the deletion of p66shc (via siRNA or
by genetic ablation) has no influence on myocardial ROS
formation following IR (Spescha et al., 2015). In our study,
we found an increase in ROS formation after IR compared
to normoxia in SSM and IFM of wildtype and p66shc-
deficient mice. In wildtype mice, this increase was more
pronounced in SSM than in IFM and therefore correlated
with the mitochondrial translocation of p66shc. However,
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FIGURE 3 | Influence of p66shc on myocardial function, IR injury and cardioprotection in vitro. (A) Left ventricular developed pressure (LVDP) at the end of reperfusion

in % of that at the end of the stabilization period in wildtype (WT) and p66shc knockout (p66 KO) mice undergoing ischemia/reperfusion (IR) or ischemic

preconditioning (IPC). (B) Infarct size (in % of left ventricle) in WT and p66shc KO mice subjected to IR or IPC.

FIGURE 4 | Influence of p66shc on myocardial IR injury and cardioprotection by ischemic preconditioning in vivo. Infarct size (in % of the area at risk) in WT and

p66shc knockout (p66 KO) mice subjected to ischemia/reperfusion (IR) or ischemic preconditioning (IPC).

in mitochondria isolated from p66shc-deficient mice ROS
formation was not different in SSM and IFM after IR indicating
that p66shc contributes sufficient amounts to the ROS formation
induced by myocardial IR.

Since ROS are known to contribute to either myocardial
damage or protection—depending on their timing and their
amount—p66shc represents an interesting target to be studied
in IR and protection from it. p66shc induces opening of
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the mitochondrial permeability transition pore, which leads to
swelling of the organelle, rupture of the outer mitochondrial
membrane and finally cell death (Giorgio et al., 2005). Therefore,
the deletion of p66shc has been suggested to be protective in IR
injury, and indeed IR in the brain induced by transient middle
cerebral artery occlusion results in reduced stroke size in p66shc-
KO mice or in WT mice after post-ischemic silencing of p66shc
compared to that in control mice (Spescha et al., 2013, 2015).
Also, muscle fiber necrosis is reduced in p66shc-deficient mice
after hindlimb IR (Zaccagnini et al., 2004). In the heart, the data
on the role of p66shc in IR injury are controversial. Whereas, one
study demonstrates the maintenance of cell viability and reduced
oxidative stress in p66shc-deficient hearts following IR in vitro
(Carpi et al., 2009), the measurement of myocardial infarction in
p66shc-deficient mice in vivo shows larger infarct sizes after IR
compared to that in wildtype mice (Akhmedov A. et al., 2015).
However, myocardial infarction is untypically small in this study,
and the increase in myocardial damage is only evident after
short term ischemia (30 min), whereas with the prolongation
of ischemia to 45 or 60 min no differences in infarct sizes
occur between wildtype and p66shc-deficient mice. In the present
study, we determined the infarct sizes of wildtype and p66shc-
deficient mice undergoing IR (with 45 min of ischemia) in vitro
and in vivo andwe observed similarmyocardial infarction in both
genotypes indicating that p66shc—and the p66shc-induced ROS
formation—does not contribute to IR injury per se.

Due to the important role of ROS in IR injury and in
the protection by IPC, p66shc represents a putative target of
such protective intervention. Indeed, in cortical cells chemical
preconditioning induces serine 36 phosphorylation of p66shc,
subsequent mitochondrial translocation of the protein and
finally reduces cell death (Brown et al., 2010). Whereas, this
study suggests a protective role of p66shc in preconditioning,
another study demonstrates that IPC in the liver is protective
against IR injury via a pathway involving the Sirtuin 1-
mediated downregulation of p66shc (Yan et al., 2014). In
the present study, we measured the translocation of p66shc
into mitochondria after perfusion of isolated wildtype hearts
under normoxic control conditions, after IR and as well as
after IPC and found that whereas IR and IPC did not alter
the mitochondrial amount of p66shc in IFM, the IR-induced
increase of p66shc in SSM was abrogated after IPC. Thus, the
inhibition of mitochondrial p66shc import by IPC may reduce
myocardial ROS formation to such amounts which are necessary
for triggering cardioprotection.

In addition, the present study addressed the influence of
p66shc on myocardial function and the infarct size development
following IR without and with IPC in vitro and in vivo.

Whereas the recovery of the LVDP was improved in wildtype
compared to p66shc-deficient mice after IPC, the enhanced
functional recovery was not a consequence of altered myocardial
infarction, since IPC reduced infarct sizes to similar extents in
both genotypes in vitro. Comparable results were obtained in
the in vivo situation where IPC was equally cardioprotective in
wildtype and in p66shc-deficient mice. Therefore, despite the
putative normalization of the IR-induced increase of ROS by IPC
in SSM, p66shc-mediated ROS formation is no prerequisite for

the cardioprotection by IPC. The role of p66shc in IPC in the
heart has previously been investigated in one study only (Carpi
et al., 2009). Here, myocardial damage was assessed as the release
of lactate dehydrogenase (LDH) from isolated hearts in vitro.
Compared to wildtype mice, LDH release was already reduced
in p66shc-deficient mice after IR and was not further affected by
IPC. Therefore, it is difficult to assess whether or not IPC was
capable to additionally decrease LDH release.

Our data demonstrate that in healthy hearts p66shc is
of no importance for myocardial I/R injury and that the
protein is also not involved in the cardioprotection by classical
ischemic preconditioning. However, alterations in p66shc
expression/phosphorylation occur in pathological conditions in
humans, such as in muscular pericytes of diabetic patients
(Vono et al., 2016), in peripheral blood monocytes and renal
tissue biopsies of patients with diabetic nephropathy (Xu
et al., 2016), and also in peripheral blood monocytes of
patients with acute coronary syndrome, but not with stable
coronary artery disease (Franzeck et al., 2012). Since such risk
factors and co-morbidities may abrogate the cardioprotection
by preconditioning (Ferdinandy et al., 2014), it remains to be
elucidated whether p66shc contributes toward cardioprotection
under pathological conditions.

Taken together, our study demonstrates that within cardiac
mitochondria p66shc is present in SSM as well as in IFM. The
IR-induced translocation of p66shc into SSM correlates with the
ROS formation in this mitochondrial subpopulation. However,
ROS generation by p66shc is not important formyocardial injury,
since the ablation of p66shc does not influence infarct size after
IR per se. Whereas, IPC normalizes the IR-induced increase of
p66shc in SSM, this process has no relevance for cardioprotection
since p66shc-deficient mice show effective infarct size reduction
in vitro and in vivo.
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