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Abstract: Since the industrial revolution, the consumption of processed food increased dramatically. During 

processing, food material loses many of its natural properties. The simple restoration of the original 

properties of the processed food as well as fortification require food supplementation with compounds 

prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by 

consumers than synthetic ones has strongly increased the demand for natural compounds. Because some of them have 

only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural 

origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an 

accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To 

overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this 

context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce 

particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains 

have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for 

their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. 

This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In 

addition, traditional and alternative, microalgal sources for industrial carotenoid extraction, the chemical and physical 

properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed. 

Keywords: Astaxanthin, β-carotene, cancer, diatom, food colorant, fucoxanthin, Haematococcus, health. 

1. INTRODUCTION 

Since the industrial revolution, in the middle of the 19th 

century, the rise of human populations and the growth of 

cities accelerated. This process was accompanied, especially 

after World War II, by an increase in the consumption of 

processed food. During processing, food material loses many 

of its natural properties [1,2]. Concomitantly, the proportion 

of global population suffering of malnutrition has increased, 

more because of failures in food access than to production 

difficulties [3]. The fortification or simply restoration of the 

original properties of the processed food requires the 

supplementation with one or several compounds [4,5]. The 

use of artificial additives is at odd with the opinion polls that 

militate for the application of the concept according to which 

an adequate food supply in terms of nutrition and calories 

favors a good health and well-being [6]. Indeed, the 

observations that natural molecules are safer and better 

accepted by consumers than those synthesized chemically 

has strongly increased the demand for natural compounds on 

the global market. Because some of them have only a low 
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abundance and/or are rare, their market price can be very 

high. For instance, the price of the natural astaxanthin is 

expected to reach 14,000 USD kg
-1 

in 2018 [7]. The, global 

(both natural and synthetic, i.e., nature-identical) carotenoid 

market value was 1.5 billion USD in 2014 and is expected to 

reach nearly 1.8 billion USD in 2019 with lutein (a), 

astaxanthin (Fig. 1) and β-carotene (Fig. 2), accounting to 

appr. 230, 220 and 261 million USD in 2010, and estimated 

to reach a commercial value of around 310, 250 and 334 

million USD in 2018, respectively 

(http://www.bccresearch.com).  

The total production of natural carotenoids (with major 

carotenoids including fucoxanthin in marine algae, lutein, 

violaxanthin and neoxanthin in green leaves) has been 

estimated as 100 million tons/year [8]. However, the 

increasing demand for food additives of natural origin 

(especially for those which are not abundant) also 

contributes to an accelerated depletion of traditional natural 

mailto:justine.marchand@univ-lemans.fr
http://www.bccresearch.com/
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resources [9], that in turn, further increases the market prices 

of these resources. To overcome these difficulties, the search 

for alternative sources for carotenoids has started [10] and 

microalgae emerged as organisms with a very high potential 

in this respect because in addition to the primary carotenoids 

they ordinarily synthesize for photosynthesis, they are also 

able to produce particular, so-called secondary carotenoids 

under stress [11-13] (Table 1). This potential also resides in 

the fact that only ten thousands of microalgal strains out of 

the 700,000 expected species have been described [14]. 

Consequently, the newly described taxa [e.g., 15-18] are of 

interest, even if many of them have not yet been 

characterized from the biochemical and/or biotechnological 

point of view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Traditional and alternative sources for the 

production of carotenoids for the food and health care 

industries. Gray shade indicates carotenoids the synthesis 

of which can be enhanced in algae under stress 

conditions. 

 

Carotenoids Traditional sources Microalgal alternative 

source 

-carotene  Red alga [19] 

Dunaliella salina 

[20] 

β-carotene Industrial 

production: 

chemical synthesis; 

Fungus: Blakeslea 

trispora [21]; 

Dietary source: 

carrots and other 

vegetables 

Arthrospira platensis, 

Botryococcus 

braunii, 

Chlorococcum sp., 

Dunaliella salina, 

Parietochloris sp., 

Synechocystis sp. [22-

24] 

Astaxanthin Fungus: 

Xanthophyllomyces 

dendrorhous yeast 

(earlier: Phaffia 

rhodozyma) [25,26] 

Botryococcus 

braunii, Chlorella 

zofingiensis, 

Diacronema 

vlkianum, Euglena 

rubida, 

Haematococcus 

pluvialis, Neochloris 

wimmeri, 

Scotiellopsis 

oocystiformis 

[11,20,27-32] 

Canthaxanth

in 

Bacterium: 

Gordonia jacobaea 

[33] 

Anabaena sp. [34] 

Fucoxanthin - Cylindrotheca 

closterium, 

Eustigmatos magnus, 

Eustigmatos 

polyphem, 

Eustigmatos vischeri, 

Phaeodactylum 

tricornutum, 

Vischeria helvetica, 

Vischeria punctata, 

Vischeria stellata 

[35-37] 

Lutein Plant: marigold 

petals [10,38] 

Botryococcus 

braunii, Chlorella 

minutissima, 

Chlorella 

protothecoides, 
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Chlorella 

zofingiensis, 

Chlorococcum sp., 

Muriellopsis sp., 

Neospongiococcus 

gelatinosum, 

Scenedesmus 

almeriensis 

[10,28,29,32,39] 

Siphonaxant

hin 

- Nephroselmis [40] 

Zeaxanthin Chemical synthesis; 

Bacterium: 

Flavobacterium 

sp. [41,42] 

 

Arthrospira sp., 

Botryococcus 

braunii, 

Chlamydomonas 

acidophila, 

Dunaliella salina, 

Microcystis 

aeruginosa, 

Neospongiococcum 

excentricum 

[20,28,41,42,43] 

 

Carotenoids have been known for ages for their 

antioxidant and coloring properties [44,45] and a large body 

of evidences has been accumulated about their ‘health’ 

potential and crucial roles in the human body [12,46-50]. 

Because animals – except aphids [51] and spotted spider 

mites [52] – and humans are not able to produce carotenoids, 

they must be obtained from food. Once assimilated, 

carotenoids enter the biochemical pathways along which 

they may be eventually modified and have several health 

benefits [53], may improve sexual behavior and may be 

essential for reproduction in several species [54]. 

The main Sections of this review paper are dedicated to 

the potential of carotenoids from microalgae used in the food 

industry and medicine. The Sections are preceded by short 

descriptions of the physico-chemical properties of 

carotenoids, their biosynthetic pathways, cellular localization 

and functions. The contribution ends with a discussion on the 

interest of using microalgae for production of customized 

carotenoids. In this manuscript, algae should be taken sensu 

lato (in the broadest sense), i.e., as unicellular organisms 

performing oxygenic photosynthesis regardless of their 

prokaryotic or eukaryotic organization/origin. 

2. CHEMICAL AND PHYSICAL PROPERTIES OF 
CAROTENOIDS 

Carotenoids constitute a family of more than 750 

pigments belonging to the large family of terpenoid 

compounds [13,55,56]. Carotenoids can be divided into 

xanthophyll or carotene subfamilies. The members of the 

former subfamily contain at least one oxygen atom whereas 

the members of the latter subfamily are devoid of oxygen. 

Carotenoids owe their name to carrots (Daucus carota), 

while the term xanthophyll derives from the Greek words 

yellow (ξανθός= xanthos) and leaf (φύλλον=phullon) [57]. 

Violaxanthin and β-carotene are representative examples of 

each sub-family, respectively. 

Carotenoids are C30-C50 molecules characterized by an 

extended network of conjugated double bonds allowing 

carotenoids to absorb visible light in the violet-green region. 

The range of the absorbed wavelengths can be in first 

approximation determined by the amount of conjugated 

double bonds along the carbon backbone. The higher the 

number of conjugated double bonds the longer the 

wavelengths the pigments absorb [58]. A consequence of the 

presence of double bonds is the abundant number of 

carotenoid isomers [1,44,58]. Thus, in vivo, but also in vitro, 

carotenoids may adopt several 3D-configurations that are 

important for their biological properties. For instance, cis-

isomers of fucoxanthin have been reported to be more 

valuable than all-trans-isomers in human cancer lines [59] 

(see Section 5.2.2). Another consequence of the extended 

network of conjugated double bonds of carotenoids resides 

in their capacity to act as antioxidant and reactive oxygen 

species (ROS) quenchers [1,44,55,58]. 

Although the carotenoid composition of higher plant leaves 

is rather similar, the carotenoid diversity in microalgae is 

very large and in many cases specific of taxa. For instance, 

lutein, a typical xanthophyll of higher plants [55,60] is only 

found in Chrysophyta, Euglenophyta, Chlorarachniophyta, 

Chlorophyta and some Rhodophyta [19,61]. Table 2 

summarizes the carotenoid distribution among the different 

major algal taxa. 

 

Table 2. Occurrence of the main carotenoid types in 

various algal taxa (modified after [61]). 

 

Pigment 

type 

Cyanoba

cteria 

Glauco

phytes 

Red 

algae 

Din

ofla

gell

ates 

Diatoms Green 

algae 

β-

carotene 

+ + Unice

llular 

+ + + 

Canthax

anthin 

Anabaen

a 

- - - - + in 

taxa 

accumu

lating 

ketocar

otenoid

s 

Diadinox

anthin 

- - - + + - 

Diatoxan

thin 

- - - - + - 

Fucoxant

hin 

- - - - + - 

Lutein - - - - - + 
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Peridinin - - - + - - 

Violaxan

thin 

- - + - only 

under 

high light 

+ 

Zeaxanth

in 

Depends 

on 

species 

+ + - only 

under 

high light 

+ 

 

Some microalgal groups contain carotenoids with one or 

several unique chemical structures. A good example is the 

family of ketocarotenoids such as astaxanthin, 

canthaxanthin, fucoxanthin, peridinin and siphonaxanthin 

(Fig. 1). In the case of fucoxanthin, the keto group is 

accompanied by a 5,6-epoxy group and an allelic bond (Fig. 

1), the latter constituting a key feature for the bioactivity of 

this compounds [62] (see Section 5). It is out of the scope of 

this review to describe the different types of carotenoids 

present in microalgae in details, therefore, interested readers 

are directed towards excellent reviews and monographies on 

that topic (e.g., [55].) 

 



Fig. (1). Structures of typical keto-carotenoids from 

microalgae. 

 

3. BIOSYNTHETIC PATHWAY 
C5 isopentenyl diphosphate units are the building blocks of 
carotenoids (Fig. 2) [63]. Since this pioneering publication, 
much progress has been achieved in the elucidation and 
understanding of the biochemical pathways leading to the 
formation of xanthophyll molecules. Briefly, isopentenyl 
diphosphate (IPP) can be synthesized by two different 
routes. Beside the classical mevalonic acid (MVA) pathway, 
a methylerythritol phosphate (MEP or mevalonate-
independent route) was described ([64]; for reviews, see 
[11,13,65,66]). The numerous studies devoted to MVA and 
MEP routes in living organisms have enabled the 
development of a global view of the distribution of these 
pathways in the living kingdom (e.g., [64,67-70]). Archaea, 
certain bacteria, yeasts, fungi, some protozoa and animals 
use only the MVA pathway [71-73]. Many bacteria, green 
algae, some protists and some diatoms (Table 3) rely only on 
the MEP pathway [71]. Some streptomyces, apicomplexa (a 
clade of parasitic protists derived from a photosynthetic 
ancestor, for a review see [74]), mosses, liverworts, land 
plants and some algae, including diatoms (Table 3) appear to 
use both routes [13,68,70]. All these eukaryotic groups carry 
plastids (either photosynthetic or, in the case of apicomplexa 
highly reduced ones; for reviews, see [74-76]), suggesting 
that they obtained the MEP pathway through the transfer of 
genes from the original cyanobacterial endosymbionts which 
became plastids during endosymbiogenesis [77]. When this 
occurs, cytosolic sterols are synthesized through the 
cytosolic MVA pathway in the cytosol while chloroplastic 
isoprenoids such as phytol and carotenoids are synthesized 
along the chloroplastic MEP pathway in the chloroplast 
[13,68,78,79]. One interesting question, however, remains to 
be answered: does a cross-talk between the two routes exist? 

Table 3. Occurrence of the different isopentenyl 
diphosphate (IPP) biosynthetic pathways in different 
microalgal taxa. 
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(-) very weak if any contribution. The MVA pathway is 
localized in the cytoplasm, while the methylerythritol 
phosphate (MEP) pathway is plastid located. 

 

A comprehensive description of the biosynthetic pathway 
leading to the formation of carotenoids and xanthophylls can 
be found in [11,13,65,66]. Therefore, only a brief outline is 
presented here. 

3.1. Common/Universal Steps 

The carotenoid backbone is formed by the condensation of 
two geranylgeranyl diphosphate molecules producing 
phytoene (Fig. 2). The reaction is catalyzed by phytoene 
synthase (CRTB). The next steps of the pathway consist of 
the extension of the size of the conjugated double bond 
system through the sequential addition of double bonds by 
phytoene desaturase (CRTQ). The large chemical variety of 
carotenoids is reached thanks to the presence of various 
carotenoid-modifying enzymes, including lycopene cyclase 
(CRTY), carotene ketolase (CRTW), carotene hydroxylase 
(CRTZ). Both CRTY-ε epsilon (LCYE) and CRTY-β 
(LCYB) are cycling the end of lycopene differently (see Fig. 
2), resulting in the division of the carotenoid pathway in two 
branches, starting with -carotene and β-carotene, 
respectively [65,83]. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The carotenoid biosynthetic pathway. 

 

3.2. Regulation 

Carotenoids participating in the photosynthetic process are 
synthesized according to the actual demand of the cell. For 
instance, when cells are exposed to shade, they increase their 
content in pigments, including carotenoids. It has been 
established that the carotenoid amount can be modified 
and/or enhanced by stress conditions (such as heavy metals: 
[84]; nutrient deficiency: [39]; light intensity: [85]; for 
reviews, see [11,86]). To illustrate this point, the regulation 
by nitrogen or light availability are described in the two next 
subsections. 

3.2.1. Influence of Nitrogen Availability 

In an elegant study combining advanced mathematical 

modeling and optimization techniques, Dineshkumar et al. 

[39] evaluated the impact of changes in macro- and micro-

nutrients on lutein production by the green microalga 

Chlorella minutissima. For instance, limitation in ions 

serving as cofactor for the carotenoid biosynthetic pathway 

reduces the carotenoid production (Mn: phytoene synthase, 

CRTB; Fe: β-carotene hydroxylase, CRTZ) [83] (Fig. 2). 

However, these ions should not be present in excess because 

then they generate ROS and thus cause oxidative stress (Fe: 

[87], Cu: [88]). 

Nitrogen is essential for growth and for the synthesis of 

fundamental building blocks of cells such as proteins and 

enzymes, including those needed for carotenoid 

accumulation as stress-induced carotenoid accumulation may 

require de novo enzyme biosynthesis (e.g., Haematococcus 

pluvialis-astaxanthin: [85]. Thus, the nitrogen level in the 

growth medium seems to be of primary importance for 

carotenoid production. However, nitrogen deficiency 

generally induces carotenogenesis. For instance, 

Dineshkumar et al. [39] and others found that high nitrogen 

content of the growth medium promotes lutein (a) 

production. To illustrate this point, we have replotted the 

data from Dineshkumar et al. [39] in order to show how the 

lutein amount is affected by the initial nitrogen content in the 

growth medium (Fig. 3). Under low initial nitrogen content, 

the amount of lutein increased until about 48 h and then 

decreased. However, high initial nitrogen content allowed 

the accumulation of lutein over the entire growth period (Fig. 

3, [39]). It is not completely clear why the presence of high 

nitrogen concentration in the growth medium allowed higher 

   Pathway used to 
synthesize IPP 

Superphy
lum/Phyl
um 

Genus Species MVA MEP 

Chloroph
yta 

Scenedesm
us 

obliquus (-) [80] + [80] 

Chlamydo
monas 

reinhard
tii 

- [81] + [81] 

Chlorella fusca - [81] + [81] 

Chrysoph
yta 

Ochromona
s  

malhame
nsis 

+ [82] + [82] 

Euglenoz
oa 

Euglena vulgaris + [81] - [81] 

Heteroko
nta 

Rhizosoleni
a 

setigera + [69] + [69] 

Haslea ostrearia (-) [69] + [69] 

Phaeodacty
lum  

tricornut
um 

+ [78] + [78] 

Nitzschia ovalis + [78] + [78] 

Rhodoph
yta 

Cyanidium caldariu
m 

- [81] + [81] 
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lutein accumulation. It can be, however, hypothesized that in 

the presence of a high amount of nitrogen, cells were 

growing for a longer time and used the energy produced by 

photosynthesis to accumulate lutein whereas in the presence 

of low amounts of nitrogen, cell growth was arrested earlier 

– the nitrogen content declined after 48 h of growth – and the 

accumulated lutein molecules were metabolized for instance 

to provide energy to cells. 

 

 

 

 

 

 

 

 

 

Fig. (3). Effect of the initial nitrogen content on the 

accumulation of lutein in the green alga Chlorella 

minutissima (Figure constructed on the basis of raw data 

from [39]). The data have been calculated from the time-

course profiles of biomass and lutein concentration of 

Chlorella minutissima grown in a 2-L airlift photobioreactor 

published in [39]. The operating conditions were 150 μmol 

photons m
−2

 s
−1 

light intensity; 2.5% CO2 and 0.45 vvm flow 

rate. 

 

3.2.2. Influence of the Light Intensity 

It is well established that the amount of carotenoids in 
microalgae is regulated by light intensity. The lower the light 
intensity the higher the carotenoid content (under a certain 
limit, however). Many green algae acclimate to high light 
(HL) conditions through the accumulation of carotenoids 
[27]. Transcriptional, post-transcriptional and biochemical 
factors are all involved in the regulatory network (for a 
review, see [11]). For instance, high levels of white light 
(1000 μmol m

−2
 s

−1
) induced a significant decrease of the 

mRNA level of carotenoid hydroxylase Cyp97a1, at the 
early stage of the treatment of Chlorella kessleri and 
Haematococcus pluvialis before a strong increase when the 
treatment was continued after 10 h. The amount of 
carotenoids varied concomitantly with the mRNA level [89]. 

Altogether, stress conditions enhance carotenoid production 
in many microalgae. Understanding the regulation of the 
stress effect could be important to enhance the production of 
selected carotenoids in biotechnological applications. 

4. OCCURRENCE, LOCALIZATION AND ROLES IN 
MICROALGAE 

4.1. Occurrence and Cellular Localization 
Carotenoids are ubiquitous molecules. In microalgae, they 
are mostly found inside the photosynthetic membranes 
where they are involved in light harvesting, in the protection 
against photodamage and oxidative stress. There, carotenoids 

are bound to dedicated proteins through weak hydrophobic 
interactions. This does not exclude the presence of unbound 
pools of carotenoid molecules (for a review, see [86]). In 
situ, carotenoids are often esterified and bound to fatty acids, 
with more hydrophobic carotenes being thought to be 
immersed in the lipid bilayer, while more polar and 
hydrophilic xanthophylls being thought to bind to the lipid 
surface or to proteins. 

Carotenoid biosynthesis is believed to occur 
entirely in chloroplasts. However, final steps of the 
branching can be localized in another compartment. This is 
the case for the enzymes transforming β-carotene (Fig. 2) 
into astaxanthin (Fig. 1) in Haematococcus pluvialis that are 
active in the cytoplasm [85]. In some microalgae such as the 
chrysophyte Ochromonas malhamensis, the mevalonate 
pathway is also present (Table 3). In this alga, the 3-
hydroxy-3-methylglutaryl-CoA reductase activity, a key 
enzyme of the mevalonate pathway, has been demonstrated 
to be associated with microsomes [82]. It is not clear 
whether this pathway participates to the formation of 
carotenoids through the delivery of IPP to the chloroplast or 
not. 

4.2. Roles 
Light is essential for photosynthesis. In the photosynthetic 
apparatus, photons are harvested by pigments, including 
carotenoids, located in the light-harvesting antennas that are 
associated to the reaction centers. The energy associated to 
the absorbed photons is usually transferred to chlorophyll 
molecules. However, when the energy is arriving at the 
reaction center, the carotenoids of the light-harvesting 
antenna switch from the light-harvesting mode to the energy-
quenching mode, i.e., dissipating the excess of energy as 
heat [90]. The molecular mechanism involved in the process 
is not yet completely understood and several possibilities 
have been proposed: (1) excitonic interactions between 
carotenoids and chlorophyll molecules [91], (2) electron 
transfer [92] and (3) energy transfer from the excited 
chlorophyll molecules to the carotenoid [93,94]. Carotenoids 
involved in photosynthesis are often referred to as primary 
carotenoids. At the same time, carotenoids not directly 
involved in primary metabolism, but occurring and 
accumulating in chromoplasts of reproductive organs 
(flowers, seeds and fruit parts of plants or in the shield cells 
of the antheridium of the green alga Chara corallina [95]) or 
only under certain conditions in the cytoplasm (e.g., in 
Haematococcus pluvialis (reviewed in [11]) are termed 
secondary carotenoids, These may have roles in reproduction 
(especially in plants) or in stress defense (in algae). 
 

5. CAROTENOIDS AS HEALTH PROMOTING 
COMPOUNDS 
In recent decades, a convincing body of evidence has been 
accumulated to support the association between higher 
carotenoid intakes and reduced chronic disease risks [6]. 
Because vertebrate cells are unable to synthesize these 
compounds, they should be acquired through diet [6]. 

Some in vitro data indicate that 20-40% of dietary 

carotenoids may be absorbed/accumulated by Caco-2 human 

cells [96]. In vivo absorption of carotenoids like β-carotene is 

in general estimated as 5-22%. The protein-mediated uptake 

of β-carotene is restricted to the duodenum of the small 

intestine, and occurs on the same receptor (SR-B1) as that of 
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vitamin E (α-tocopherol) [97]. After absorption, carotenoids 

may be mobilized and stored in the liver and body fat. 
 Carotenoids have biological actions such as 
antioxidant and anti-inflammatory effects that may help to 
maintain health and prevent the appearance of diseases. 
Studies focused first on the provitamin A activity of 
carotenoids and especially β-carotene. More recent studies 
showed that several carotenoids without provitamin A 
activity can be even more efficient in the prevention of many 
serious diseases such as cardiovascular and 
neurodegenerative disease, diabetes, obesity, etc. Moreover, 
due to safety concerns, people tend to give preference to 
carotenoids obtained from natural sources (see Section 1). In 
this context, microalgae and their carotenoids, show 
promising benefits for the health prevention field [12,40,98]. 

Humans and some omnivorous animals are poor 
converters of carotenoids to colorless retinoids, and thus may 
accumulate ingested carotenoids to relatively large extent, 
with best-known examples including (1) astaxanthin in 
marine animals such as salmon, shrimps, lobsters and their 
eggs [99], (2) canthaxanthin accumulating in bird plumage in 
flamingo or red ibis [54], and (3) intact absorbed β-carotene 
accumulating in humans (plus other mammals including 
horse and ferret, and birds like chicken) in the blood and 
tissues (especially in adipose tissue which owes its yellow 
coloration to carotenes in humans and chicken for example) 
after increased carotenoid intake [53]. This latter 
phenomenon is also known as carotenodermia (or 
carotenosis), i.e., orange skin tint due to the accumulation 
and deposition of carotenoids in the stratum corneum of the 
skin at distinct places (palms, soles, knees) [100]. 

5.1. Provitamin A Activity 
Vitamin A (b) is essential for the promotion of growth, 
embryonal development, proper function of the immune 
system and vision [101]. Because human cells are unable to 
synthesize both provitamin A and vitamin A, they should be 
acquired through the diet. Consequently, a deficiency in the 
intake of these compounds can have dramatic consequences 
for health.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steenbock [102] suggested on the basis of indirect 
evidence that there could be a relationship between β-
carotene (Fig. 2) and vitamin A (b). The scientifically and 
commercially important concept of provitamins (precursor 
molecules which are converted into vitamins by the body) 
was entirely new, and became generally accepted only after 
1965 based on evidence of the formation of retinal (a 
derivative of vitamin A) (c) from this pigment in cell free 
extracts [103]. Actually, around 50 carotenoids have been 
shown to have provitamin-A activity, because they contain 
one (α-carotene) (Fig. 2), γ-carotene (d), β-cryptoxanthin (e) 
or two (β-carotene) (Fig. 2) retinyl groups and can be 
therefore easily transformed into this vital pigment for 
vision, skin protection and cell growth, if necessary 
[104,105]. In this respect, β-carotene is the most important 
pigment, which can be cleaved into two retinal molecules by 
β-carotene-15,15’-monooxygenase of the cells (localized 
primarily in the duodenal mucosa cells, but also present in 
the liver) [103]. Based on these evidences it is clear that 
dietary carotenoids can prevent vitamin A deficiency in 
humans [106]. 

However, the pro-vitamin A activity (bioavailability, 
bioconversion and bioefficacy) of the dietary pigments 
depends and varies a lot on different factors related to the 
pigment itself (i.e., chemical structure of the given 
carotenoid, its molecular linkage, its matrix properties, etc.), 
to ingestion (the way the food and the pigment has been 
previously processed, i.e., as raw or cooked vegetable, as 
dietary supplement, etc., the amount in the meal, the 
presence of fats that may facilitate carotenoid uptake), and 
other factors such as nutrient status, present stores of vitamin 
A and the given carotenoid, effectors, genetics, host specifity 
and interactions between factors [107]. For instance, in the 
absence of vitamin E (α-tocopherol) the normal cleavage of 
β-carotenes is inhibited and apocarotenoids are formed 
instead of vitamin A [103]. 

Both all-trans and 9-cis isomers of for example β-

carotene (Fig. 4) can be metabolized to their respective 

retinoic acid isomers [108], which are both active in gene 

regulation [109]. This clearly shows that consumption of cis-

isomers from food may be important, although the 

mechanisms behind the observed differences between the 

uptake, transport and tissue accumulation of the different 

isomers is still not fully understood [110]. Due to the 

variable absorption and conversion of the different 

carotenoids to vitamin A (b) by humans, Dietary Reference 

Intakes are defined in the USA as retinol activity equivalents 

(RAE) since 2001 [111]. 
Although carotenoids from fruits and vegetables 

provide up to 70% of the vitamin A (b) intake in some 
countries, carotenoids from microalgae represent a good 
alternative. In the last decades, the commercial production of 
microalgae enriched in provitamin A carotenoids has been 
mainly focused on Spirulina, Chlorella, and Dunaliella 
[112,113]. Due to their simple unicellular organization these 
algae are thought to be more digestible. Digestible means 
that more carotenoids would be released from the food 
matrix than from leafy green vegetables such as spinach, a 
traditional source of provitamin A carotenoids [114]. A 
study carried out in India on humans showed significant 
improvements in hemoglobin, serum protein, and serum 
retinol levels when 1 g per day of Spirulina was given for 6 
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weeks [115]. Although the world production of these 
microalgae is quite high (for Spirulina it reached 3,000 
metric tons in 2012 [116]), their utilization as vitamin A 
source in humans is still limited. 

5.2. Antioxidant Effects 
Many diseases such as cancer, diabetes, neurodegenerative 
and cardiovascular diseases all have oxidative stress as a 
major cause of inflammatory events. Molecules such as ROS 
(e.g., superoxide anion O2

•-
, singlet oxygen 

1
O2, hydroxy 

radical OH
•
, or peroxyl radicals OO

•-
) and reactive nitrogen 

species (RNS) (e.g., nitric oxide NO
•
, peroxynitrite ONOO

-
) 

are produced in the body during normal metabolic reactions 
and are well recognized as essential to maintain homeostasis 
and to regulate several metabolic processes. For example, the 
formation of ROS by phagocytic cells constitutes an 
essential host defense mechanism necessary to combat 
infection. Likewise, ROS produced in response to 
stimulation by growth factors are involved in regulating the 
proliferative response [117,118]. Under certain situations of 
metabolic stress, oxidative molecules seem to modulate 
cellular signaling pathways [119,120]. However, ROS and 
RNS can also be potentially harmful when the imbalance 
between oxidants and antioxidants is in favor of the oxidants 
(‘oxidative stress’). Physiological stress, air pollution, 
tobacco smoke, exposure to chemicals or exposure to 
ultraviolet light can enhance the production of such 
molecules. Regardless how or where they are generated, a 
rise in intracellular oxidant levels has two potentially 
important effects: damages to various cell components 
(DNA, proteins, lipid membranes) and activation of specific 
signalling pathways. Both of these effects can cause aberrant 
cell division, which sequentially contributes to aging and to 
the development of a number of diseases such as 
atherogenesis, ischemia-reperfusion injury, infant 
retinopathy, age-related macular degeneration and 
carcinogenesis [121]. 

Carotenoids attracted attention because a number of 
epidemiological studies have revealed a positive link 
between higher dietary intake and tissue concentrations of 
carotenoids and lower risk for several degenerative 
disorders, including various types of cancer, cardiovascular 
or ophthalmological diseases [122-125]. The preventive 
effects of carotenoids have been associated with their 
antioxidant activity, protecting cells and tissues from 
oxidative damages [126]. However, still limited information 
is available on the antioxidant activity of microalgae. Murthy 
et al. [127] highlighted the ability of Dunaliella salina 
powder extract to protect against oxidative stress in vivo 
using animal models and demonstrated the beneficial effect 
of algal β-carotene compared to synthetic carotene as 
antioxidant. Actually, Levin and Mokady [128] showed that 
9-cis-β-carotene has a higher antioxidant potency than the 
all-trans isomer and therefore protects not only the fatty 
acids but also the all-trans isomer. This difference might be 
explained by the higher reactivity of cis, compared to trans, 
bonds (Fig. 4). Li et al. [129] investigated the antioxidant 
capacity of 23 different microalgae. They found 
Synechococcus sp., Chlamydomonas nivalis and Nostoc 
ellipsosporum to possess the highest antioxidant capacities 
and thus be potential rich sources of natural antioxidants. 
More recently, Dambeck and Sandmann [130] showed that 
fucoxanthin and astaxanthin (see Fig. 1 for the structures) 
isolated from the two microalgae Phaeodactylum 

tricornutum and Haematococcus pluvialis, had the potential 
to protect against lipid peroxidations caused by singlet 
oxygen or oxy radicals. 

Carotenoids scavenge harmful radicals through (1) 
electron transfer, (2) radical adduct formation or (3) 
hydrogen atom transfer [131,132]. They are most likely 
involved in the scavenging of two ROS, singlet oxygen and 
peroxyl radicals [133,134]. The electron-rich conjugated 
system of the polyene and cyclic end groups of the 
carotenoid molecule determine the power of its antioxidant 
activity [135]. Based on in vitro tests, astaxanthin exhibited 
the most powerful scavenging capacity among all marine 
carotenoids [136]. The polyene chain in astaxanthin (Fig. 1) 
traps radicals in the cell membrane, while the terminal ring 
of astaxanthin could scavenge radicals at the outer and inner 
parts of the cell membrane. The antioxidant activity of 
astaxanthin was shown to be stronger than that of quercetin 
(a well-known bioactive flavone), lutein, canthaxanthin, β-
carotene, zeaxanthin as well as more than 100 times stronger 
than α-tocopherol ([136]; for more details see [137]). Due to 
the presence of an oxo-carbonyl and hydroxyl group on each 
ionone ring of its molecule, astaxanthin (Fig. 1) may also 
convert free radicals into stable products, thus preventing 
from peroxidations [28,135,138,139]. Astaxanthin has been 
shown to reduce lipid peroxidation by up to 40% while other 
carotenoids such as lutein, lycopene, β-carotene and 
zeaxanthin have been found to act as pro-oxidant molecules 
and disturb the lipid membrane bilayer [140]. 

Reports support the assumption that daily ingestion 
of astaxanthin may protect body tissues from oxidative 
damage and this might be a practical and beneficial strategy 
in health management [141]. In rabbits fed with astaxanthin 
supplemented diet, superoxide dismutase and thioredoxin 
reductase activities were enhanced in the serum [142]. The 
level of antioxidant enzymes were increased in astaxanthin 
fed rats with ethanol-induced gastric ulcer [143]. Indeed, 
astaxanthin effects were observed with rats fed with 
astaxanthin-enriched Haematococcus pluvialis [28]. 
Actually, catalase, superoxide dismutase, peroxidase and 
thiobarbituric acid reactive substances were significantly 
high in plasma and liver in the hours following 
administration, offering thus a long-term protection against 
free radicals.  

The presence of an allenic bond and six oxygen 
atoms in the fucoxanthin molecule (Fig. 1) was found to be 
responsible for the higher antioxidant activity of fucoxanthin 
compared to β-carotene (Fig. 2) ([144,145], see [146] for 
more details). Interestingly, fucoxanthin acts as an 
antioxidant under anoxic conditions, whereas other 
carotenoids (like β-carotene and lutein) show little or no 
quenching activities in such environment [144]. 

It has also been suggested that interactions between 
structurally different compounds with antioxidant activity 
provides additional protection against increased oxidative 
stress. For example, synergic interactions between β-
carotene and other antioxidants such as α-tocopherol and 
ascorbic acid have been described against UVA stress in 
cultured human fibroblasts [147] while the combination of 
vitamin E, vitamin C and β-carotene exhibited synergic 
effects against RNS [148]. Stahl et al. [100] showed that 
mixtures of carotenoids were more effective than either 
single compounds, and that synergic effects were more 
pronounced when lutein or lycopene (f) was present. 
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5.3. Anti-inflammatory Effects 
Inflammation is reported to be associated with a wide range 
of diseases, including cancer, cardiovascular diseases, 
neurodegeneration and metabolic disorders [149,150]. 
Inflammation involves the production of various 
inflammatory chemicals, such as interleukin (IL) family 
cytokines, ROS and RNS, and prostaglandin E2 (PGE2) 
synthesized by inducible nitric oxide synthase (iNOS) and 
cyclooxygenase-2 (COX-2). These inflammatory chemicals 
are produced to eliminate pathogens and repair injured 
tissues. The nuclear factor-κB (NF-κB) is a key transcription 
factor involved in the regulation of inflammation, and an 
abnormal and constitutive activation of this factor has been 
linked to a number of chronic inflammatory diseases [151]. 
Inhibiting NF-κB is a major way to suppress the expression 
of inflammation-associated genes. Some carotenoids are 
natural inhibitors of NF-κB, suggesting their great potential 
for the treatment of inflammatory diseases. For example, in 
LPS-stimulated macrophages, astaxanthin has been shown to 
inhibit the activity of IκB kinase and IκB degradation, 
leading the NF-κB p65 subunit to be blocked and unable to 
be translocated to the nucleus for the activation of 
inflammation-related genes [152]. Through this mechanism, 
astaxanthin and lutein treatments have been shown to inhibit 
the expression of several inflammatory chemicals and led to 
a significant inhibition of macrophage infiltration into 
choroidal neovascularization associated with macular 
degeneration [153]. With the same mechanism, carotenoid 
extracts of Dunaliella salina, and especially all-trans-β-
carotene and, 9- or 9’-cis-β-carotene, were found to 
modulate inflammatory processes [154] (Fig. 4). 

Fig. (4). Structures of all-trans-β-carotene and its 9-cis-
isomers. β-carotene being a symmetric molecule, the 
structures of 9- and 9’-cis-β-carotene are identical. They are 
displayed here in order to illustrate this point. 
 
Several studies also reported the role of lutein and other 
carotenoids in the inhibition of NF-κB. For example, lutein 
and β-carotene were found to inhibit IκB-α degradation and 
NF-κB p65 nuclear translocation as well as the production of 
proinflammatory mediators (such as NO, TNF-α, IL-6, 

PGE2, MCP-1 and MIP-2) both in vivo and in vitro [155-
157]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fucoxanthin [158] and violaxanthin [151] showed 

anti-inflammatory effects based on the inhibition of the NF-
κB and mitogen-activated protein kinase pathways. 
Astaxanthin, fucoxanthin, alloxanthin (g) and diatoxanthin 
(h) were also found to suppress the overexpression of COX-
2 and iNOS mRNA in lipopolysaccharide stimulated 
different cell lines [158-162]. Moreover, Sakai et al. 
[163,164] showed that astaxanthin, fucoxanthin, β-carotene 
and zeaxanthin significantly suppressed degranulation of 
mast cells in vitro and in vivo (only fucoxanthin) by 
inhibiting antigen-induced aggregation of high affinity IgE 
receptor followed by activation of the degranulation signals 
of mast cells, which play important roles in inflammation 
and immediate-type allergic reaction. In addition, González 
et al. [165] demonstrated that oral supplementation of lutein 
and zeaxanthin diminishes the effects of UV-B irradiation by 
reducing acute inflammatory responses and epidermal 
hyperproliferation, which may thus be used in the prevention 
of carcinogenesis in chronically UV-exposed skin. 

5.4. Cardiovascular Effects 

5.4.1. Hypolipidemic Properties 
It is recognized that high levels of low-density lipoprotein 
cholesterol (LDL-C), and low levels of high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein 
(LDL) oxidation and, globally, hyperlipidemia are key risk 
factors to develop cardiovascular disease (CVD) such as 
atherosclerotic lesions, thrombotic and coronary heart 
diseases [166,167]. In this context, hypolipidemic, 
hypoglycemic and anti-hypertensive properties of 
carotenoids make them potential protective and even 
therapeutic agents against CVD [168]. 

Carotenoids have several hypolipidemic effects. For 
example, astaxanthin decreased triacylglycerol (TAG) as 
well as LDL-C levels, and inhibited lipid peroxidation in 
addition to LDL oxidation in a dose-dependent manner 
[115,169]. In rats fed with 1% astaxanthin supplemented 
diet, the LDL-C level decreased while that of HDL-C 
increased [170]. Astaxanthin had also a potentially beneficial 
role in the prevention of lipid peroxidation in rabbits fed 
with an atherogenic diet [171]. In addition, in human patients 
with mild hyperlipidemia, this carotenoid also decreased 
TAG levels and enhanced HDL-C and adiponectin levels 
[172]. 

β-carotene (Fig. 2) could also be useful against 
hyperlipidemia. Besides reducing LDL oxidation risks, it 
improves lymphocyte proliferation, and thus immunological 
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functions [173]. Furthermore, a mixture of bezafibrate and 9-
cis-β-carotene-rich Dunaliella bardawil powder improved 
bezafibrate impact on the increase of HDL-C in human 
apolipoproteins [174]. Harari et al. [175] found similar 
results in a mouse model of atherosclerosis with an 
inhibition of the disease following a diet enriched in 9-cis-β-
carotene (Fig. 4). According to the authors, this effect was 
due to (1) the concentration decrease of plasmatic non-HDL-
C and (2) the inhibition of fatty liver development and 
inflammation. Interestingly, this diet was shown to reduce 
the expression of proinflammatory genes and genes coding 
for enzymes involved in cholesterol metabolism as well 
[167]. A diet supplemented with total carotenoids extracted 
from Dunaliella, including β-carotene, is also beneficial in 
rats: conversely to a complement containing synthetic all-
trans-β-carotene, the total carotenoid extract reduces total 
plasmatic and hepatic cholesterol, plasmatic as well as 
hepatic total lipids, TAG and phospholipids [176]. A mix of 
natural carotenoids with trans- and cis-isomers presents the 
same kind of effects, in a dose-dependent manner [176,177]. 
El-Baky et al. [176] also showed that β-carotene supplement 
can increase the activity of TAG- and phospholipases. 
Moreover, specific genera of microalgae or cyanobacteria 
(Chlorella and Arthrospira) have proven to be effective in 
reducing serum cholesterol and raising HDL-C and 
HDL/LDL ratio in rats, mice and humans [178-180]. 
Lycopene, similarly to astaxanthin and fucoxanthin, also 
positively impacts lipid homeostasis [181]. Indeed, in vitro 
studies have shown that lycopene leads to a stop of 
cholesterol synthesis [182,183]. It also inhibits LDL 
peroxidation and can protect the vascular endothelium from 
oxidative lesions [184]. As for fucoxanthin, it is described as 
a strong inhibitor of plasma and liver TAG and cholesterol 
accumulation, as well as that of high blood pressure and 
chronic inflammations [185-188]. Lutein is another 
carotenoid involved in the prevention of lipid peroxidation 
[189]. An inverse relationship was also found between 
plasma lutein levels and LDL oxidation in guinea pigs [190]. 
A study performed with humans showed that the serum 
levels of circulating antioxidants, including β-cryptoxanthin, 
are inversely related to the concentration of oxidized LDL-C 
and C-reactive protein, a CVD risk factor implicated in 
inflammatory reactions [191]. 

5.4.2. Anti-hypertensive Properties 
Maintaining endothelium-generated NO levels and 
bioavailability has a positive impact on vasodilatation, which 
is in turn beneficial for endothelial functions. Molecules with 
antihypertensive properties, like carotenoids, can regulate 
blood pressure and thus are antiatherogenic agents, which 
would improve cardiovascular health [167,192]. 

Astaxanthin regulates NO level and decreases blood 
pressure, which is linked to the enhanced endothelium-
dependent vasodilatation in resistance vessels [193,194]. A 
study conducted for 5 weeks in spontaneously hypertensive 
rats demonstrated that besides lowering blood pressure, the 
astaxanthin administration increased blood flow, reduced the 
number of aortic elastin bands, the wall-to-lumen ratio in the 
coronary arteries and arterioles as well as plasma levels of 
nitrite and nitrate (NO2

-
 and NO3

-
) [138,195]. 

Simultaneously, astaxanthin induced vascular relaxation due 
to an increase in NO level. Another study conducted in the 
same model has confirmed these analyses highlighting that 
astaxanthin increases NO bioavailability in brain blood 

vessels [196]. It can, therefore, be concluded that astaxanthin 
has antithrombotic effects and can delay the impact of a 
stroke. 

β-carotene and lycopene also enhance NO levels 
and bioavailability [192,197]. In addition, lycopene reduces 
the expression of adhesion molecules and, thus, the adhesion 
of endothelial cells to monocytes [198], which are 
potentially atherogenic processes associated with the 
vascular endothelium, through the inhibition of IL-1 
secretion. Furthermore, stronger levels of lutein, as well as β-
cryptoxanthin and, α-carotene and β-carotene are linked to 
lower blood pressure in human subjects [199]. 

5.4.3. Anti-atherosclerotic Properties 
The level of serum adiponectin is positively correlated with 
HDL-C [172] and this adipocytokine inhibits the formation 
of atherosclerotic plaques [200], making it an anti-
atherosclerotic factor [201]. Carotenoids can improve 
adiponectin levels, being therefore beneficial against 
atherosclerosis. Indeed, this has been shown for astaxanthin 
[202]. This pigment could increase the adiponectin level and 
stability of atherosclerotic plaques via macrophage 
infiltration, apoptosis and atheroma vulnerability reduction 
in hyperlipidemic rabbits with atherosclerosis [202]. Positive 
impact of astaxanthin on adiponectins was also found in 
people with a risk to develop metabolic syndrome [203]. 
Moreover, Kishimoto et al. [204] have shown that 
astaxanthin inhibited macrophage activation in a human 
monocyte cell line. 

Several studies have highlighted that low tissue and 
blood levels of α-carotene, β-carotene and lycopene are 
related to signs of carotid atherosclerosis, increase of 
calcified plaques of the abdominal aorta in humans as well as 
to the frequency of coronary heart disease and arterial plaque 
formation [205-207]. 

The efficacy of lycopene to prevent atherogenesis 
has been elucidated thanks to three studies that showed that 
the pigment protects biomolecules such as lipids, 
lipoproteins, proteins and DNA [208-210]. In addition, 
lycopene is associated with a reduction in carotid intima-
media thickness [211]. Lutein, zeaxanthin and the 
microalgae Dunaliella salina are also potentially protective 
against (early) atherosclerosis [176,177,190,212,213]. 

 

5.4.4. Protective Effects Against Stroke, Myocardial 
Infarction and Other Cardiovascular Diseases (CVD) 
Dietary intake of Dunaliella salina and lutein can prevent or 
reduce the risk of stroke, just as lycopene and astaxanthin 
[176,177,214,215]. Moreover, in stroke-prone spontaneously 
hypertensive rats fed with fucoxanthin or astaxanthin, the 
impact of stroke was delayed [195,216]. 

Three studies have demonstrated the link between 
carotenoid level and the risk of subsequent myocardial 
infarction (MI) in people with a first MI: in the first two 
studies, low carotenoid levels were linked to an increased 
risk of MI and myocardial injury among smokers [217,218]. 
In the third study, lycopene but not β-carotene presented 
protective effect against MI risk because of its antioxidant 
power [219]. Moreover, Koh et al. [220] have highlighted 
the fact that high plasma levels of β-cryptoxanthin, as well as 
lutein, also reduced the risk of MI. Furthermore astaxanthin, 
fucoxanthin, lutein, lycopene and/or other oxygenated 
carotenoids have been found to be preventive, protective or 
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therapeutic agents or at least negatively linked to CVD like 
myocardial damage and re-thrombosis, ischemia and 
reperfusion injury as well as to acute coronary syndromes, 
coronary artery diseases (CAD), and mortality risk 
associated with CVD [118,184,205,210,211,214,221-228]. 
Astaxanthin, administered at a concentration of 0.08% of the 
diet, also improves myocardial mitochondrial membrane 
potential and contractility index in mice, and thus confers 
cardiac protection [229].  

Kritchevsky [230] and Ford and Giles [231] have 
found that, through their strong provitamin A activity, β-
carotene, α-carotene and β-cryptoxanthin are associated with 
the decreased risk of angina pectoris disease. In addition, 
administration of natural β-carotene from Dunaliella would 
protect against the development of cardiovascular diseases in 
humans with a history of angina or revascularization [232]. 

5.5. Anticancer Effects 
One-third of the risk factors of cancer are linked to the diet 
[233]. In this context, carotenoid uptake could present a real 
interest because carotenoids exhibit a direct antiproliferative 
effect on the in vitro growth of cancer cells and induce their 
apoptosis [59,234-241]. Actually, carotenoids can have a 
direct action on DNA and consequently on the regulation of 
RNA production. Thus they can induce the overexpression 
of genes implied in the regulation of cell communication 
processes and so activate gap junction communications 
[242,243]. Thereby, carotenoids improve the intercellular 
communication and inhibit cell growth modification due to 
carcinogens [139,244,245] because carcinogenesis is 
characterized, among others, by the misplacing of gap 
junctional communication [137]. The improvement of the 
communication between cells can also favor the activity of 
the immune system cells [20]. So carotenoids have a dual 
impact on cancer. However, although this may apply to a 
large number of carotenoids, there is one exception namely 
natural astaxanthin. In fact, a study has showed that in 
primary human skin fibroblasts, astaxanthin decreases the 
communication between cells and alters channel function 
[246], conversely to disodium disuccinate astaxanthin, a 
synthetic derivative of the pigment [247], canthaxanthin or 
other carotenoids [246], that increase intercellular 
communication. Below we review data about the direct 
anticancer activity of carotenoids. 
 

5.5.1. Fibrosarcoma and Neuroblastoma 
According to Jyonouchi et al. [248], astaxanthin stops tumor 
cell growth in mice with transplantable methylcholanthrene-
induced fibrosarcoma. Actually, if the astaxanthin 
supplementation starts before inoculation, the pigment 
induces a reduction of tumor size and weight. It also 
stimulates the immunity against tumor antigen through the 
improvement of the cytotoxic T lymphocyte activity and 
interferon-gamma production. Otherwise, Okuzumi et al. 
[249] have found that fucoxanthin is efficient against 
neuroblastoma cells, mainly because of its antiproliferative 
activity inducing cell cycle arrest and apoptosis.  
 

5.5.2. Breast Cancer 
During the last twenty years, several carotenoids such as 
lutein, astaxanthin, violaxanthin, fucoxanthin and 
fucoxanthinol have been reported for their antitumor activity 
against mammary tumors. Cerveny et al. [250] were among 

the first to discover that dietary lutein reduced mammary 
tumor growth, suggesting apoptosis induction by lutein. 
Besides confirming this result, Chew et al. [251] have also 
elucidated the action mechanisms of lutein against mammary 
tumor cells in mice fed with this carotenoid. Actually, lutein 
regulates the expression of specific genes, decreasing the 
expression of the anti-apoptotic Bcl-2 gene, increasing 
mRNA expression of the proapoptotic p53 and BAX genes, 
thus changing the BAX/Bcl-2 ratio in tumor cells. In 
parallel, lutein reduces apoptosis in blood leukocytes 
suggesting an intensified immune status. This study has 
therefore highlighted the selective action of lutein showing 
that it reduced apoptosis in immune cells while enhancing 
apoptosis in tumor cells. The same kind of effect has also 
been found in vitro in human mammary cells [252]. In 
summary, lutein presents antiproliferative activity and 
regulates tumor immunity via apoptosis and gene regulation 
[253]. Astaxanthin is another powerful breast antitumor 
agent. Several studies have shown that a supplementation of 
astaxanthin in the diet can reduce breast tumor cell 
proliferation. Its in vivo antitumor activity against mammary 
tumor growth is higher than that of canthaxanthin and β-
carotene in mice [254]. Moreover, Nakao et al. [229] have 
discovered that the astaxanthin impact in mice injected with 
a mammary tumor cell line depends on the time of 
administration with the pigment. When astaxanthin was 
given before the tumor inoculation, the tumor growth was 
stopped while the natural killer cell subpopulation and the 
plasma interferon-γ concentration were augmented. In 
contrast, when mice were fed with astaxanthin after tumor 
initiation, the pigment had adverse effects, i.e., it induced a 
quicker tumor growth and an increase in plasma 
inflammatory cytokines IL-6 and tumor necrosis factor-α. 
Thus a good antioxidant status before tumor initiation, 
through a regular and continuous intake of common 
quantities of astaxanthin and/or others carotenoids, is 
necessary because it provides good conditions for cancer 
prevention and protection [207,229]. 
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Fig. (5). Structures of some zeaxanthin and violaxanthin 
isomers. 
 

Besides their direct antiproliferative action, 
carotenoids are able to enhance the activity of different 
anticancer drugs. This is especially the case of (9Z)-
zeaxanthin, (13Z)-zeaxanthin and (9Z)-violaxanthin (Fig. 5), 
which have been reported as carotenoids improving the 
antiproliferative activity of epirubicin on mouse lymphoma 
and/or human breast cancer cell line resistant to anticancer 
agents [255]. These authors have concluded that depending 
on the kind of cancer, the two pigments could be synergistic 
with epirubicin and therefore useful in the case of multidrug 
resistant (MDR) cancer cells. Moreover, an in vitro study 
conducted by Pasquet et al. [256] has showed that 
violaxanthin, which is the major carotenoid with 
antiproliferative action extracted from the microalga 
Dunaliella tertiolecta, impacted MCF-7 breast cancer cells 
and led to biochemical changes characteristic of early 
apoptosis. Interestingly, violaxanthin was the only molecule 
extracted from Dunaliella, which had an antiproliferative 
activity. No synergy between this pigment and other 
molecules extracted from the microalga was reported. By 
contrast, dietary intake of microalgae as a source of 
violaxanthin to prevent or treat cancer could be less 
beneficial than expected. In fact, Hashimoto et al. [257] 
showed that in mice, dietary epoxy carotenoids (such as 
fucoxanthin) were metabolized before accumulating in the 
body. Therefore, further studies must be conducted to 
determine whether pigments such as violaxanthin can be 
used in vivo to inhibit cancer cell growth. Otherwise, 
fucoxanthin and fucoxanthinol both enhance apoptosis in 
breast cancer cells leading to decreased viability in a time-
dependent manner [258]. However, fucoxanthinol is more 
efficient to modulate nuclear levels of NF-κB members in 
these cells, and thus to induce apoptosis. 

 
5.5.3. Bronchopulmonary and Lung Cancers 
A study conducted by Jewell and O'Brien [259] has shown 
that canthaxanthin and astaxanthin induced xenobiotic 
metabolizing enzymes in lung, liver and kidney, explaining 
how carotenoids are protective against these cancers. Moreau 
et al. [240] have found that extracts from two diatoms 
(Odontella aurita, Chaetoceros sp.) and one haptophyte 
(Isochrysis galbana) are effective to inhibit cell growth of 
bronchopulmonary (NSCLC-N6) as well as lung (A549) and 
lens (SRA 01/04) epithelial cancer cell lines. The major or 
even the only bioactive component of the extracts proved to 
be fucoxanthin. Tests with pure fucoxanthin allowed the 
discovery of its dose-dependent cytostatic activity. The mode 
of action of fucoxanthin involves irreversible inhibitory 
effects, as well as DNA fragmentation and morphological 
changes typical of apoptotic cells in NSCLC-N6 and A549 
cell lines. Fucoxanthin could, therefore, have 
antiproliferative activity through triggering terminal 
differentiation of well-differentiated cancer cells in vitro. 

Several epidemiological studies have shown that 
dietary β-cryptoxanthin is linked to lower rates of lung 
cancers [167,260]. Moreover, Baudelet et al. [261] have 
discovered that zeaxanthin and β-cryptoxanthin, both 
extracted from the microalga Cyanophora paradoxa, 
strongly inhibited the growth of melanoma, breast and lung 
cancer cells. β-cryptoxanthin is also cytotoxic and presented 

a pro-apoptotic activity in the three cell lines, which 
confirms its potential role as antiproliferative agent.  

In a recent study, Liu et al. [262] have compared 
the action of α-carotene alone or combined with taxol, an 
anticancer drug, in tumor xenografted mice. They have 
found that α-carotene alone inhibited Lewis lung carcinoma 
metastasis in vitro, without decreasing primary tumor 
growth, whereas the combination of α-carotene and taxol 
suppressed lung metastasis and tumor growth demonstrating 
the synergistic effects of these two compounds. Furthermore, 
a comparison between α-carotene and β-carotene effects 
against two-stage mouse lung carcinogenesis has been 
conducted in mice: only α-carotene decreased the number of 
lung tumors per mouse [263]. α-carotene had also a stronger 
antitumor-promoting activity than β-carotene in the case of 
skin carcinogenesis [263]. Similarly, β-carotene was 
inefficient to protect humans with a high risk of lung cancer 
[264]. Furthermore, the pigment induced lung pathology, 
maybe because of its provitamin A activity [265]. This 
observation was supported by Mayne et al. [266] who 
revealed that β-carotene increased lung cancer incidence in 
smokers, instead of reducing it. Actually there is a link 
between the effects of β-carotene and the smoking status of 
the patients: Senesse et al. [267] found that β-carotene was 
correlated with a non-significant rise in the risk of colon 
adenomas in former or current smokers whereas, in non-
smoker patients, it was inversely linked to colon adenomas. 
β-carotene could therefore be protective in non-smoker 
patients only. The antitumor activity of β-carotene could also 
be related to the nutritional status (e.g., dietary deficiency) of 
the studied population (for more details, see [207]). 

5.5.4. Leukemia 
Because of its antioxidant properties and its impact on 
molecules related to apoptosis, fucoxanthin shows a great 
anticancer potential [62,268]. 

Several studies have been conducted to determine 
the effects of fucoxanthin on HL-60 human leukemia cells. 
According to Hosokawa et al. [234], fucoxanthin extracted 
from Undaria pinnatifida exhibited antiproliferative effects 
and was responsible for apoptosis in HL-60 cells, unlike β-
carotene. Authors have therefore suggested that the 
carotenoid structure could be a determining factor in the 
ability to induce apoptosis [234]. Kotake-Nara et al. [236] 
suggested that the pro-apoptotic properties of fucoxanthin in 
HL-60 cells could actually be the result of mitochondrial 
membrane permeabilization and caspase-3 activation. 
Fucoxanthin also induced cleavage of poly-ADP-ribose 
polymerase (PARP). This last point was confirmed by Kim 
et al. [268], who also discovered in HL-60 cells that 
fucoxanthin induced ROS accumulation and reduced levels 
of Bcl-xL (B-cell lymphoma-extra large), a transmembrane 
protein, which is an anti-apoptotic member of the Bcl-2 
family. Using a ROS scavenger, they succeeded in 
cancelling apoptosis and inhibiting fucoxanthin effect on 
Bcl-xL. That's how they concluded that ROS can play a 
preponderant role both in fucoxanthin-mediated Bcl-xL 
signaling pathway and apoptosis in HL-60 cells. 
Furthermore, Nakazawa et al. [59] have found that 13'-cis-
fucoxanthin was more efficient than 13-cis- and all-trans-
isomers to inhibit HL-60 cell growth (Fig. 6). Likewise, a 
treatment with a mixture of cis isomers significantly reduced 
the number of viable cells compared to a treatment with all-
trans-fucoxanthin. Actually, these higher inhibitory and 
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antiproliferative effects may be due to (1) the steric 
hindrances given by the structure of cis-fucoxanthin or to (2) 
the suppression of proteins that reduce apoptosis [59]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (6). Structures of fucoxanthin isomers. 

 
Studies have also been conducted on HL-60 cells treated 
with fucoxanthinol. According to Konishi et al. [269], this 
pigment showed antiproliferative effects via apoptosis 
induction (e.g., reduction of Bcl-2 expression level) like 
fucoxanthin on HL-60 cells as well as on breast and colon 
cancer cells. Interestingly, in the three cases, fucoxanthinol-
induced apoptosis was greater than that caused by 
fucoxanthin. The replacement of the acetyl group of 
fucoxanthin by the alcohol group in fucoxanthinol could 
explain this difference (compare Figs. 6 and 7). Actually, 
this hydrolysis occurs during fucoxanthin absorption by 
intestinal cells, which makes fucoxanthinol more 
bioavailable for the organism [270].  

Furthermore, Ishikawa et al. [271] discovered that 
fucoxanthin (Fig. 1) and fucoxanthinol (Fig. 7) were more 
effective than astaxanthin and β-carotene (Fig. 2) to inhibit 
specifically cell viability of human T-cell leukemia virus 
type 1 (HTLV-1)-infected T-cell lines, and adult T-cell 
leukemia cells. Besides, the growth of tumors induced by 
HTLV-1-infected T cell inoculation in mice was stopped by 
fucoxanthinol (Fig. 7). In addition, mice showed a vast tissue 
distribution of fucoxanthinol. Similarly, Ganesan et al. [272] 
have found that fucoxanthin was more effective than several 
carotenoids to inhibit HL-60 cell viability. However, 
according to their study, the most efficient carotenoid to 
induce apoptosis was siphonaxanthin [272]. 

Thanks to their antiproliferative activity, 
fucoxanthin and fucoxanthinol (Fig. 7) were also effective 
against lymphoma [273]. 

5.5.5. Cancers of the Urinary System 
Several studies have highlighted the fact that a diet 
supplemented with astaxanthin (Fig. 1) can reduce the cell 
proliferation of urinary bladder [274] and prostate tumors 
[275]. Actually, Anderson [275] discovered that astaxanthin 
inhibits the 5-α-reductase enzyme that is involved in 

abnormal prostate growth. This could be the main reason 
why astaxanthin is efficient against human prostatic 
hyperplasia or prostatic cancer. 
 
 
 
 
 
 
 

 
 
Fucoxanthin (Fig. 1) and its metabolites [amarouciaxanthin 
A (i), and fucoxanthinol – Fig. 7] were also effective against 
PC-3 human prostate cancer cells, as shown by Asai et al. 
[276]. Indeed, the three carotenoids induced a decrease of 
cancer cell viability. However, fucoxanthin and 
fucoxanthinol had a lower IC50 than amarouciaxanthin A 
reflecting their stronger cytotoxic effect. The origin of this 
difference could be the absence of the 5,6-epoxide group in 
amarouciaxanthin A. Because amarouciaxanthin A decreased 
PC-3 cell viability like the two other pigments, the presence 
of a 5,6-epoxide group does not seem to be essential for the 
cytotoxicity of epoxy-xanthophylls (Fig. 7) and mechanisms 
other than epoxide cytotoxicity should be involved in the 
antiproliferative activity of epoxy-xanthophylls on PC-3 
cells. This conclusion is strengthened by the recent finding 
of Rafi et al. [277]. These authors have shown that PC-3 cell 
proliferation tended to decrease when they were cultured in 
vitro in the presence of lutein, a xanthophyll deprived of the 
epoxy-group, all the more so when lutein was combined with 
a chemotherapeutic agent. Actually, lutein modulated the 
expression of growth and survival-associated genes leading 
to an enhancement of cell cycle arrest and apoptosis induced 
by drugs in PC-3 cells. Unfortunately the epoxy-derivative 
of lutein, namely lutein-5,6-epoxide (Fig. 7), was not tested 
for comparison. In addition, Kotake-Nara et al. [237] have 
found that both fucoxanthin and neoxanthin induced 
apoptosis in PC-3 cells via caspase-3 activation. Fucoxanthin 
also inhibited the viability of two other human prostate 
cancer cell lines (DU145 and LNCaP) through apoptosis 
induction [278]. Moreover, fucoxanthin was efficient against 
urinary bladder cancer because of its antiproliferative 
activity linked to the induction of cell cycle arrest and 
apoptosis [279]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) amarouciaxanthin A(i) amarouciaxanthin A
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Fig. (7). Structure of some carotenoid-5,6-epoxides. 
 
 Unlike Kotake-Nara et al. [278], Yoshiko and 
Hoyoku [280] have discovered that fucoxanthin did not 
cause apoptosis in DU145 prostatic cancer cell line and 
HepG2 cells. However, it induced cell cycle arrest at G1 
phase, induced growth arrest and DNA damage-inducible 
gene (gadd45a) expression in a dose- and time-dependent 
manner [280]. According to Satomi and Nishino [281], 
MAPK pathways were implicated in the aforementioned 
effects of fucoxanthin. Indeed, inhibition of p38 MAPK or 
SAPK/JNK, respectively, increased or stopped the induction 
of gadd45a expression and G1 arrest in HepG2 or DU145 
cells. It therefore seems that the pattern of MAPK 
involvement in the induction of gadd45a expression and G1 
arrest by fucoxanthin depends on the cell type [281]. 
Furthermore, several studies have highlighted that lycopene 
could be efficient against prostatic hyperplasia and prostate 
cancer [282,283] and lycopene intake was linked to lower 
risk of prostate cancer [284,285]. 

5.5.6. Cancers of the Digestive Tract 
As with other kinds of cancer, carotenoids are particularly 
efficient against cancers of the digestive tract thanks to their 
ability to inhibit cell proliferation and even to induce 
apoptosis of cancer cells. 

One of the cancers of the digestive tract most 
studied is colon cancer. β-carotene was one the first 
carotenoids whose positive effects against this cancer have 
been demonstrated. In fact, Enger et al. [286] have 
discovered that dietary intake level of β-carotene was 
inversely linked to risks of colorectal adenomas. Similarly, 
astaxanthin and canthaxanthin have been found to be 
considerable preventive agents against large bowel and 
tongue carcinogenesis because they control carcinogen-
induced cell hyperproliferation in the two organs [287]. 
Similarly, inhibition of cell proliferation activity could be 
one of the mechanisms explaining that astaxanthin and 
canthaxanthin administration during the post-initiation phase 
of colon carcinogenesis suppressed the azoxymethane-
induced carcinogenesis of the colon [288]. Interestingly, 
astaxanthin and the microalga Haematococcus pluvialis have 
similar effects on cancer. Indeed, in HCT-116 human colon 
cancer cells, the microalga stimulated apoptosis and cell 
cycle arrest in a dose- and time-dependent manner. At the 
same concentration of astaxanthin, Haematococcus pluvialis 
extract was even more powerful to inhibit cell growth than 
purified astaxanthin [289], suggesting a synergic effect with 
other molecules contained in the microalga. According to 
Cha et al. [290], Chlorella ellipsoidea extract containing 
mainly violaxanthin has similar effects as Haematococcus 
pluvialis extract in HCT-116 cells: it inhibits cell growth in a 
dose-dependent manner and induces apoptosis. Microalgal 
extracts could, therefore, be interesting colon cancer 
protective and preventive agents as well. This idea was 
supported by Kawee-Ai and Kim [291] who found that 
fucoxanthin extracted from Phaeodactylum tricornutum 
impacted DLD-1 colon cancer cells through its strong β-
glucuronidase inhibitory activity. Several other studies have 
also shown that fucoxanthin would be a good 
chemopreventive and/or chemotherapeutic carotenoid in 
other colon cancer cell lines or in mouse colon 
carcinogenesis [235,292]. 

Similarly, lutein and lycopene, as well as α-carotene 
and red palm carotenes have been found to reduce the 
growth of colonic aberrant crypt foci, which are 
preneoplastic markers of colon cancer, in rats [293]. So 
lycopene and lutein could be, in small doses, used as 
preventive agents against colon carcinogenesis, at least in 
this experimental model [293,294]. Moreover, Erhardt et al. 
[295] have discovered that plasma lycopene level was lower 
in patients with colorectal adenoma and a concentration 
lower than 70 mg L

-1
 represents a risk factor for 

adenomatous polyps. 
According to Huang et al. [296], nanoemulsion 

containing both lycopene and gold nanoparticles (0.4 μM 
and 0.16 ppm, respectively) was more efficient to enhance 
the number of early apoptotic cells and inhibit cell growth of 
colon cancer cells than the conventional combined 
administration of both molecules (10 ppm of gold 
nanoparticles and 12 μM of lycopene). Lycopene and gold 
nanoparticles have therefore presented synergistic effects in 
the nanoemulsion at lower doses than in the conventional 
combined treatment, making nanoemulsion potentially 
applicable in colon cancer therapy. β-cryptoxanthin and 
oxaliplatin have also synergistic effects in colon cancer cells 
[297]: to achieve the same percentage of cell growth 
inhibition, the amount of oxaliplatin in a combined treatment 
with β-cryptoxanthin is lower than the amount of oxaliplatin 
when it is dispensed alone. Both molecules also cooperated 
to induce apoptosis. 

For their part, Ugocsai et al. [298] have shown that 
lutein, β-cryptoxanthin, violaxanthin and neoxanthin induced 
drug (rhodamine 123) accumulation and early apoptosis in 
MDR1/LRP-expressing human colon cancer cells. 

Carotenoids have also been found to be efficient 
against liver cancer. According to Murakoshi et al. [263], α-
carotene supplementation reduced the number of hepatomas 
in mice developing spontaneous liver cancer. Simultaneous 
tests have also been made with β-carotene but it was 
ineffective against hepatomas. In rats treated with aflatoxin 
B1, canthaxanthin and astaxanthin decreased effectively the 
number and size of liver preneoplastic foci [299]. 
Astaxanthin and canthaxanthin also reduced in vivo DNA 
single-breaks induced by the toxin as well as its binding to 
liver DNA and plasma albumin. Both pigments enhanced in 
vitro aflatoxin B1 metabolism to less genotoxic aflatoxin 
M1. Through the induction of detoxification pathways, these 
carotenoids would thus have protective effects against the 
initiation of liver carcinogenesis [299]. In rats injected with 
diethylnitrosamine, lycopene also reduced the initiation of 
liver preneoplastic foci by decreasing the size of the foci and 
the fraction of liver volume that they occupied [300]. 
Actually, these results may be explained through the 
modulating effect of lycopene on the liver enzyme activating 
diethylnitrosamine, i.e., cytochrome P-450 2E1 [300]. 
Moreover, Yang et al. [301] have discovered that the 
chemopreventive effects of lycopene against human HepG2 
cells, via induction of phase II detoxifying/antioxidant 
enzymes, may be partially ascribed to its metabolite apo-8'-
lycopenal (j), which is one of the main metabolites found in 
human plasma. 
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On the other hand, Song et al. [302] have found that 

astaxanthin induced apoptosis of hepatocellular carcinoma 
CBRH-7919 cells through the inhibition of JAK1/STAT3 
signaling pathway and induction of changes in cell 
ultrastructure. Furthermore, Das et al. [239] have proved that 
fucoxanthin had cytostatic activity in HepG2 cells: it induced 
cell cycle arrest in the G0/G1 phase in relation to down-
regulation of cyclin D but interestingly, in HepG2 cells 
fucoxanthin did nott show apoptosis-inducing effect. 
Inversely, in SK-Hep-1 cells fucoxanthin induced apoptosis, 
in addition to cell cycle arrest in G0/G1 phase [303]. 
Actually, it up-regulated connexin 43 and connexin 32 
enhancing gap junctional intercellular communication and 
thus intracellular calcium levels, thereby causing cell cycle 
arrest and apoptosis [303]. Moreover, in HepG2 cells 
fucoxanthin enhanced cisplatin-induced cytoxicity and 
down-regulated DNA repair gene expression, which led to a 
decrease of cell proliferation [304]. 

The third kind of gastrointestinal cancers on which 
the action of carotenoids has been particularly studied is 
gastric cancer. According to Lee et al. [305], astaxanthin 
dose-dependently reduced cell proliferation in two human 
gastric cancer cell lines by increasing the expression of the 
p27 protein, an inhibitor of the cyclin-dependent kinases, 
which was responsible for cell cycle arrest, therefore, 
explaining the antiproliferative effect of astaxanthin. For its 
part, fucoxanthin decreased cyclin B1 and survivin 
expression leading also to cell cycle arrest as well as 
apoptosis in human gastric adenocarcinoma cells [306]. β-
carotene has also been found to be efficient against gastric 
cancer cells. Actually, it had an action in two stages: it 
activated caspase-3, increased ROS level and then it reduced 
the level of DNA repair protein Ku70/80 thereby inducing 
apoptosis [307]. According to Kim and Kim [308], lycopene 
is also protective against gastric carcinogenesis. Thanks to 
its antioxidant properties, lycopene scavenges ROS and 
enhances the activities of antioxidant enzymes leading to the 
increase of cell cycle arrest in G0/G1 phase, the prevention 
of the overexpression of p53, the suppression of extracellular 
signal-regulated kinases (ERK) signaling pathway as well as 
the reduction of oxidative damages and the protection of 
immune function. Through these different actions, lycopene 
induces apoptosis, inhibits hyperproliferation and, therefore, 
may prevent oxidative stress-mediated gastric carcinogenesis 
[308]. 

Helicobacter pylori is identified as the first cause of 
gastric cancer development [309]. Kamath et al. [143] have 
assessed the effects of astaxanthin fractions (such as 
astaxanthin esters) extracted from H. pluvialis on rats with 
gastric ulcers. Astaxanthin esters allowed the regulation of 
gastric mucosal injury and gastric acid secretion which 
provides astaxanthin in vivo preventive and antioxidative 
properties against gastric ulcers. Amaro et al. [310] have 
summarized concrete action of astaxanthin, extracted from 
microalgae, against gastric cancer. The pigment has three 
kinds of effects: (1) it is competitive with bacteria for 
binding on gastric mucosa, (2) it inactivates ROS and (3) 
induces a shift from Th1 (T helper type 1) response to a 
mixed Th1/Th2 response being less aggressive. Actually, 
according to Bennedsen et al. [311], Th1 response is 
exhibited by infected mice and participates in mucosal 
damage. This kind of immune response would thus be linked 
to the progression of gastric pathogenesis. Inversely, a Th2 

response would be associated with control of the infection 
[311]. Therefore, a shift from Th1 response to a mixed 
Th1/Th2 response expresses a modulation of the immune 
response to better fight gastric disease [310].  

As regards oral cavity cancer, Garewal and Schantz 
[312] and Garewal [313] have discovered that β-carotene 
could be used to inhibit carcinogenesis and induce regression 
of oral leukoplakia. It could potentially prevent the 
development of second malignancies in patients healed of a 
primary oral cancer as well. However, β-carotene was 
inefficient in the chemoprevention of oral leukoplakia, which 
was confirmed by Nagao et al. [314]. 

As explained earlier, the antioxidant properties of 
carotenoids can be an important factor in the fight against 
cancer. This is particularly the case for astaxanthin. This idea 
is supported by several studies. According to Kurihara et al. 
[315], astaxanthin improved the antitumor effector activity 
of natural killer cells suppressed by stress and reduced the 
promotion of metastasis in mice treated with restraint stress, 
therefore, improving antitumor immune responses, probably 
through the inhibition of lipid peroxidation provoked by 
stress. Moreover, Kozuki et al. [316] have showed a dose-
dependent effect of carotenoids, including astaxanthin, on 
the invasion of rat ascites hepatoma AH109A cells cultured 
with rat mesentery-derived mesothelial cells. Besides, 
astaxanthin and β-carotene suppressed the heightened 
invasive capacity of AH109A cells treated with two enzymes 
generating ROS [316]. The anti-invasive activity of these 
two pigments could therefore be related to their antioxidant 
action. For their part, Tripathi and Jena [317] have found that 
astaxanthin reduced oxidative stress, DNA damage, cell 
death and early hepatocarcinogenesis in liver of rats treated 
with cyclophosphamide, demonstrating again its strong 
antioxidant properties. In CCl4-treated rat liver, astaxanthin 
stimulated the cell antioxidant system and inhibited lipid 
peroxidation, therefore, protecting the liver from damages 
induced by CCl4 [318]. According to Ohno et al. [319], 
astaxanthin can prevent the development of liver 
tumorigenesis in obese mice by improving oxidative stress 
and serum adiponectin level. Prabhu et al. [320] have found 
another target of astaxanthin through its antioxidant 
properties: the colonic pre-neoplastic progression. Indeed, in 
rats with chemically induced colon carcinogenesis, the 
pigment enhanced the level of colonic enzymic and non-
enzymic antioxidants and reduced the lipid peroxidation 
marker levels [320]. In parallel it decreased the development 
of aberrant crypt foci. So astaxanthin could also be beneficial 
against colonic pre-neoplastic progression. Furthermore, 
astaxanthin combined with retinoids up-regulated connexin 
43 gene expression [321], leading to decreasing indices and 
proliferation of neoplasia [138]. 

 

5.6. Neuropreventive Effects 
Alzheimer's disease (AD) is the most frequent progressive 
neurodegenerative disease. Like amyotrophic lateral 
sclerosis (ALS), it impacts the brain and spinal cord neurons. 
Neuro-inflammation as well as apoptosis are key factors in 
the progressive damages of the neurons in AD and ALS 
[322]. As for Parkinson's disease (PD), it is the second most 
common neurodegenerative disease affecting mainly 
movements of aged people [323]. The main common trait 
and mediator of pathogenesis between all neurodegenerative 
diseases is oxidative stress [324]. To illustrate this fact, 
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ischemia is known to generate free radicals inducing 
pathological cerebral and neural impacts, leading to vascular 
dementia with memory deficit [195]. 

Through their antioxidant, anti-inflammatory and 
anti-apoptotic properties, carotenoids may be beneficial as 
neuroprotectants or adjuvants in the prevention or the 
treatment of neurodegenerative diseases, like AD and PD, or 
ischemic events and the damages they induce [137,325]. 
Besides, carotenoids are also known to prevent LDL 
oxidation, which is also useful against neuron diseases or to 
improve cognitive functions [228,326,327]. The protective 
effects of astaxanthin against apoptosis were analyzed in 
dopaminergic SH-SY5Y cell line treated with 6-
hydroxydopamine (6-OHDA) and/or docosahexaenoic acid 
hydroperoxide [324,328]. In both cases, the neurotoxic 
molecules induced neuronal apoptosis, mitochondrial 
abnormalities and ROS generation. Thanks to its strong 
antioxidant properties (see Section 5.2), astaxanthin blocked 
the 6-OHDA-induced p38 MAPK activation and apoptosis in 
a dose-dependent manner. Besides, in both studies, 
astaxanthin pre-treatment inhibited mitochondrial 
dysfunctions due to ROS accumulation, which may also 
explain its neuroprotective effect against apoptosis in SH-
SY5Y cells. 

In SH-SY5Y cells, astaxanthin also increased heme 
oxygenase-1 (HO-1) in vitro, naturally induced by pro-
oxidative agents [329], and Hsp70 protein levels while it 
suppressed iNOS induction in the case of oxygen-glucose 
deprivation-induced oxidative stress [330]. The study also 
showed that astaxanthin protects rats from global cerebral 
ischemia [330]. 

Wang et al. [331] proved how astaxanthin 
upregulates HO-1 in β-amyloid 25-35-treated SH-SY5Y 
cells: the pigment activated ERK 1-2 pathways. It also 
prevented the activation of the p38 MAPK kinase pathway. 
Therefore, it may be concluded that astaxanthin is able to 
protect cells from β-amyloid 25-35-induced oxidative cell 
death [331]. Chang et al. [332] have made a similar 
conclusion but this time regarding β-amyloid peptide 25-35-
induced apoptosis in PC-12 cells. In this case, astaxanthin 
exerted its protective effect via several ways including 
inhibition of Bax expression and suppression of p38 MAPK 
phosphorylation. Besides, in PC-12 cells, astaxanthin was 
also protective against MPP(+)-induced oxidative stress via 
the HO-1/NOX2 (a cytochrome subunit of NADPH oxidase) 
axis that is to say it increased the expression of HO-1 and 
reduced NOX2 expression [333]. Otherwise, Chan et al. 
[334] discovered that astaxanthin and canthaxanthin 
improved cell viability and cellular as well as mitochondrial 
membrane stability in nerve growth factor differentiated PC-
12 cells. Authors concluded that both pigments are 
neuroprotectants through their antioxidant and anti-
inflammatory properties. 

Recently, Wen et al. [335] have highlighted a new 
feature of astaxanthin. The pigment protects HT22 cells from 
glutamate-induced cytotoxicity by decreasing caspase 
activation as well as mitochondrial dysfunction and 
modulating the Akt/GSK-3β signaling. Actually, the 
characteristic feature of astaxanthin treatment is that it 
restores p-Akt and p-GSK-3β (Ser9) expression, decreased 
by glutamate. 

Furthermore, in mouse neural progenitor cells 
astaxanthin pre-treatment induced cell growth and inhibited 
H2O2-mediated apoptotic death in a dose-dependent manner 

[336]. Actually this is possible because astaxanthin can 
modulate p38 and MEK signaling pathways and then inhibit 
caspase activation. Astaxanthin pre-treatment also helps 
treated cells to recover their ATP production ability [336]. 

Shen et al. [325] have found that, thanks to its 
antioxidant properties, its ability to decrease glutamate 
release and its anti-apoptotic capacity, astaxanthin is not 
only able to decrease apoptosis but also ischemic brain 
damage as well as neurodegeneration and cerebral infarction 
in rats pre-treated before a middle cerebral artery occlusion. 
Similar results concerning the potential neuroprotective 
effects of astaxanthin have been further highlighted by Lu et 
al. [337] with in vitro and in vivo tests. In primary culture of 
cortical neurons, astaxanthin pre-treatment inhibited H2O2-
induced apoptosis and restored mitochondrial membrane 
potential. In parallel, in the case of focal cerebral ischemia-
reperfusion inducing brain damage in rats, astaxanthin was 
also protective because it prevented cerebral ischemic injury 
and thus reduced brain damage [337]. The negative impact 
of astaxanthin on glutamate release was also found by Lin et 
al. [338] in rat cerebral cortex nerve terminals where 
astaxanthin decreased this release in a dose-dependent 
manner. In fact this is explained by the suppression of 
presynaptic voltage-dependent Ca

2+
 entry and MAPK 

signaling cascade. 
Otherwise, astaxanthin enhances the cellular 

proliferation capacity of neural stem cells in a dose- and 
time-dependent manner leading to an over-expression of 
several proliferation-related proteins and then to an induction 
of proliferation-related transcription factors as well as 
stemness genes expression. In parallel, astaxanthin also 
improves osteogenic and adipogenic differentiation potential, 
which is in agreement with the over-expression of 
osteogenesis- and adipogenesis-related genes. So in this 
case, astaxanthin acts on the regulatory circuitry which 
controls both neural stem cell proliferation and 
differentiation [339]. 

Furthermore, after compressive spinal cord injury, 
astaxanthin could increase neurotrophin-3 expression in rats 
[340] thus highlighting its role in the differentiation and 
regeneration of spinal cord neurons and axons. Moreover, 
Abadie-Guedes et al. [341] have found that astaxanthin has a 
dose-dependent antagonist effect on the facilitation of 
cortical spreading depression (CSD) propagation in 
chronically ethanol-treated adult rats, probably because of its 
antioxidant properties. Actually, CSD is an excitability-
related brain electrophysiological phenomenon present in 
several animal species. Few years later the same authors 
have discovered that astaxanthin pre-treatment antagonizes 
the impairing and acute effect of a single dose of ethanol in 
young and adult rats, by enhancing CSD propagation 
because this time ethanol treatment negatively impacts CSD 
[342]. Furthermore, Hussein et al. [195] have highlighted 
that dietary natural astaxanthin has an impact on the transient 
ischemia-induced impairment of Morris water maze learning 
performance in ICR mice because it reduces the latency of 
escaping onto the pool platform. 

Nakashima et al. [343] found that diet 
supplemented with Chlorella sp., containing principally β-
carotene and lutein, decreased oxidative stress and the 
number of activated astrocytes in mice. It also prevented 
cognitive ability decline. They therefore concluded that 
prolonged consumption of Chlorella can prevent the 
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progression of cognitive impairment in age-dependent 
dementia model mice. 

According to Krishnaraj et al. [322], P53 kinase 
receptor, EphA4 and histone deacetylase are promising 
disease targets of Alzheimer's disease (AD) and amyotrophic 
lateral sclerosis (ALS). Authors tried to predict β-carotene 
binding on these targets and found that this pigment has high 
binding energies indicating its antagonistic activity against 
the disease targets. Authors concluded that β-carotene could 
be a therapeutic molecule to treat both neuroinflammation 
and apoptosis in AD and ALS patients. 

Otherwise, Min and Min [344] found an inverse 
relation between serum levels of lycopene as well as lutein 
plus zeaxanthin and the risk of AD mortality in older adults, 
suggesting that a high dietary intake of these carotenoids 
could be helpful to decrease the mortality risk of AD. 
Moreover, according to Prema et al. [323], lycopene was 
already found to be an effective neuroprotective agent 
against experimental Huntington's disease and brain 
ischemia. They recently showed that lycopene may also 
constitute an interesting strategy to treat Parkinson's disease 
(PD) [323]. Actually, in the case of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD 
in mice, lycopene reversed neurochemical deficits, i.e., it 
reduced striatal dopamine and its metabolites as well as 
apoptosis induced by MPTP [323]. Besides, lycopene 
reduced oxidative stress and motor abnormalities. However, 
although these results are promising, Takeda et al. [345] did 
not find a link based on epidemiological studies between 
blood levels or dietary intakes of carotenoids, including 
lycopene, and risk of PD. 

 

5.7. Antidiabetic Effects 
Diabetes mellitus is a significant public health threat with 
multiple complications. Generally, oxidative stress levels are 
very high and induced by hyperglycemia due to the 
dysfunction of pancreatic β-cells and tissue damage in 
patients. β-carotene supplements were reported to be 
associated with lower risk of diabetes by reducing the level 
of free radicals impairing glucose transport and improving 
the baseline insulin-sensitivity [346]. Moreover, natural β-
carotene has been shown to be more easily absorbed by the 
body than the synthetic β-carotene, because it is more 
soluble in bile and able to mix with chylomicrons [347]. Ma 
et al. [348] demonstrated that β-carotene extracts had anti-
diabetic effects in diabetic mice by reducing blood glucose 
level. In the same manner, Harari et al. [349] highlighted 
that β-carotene containing Dunaliella supplementation, 
significantly inhibited the elevation of plasma glucose, TAG 
and the mRNAs of several pro-inflammatory genes in 
adipose tissue. A diet supplemented with fucoxanthin was 
shown to regulate adipocytokine secretion, thus preventing 
hyperglycemia in type 2 diabetic mice [350,351]. 
Astaxanthin was shown to reduce the oxidative stress caused 
by hyperglycemia in pancreatic β-cells and also improve 
glucose and serum insulin levels [352]. It was also shown to 
be a good immunological agent in the recovery of 
lymphocyte dysfunctions associated with diabetic rats [353]. 
Improved insulin sensitivity and restricted weight gain was 
observed in spontaneously hypertensive corpulent rats and 
mice after feeding with astaxanthin [354-356]. 
Advanced glycation end-products (AGE) designate a 
complex and heterogeneous group of compounds resulting 

from glycation reaction, i.e., the nonenzymatic addition of a 
carbohydrate on a protein. AGE compounds are believed to 
act as major pathogenic process in diabetic complications 
such as retinopathy, cataract, neuropathy and nephropathy 
[357-362]. The toxic effects of AGE result from the 
formation of cross-links between key molecules such as 
DNA and proteins and interactions of AGE with their 
receptors and/or binding proteins, causing structural and 
functional alterations in plasma and extracellular matrix 
proteins. Many synthetic inhibitors of AGE formation were 
withdrawn from clinical trials due to their low efficacy, poor 
pharmacokinetics, and unsatisfactory safety [363,364]. 
Finding AGE inhibitors from natural sources is therefore a 
promising strategy for the prevention or treatment of 
diabetes. Several extracts from microalgae were shown to be 
potential AGE inhibitors. An ethyl acetate extract of the 
green alga Chlorella zofingiensis significantly suppressed the 
glycation cascade in vitro [365]. Sun et al. [366] identified 
astaxanthin, especially the diester form, as the major 
component responsible for the antiglycoxidative properties 
of Chlorella zofingiensis (for a comprehensive review on 
astaxanthin biosynthesis in microalgae, including Chlorella 
zofingiensis, see [11]). Among 20 microalgal species, a few 
other strains, such as the green alga Chlorella protothecoides 
and the diatom Nitzschia laevis exhibited similar effects with 
inhibition rates higher than with aminoguanidine, a 
commonly used glycation inhibitor. The major effective 
compounds of the extract were identified as lutein for 
Chlorella protothecoides and eicosapentaenoic acid (EPA) 
for Nitzschia laevis [365] (for a comprehensive review on 
EPA effects on health, see [367] in this Special Issue). 

Several studies strongly suggest that zeaxanthin and 
astaxanthin have the potential to inhibit the development of 
diabetic retinopathy and nephropathy by reduction of the 
oxidative stress, growth factor expression and inflammation 
[366,368-372]. Additionally, astaxanthin supplementation 
was shown to act on antithrombin-III and protein C 
activities, potentially reducing atherogenesis and thrombosis 
often associated to diabetes ([373], see [137] for more 
details). 

 

5.8. Anti-obesity Effects 
Obesity is caused by an excessive accumulation of lipids in 
adipose tissues, generating a disturbance of cytokine 
secretion and an increased risk of many serious diseases such 
as type II diabetes, hyperlipidemia, hypertension, and 
cardiovascular disease [374,375]. Astaxanthin is one of the 
most promising natural anti-obesity agents and has been 
proved to be effective and safe for body weight management 
[376]. 
Ikeuchi et al. [377] found that a supplementation with 
astaxanthin significantly reduced the body weight and 
adipose tissues weight gain in mice with a high fat diet and 
also reduced the liver weight, liver and plasma TAG and 
total cholesterol. They also showed an increase in fatty acid 
utilization [378]. Astaxanthin has been reported in mice to 
ameliorate insulin resistance and insulin signaling often 
associated with obesity [354,356,379]. 
Fucoxanthin has been reported to suppress the development 
of white adipose tissue in obese/diabetic mice (reviewed in 
[380]). The expression of the uncoupling protein 1 (UCP1), 
involved in energy expenditure, was found to be induced in 
white adipose tissue and suggested to be responsible for the 
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anti-obesity effect of fucoxanthin [375,381,382]. These 
researchers also demonstrated that dietary fucoxanthin-rich 
lipids reduced body fat accumulation in a mouse model with 
diet-induced obesity conditions. Fucoxanthin-rich lipids 
were additionally shown to modulate blood glucose and 
insulin levels, possibly by suppressing MCP-1 (involved in 
the inflammatory response) and promoting Adrb3 (involved 
in lypolysis and thermogenesis) and GLUT4 (glucose 
transporter) expression in mice [350]. 
 

5.9. Ocular Protective Effect 
Lutein and zeaxanthin are the most abundant carotenoids that 
accumulate in the lens of the eye, where they are supposed to 
filter the phototoxic blue light, and neutralise ROS [383]. A 
high dietary intake of carotenoids, specifically lutein and 
zeaxanthin, was shown to be associated with a reduced risk 
for nuclear cataracts and age-dependent macular 
degeneration (AMD) [384-386]. AMD is a major cause for 
irreversible blindness and it may affect 20% of the 
population above the age of 65 [383]. More recently, Karppi 
et al. [387] suggested that high plasma concentrations in 
lutein and zeaxanthin were associated with a decreased risk 
of age-related nuclear cataract in humans. The filtering 
effects of lutein and zeaxanthin were superior to those 
provided by lycopene and β-carotene when investigated in a 
membrane model using liposomes [388]. Zhao and Sweet 
[389] used Chlorella extracts (containing 2-4 mg g

-1
 dry 

weight of lutein) and reported prevention of AMD. In 
comparison to controls unaffected by AMD, lower levels of 
lutein and zeaxanthin were found in the retina from donors 
suffering from AMD [390]. 
Visual function was also shown to be improved in patients 
suffering from atrophic AMD when lutein alone or lutein 
together with other nutrients was supplemented [391]. 
Astaxanthin has not been isolated from the human eye but it 
has a stronger antioxidant activity and UV-light protection 
effect than lutein and β-carotene [392]. Tso and Lam [393] 
demonstrated that astaxanthin is able to cross the blood-brain 
barrier and can be deposited in the retina of mammals. The 
retinal photoreceptors of rats fed with astaxanthin were less 
damaged by a UV-light injury and recovered faster than 
animals not fed with astaxanthin. After ingestion of 
astaxanthin (4 or 12 mg per day) for 28 days, the uncorrected 
far visual acuity of humans was significantly improved and 
the accommodation time was significantly shortened. It was 
also found that astaxanthin extracted from the microalga 
Haematococcus pluvialis significantly improved deep vision, 
critical flicker fusion, eye fatigue, retinal capillary blood 
flow [394,395]. In addition, Izumi-Nagai et al. [396] 
concluded that astaxanthin treatment, together with 
inflammatory processes such as those described in Section 
5.3., significantly suppressed the development of choroidal 
neovascularization capable of leading to severe vision loss 
and blindness. Several studies also showed the ocular anti-
inflammatory effect of astaxanthin and fucoxanthin through 
the downregulation of proinflammatory factors and 
inhibition of the NF-κB pathway and nitric oxide synthase 
[397-399]. Cort et al. [400] highlighted the protective effect 
of astaxanthin in ocular hypertension by decreasing the 
percent of apoptotic cells on the retina in rats. 
Fucoxanthin extracted from Odontella aurita has been 
shown to be an efficient and safe antiproliferative agent for 
human lens epithelial cell line since it inhibits their growth 

and might thus be used efficiently in cataract treatment 
[240]. 
The study of Tsai et al. [401] demonstrated that the 
microalga Dunaliella salina exhibited potent protective 
effects on UVB radiation-induced corneal oxidative damage 
in mice, likely due to both the increase of antioxidant 
enzyme activity and the inhibition of lipid peroxidation. 
 

5.10. Skin Protective Effect 
Several studies suggested that carotenoid uptake and in 
particular astaxanthin, might prevent or minimize the effects 
of UVA radiation such as skin sagging or wrinkling. For 
example, Lyons and O’Brien [402] highlighted the potential 
of an algal extract containing astaxanthin to prevent from 
UVA alterations in irradiated cells. Camera et al. [403] 
found in human dermal fibroblasts that astaxanthin exhibited 
the highest photoprotective effect compared to canthaxanthin 
and β-carotene. Suganuma et al. [404] showed that 
astaxanthin could interfere with UVA-induced matrix-
metalloproteinase-1 and skin fibroblast elastase/neutral 
endopeptidase expression. 

β-carotene was also shown to prevent photooxidative 
damage and protect against sunburn (erythema solare). 
Erythema formation induced with a solar light simulator was 
significantly diminished when β-carotene was applied for 12 
weeks either alone or in combination with α-tocopherol 
[405] and the same effects were found with a dietary intake 
of tomato paste particularly rich in lycopene [406]. 

 

6. CAROTENOIDS FROM MICROALGAE AS FOOD 
COLORANTS 
Carotene was the first carotenoid isolated and described in 
1831 by Heinrich Wilhelm Ferdinand Wackenroder during 
his research related to the development of an anthelminthic 
for use in ridding the body of parasitic worms (for review, 
see [407]). The first total synthesis of β-carotene was 
achieved in 1950 [408,409] and synthetic β-carotene started 
to be commercialized by Roche in 1954. Since then, β-apo-
8’-carotenal (E160e) (k), canthaxanthin (E161g), and 
astaxanthin (E161j) have been also chemically synthesized 
and are classified as colorants [410]. It has to be noted, 
however, that carotenoids of plant, algal, fungal and 
synthetic (nature-identical) origin (Table 1) can be used as 
colorants, but not animal carotenoids [57]. 
 
 
 
 
 
 

Due to their color and beneficial health effects (see 
Section 5) carotenoids are nowadays widely applied in oily 
or aqueous media as food colorants and additives (e.g., 
emulsions, colloidal suspensions and complexes with 
proteins) [8]. Most important applications include 
pigmenting margarine, butter, bakery products, sugar 
confectionery, meat, pasta and egg products, deserts and 
mixes, dairy and related products, fruit juices and beverages, 
canned soups, preserves and syrups [8]. For lipid systems 
(margarines and oils) powdered and oil-based carotenoid 
preparations are commercially available, but water-



Short Running Title of the Article Journal Name, 2014, Vol. 0, No. 0    19 

dispersible formulations are also present on the market 
[411]. 

Depending on the wavelength range they absorb, 
carotenoids in solution exhibit a range of colors between 
pale yellow (ζ-carotene), yellow (xanthophylls), orange (β-
carotene), or red (lycopene). In addition, the observed color 
depends on pigment concentration. For instance, the yellow 
β-carotene turns orange and then red when its concentration 
increases [411]. 

 
 
 
 
 
 
Carotenoids can be destroyed during food 

processing steps such as freezing (mild impact), canning 
and/or boiling (strong impact) [1,8,44,58], which trigger 
color modifications. Physical and/or chemical changes may 
influence the composition and concentration of the 
carotenoids in the products. For example, yellow 
violaxanthin is easily transformed during processing to the 
faint-yellow auroxanthin (l) [412] giving a grey tint to the 
processed products [1,44,413]. β-carotene undergoes 
oxidation, isomerization and degradation under certain 
conditions including high temperature and strong light [8]. 
Acidification necessary for example during juice preparation 
also induces chemical modifications of carotenoids [413]. 
Carotenoid degradation can even impart the odor of food 
products, for instance it is important to prevent the 
degradation of β-carotene into the violet-smelling β-ionone 
in such products [413]. However, carotenoids are in general 
more stable than chlorophylls (with carotenes being more 
stable than xanthophylls). 

 
 
 
 
 

 

 

 
 

The most important carotenoids from microalgae used 

as food colorants are discussed below. Due to their lower 

importance and not general acceptance as food colorants 

[e.g., β-apo-8'-carotenal – E160e (k), ethyl ester of β-apo-8'-

carotenoic acid – E160f (m)], and in some cases their 

predominantly synthetic origin [e.g., canthaxanthin – E161g 

(Fig. 1), citranaxanthin – E161i (n)], some carotenoids are 

not discussed in detail below. Other pigments are only 

allowed as food colorants in a few countries like France 

(orange yellow to red colored zeaxanthin – E161h) or in 

Australia and New Zealand [yellow flavoxanthin – E161a 

(o); orange cryptoxanthin – E161c (e); red-orange 

rubixanthin (p) also termed natural yellow 27 – E161d; 

orange violaxanthin – E 161e (Fig. 5); purple rhodoxanthin – 

E161f (q)] and are thus also not discussed in detail below. 

It may be noteworthy to mention that apocarotenal 

(trans-β-apo-8'-carotenal) (k) used as E160e is in fact also 

present in the body as a β-carotene breakdown product 

suspected of causing cancer at high dose, and demonstrated 

in one study as cytotoxic, genotoxic and mutagenic agent in 

cell cultures [414]. Therefore, its quantity and use in some 

food products are limited for example in the USA. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

6.1. -, β-, and γ-Carotene (E160a, CI Food Orange 5) 
Aside from their synthetic nature-identical analogues, E160a 
usually refers to a complex mixture of -, β-, and γ-carotenes 
and their isomers, containing predominantly β-carotene. 
Naturally, most carotenoids occur as all-trans- or different 
cis-isomers (9-cis, 13-cis, 15-cis isomers) (Figs. 4-5). As 
detailed earlier, the configuration can be important for the 
activity of the carotenoid. However, the type of processing, 
heat, and light all influence the isomerization of carotenoids 
in food products [415]. β-carotene accumulates to significant 
levels in microalgae (e.g., Dunaliella salina [22]). Therefore, 
the industrial production of natural carotenoid food color 
additives from microalgae involves mostly Dunaliella [22] 
available for fermentation technology and approved in the 
United States and by the EU legislation [416]. Under certain 
stress conditions Dunaliella cells may accumulate β-carotene 
up to 12% algal dry weight [22]. However, natural E160a 
can be also obtained from Blakeslea trispora (fungus) or 
plants (e.g., carrot in the USA, alfalfa, nettle and vegetable 
oil in the EU) [57]. The agent used for extraction also varies 
from different organic solvents (like hexane in the USA) to 
essential oils (Dunaliella carotenes in EU). After the 
removal of the organic solvents, the remaining oleoresin 
contains – in addition to pigments - vaxes and other 
lipophilic molecules present in the cells.  

Unless synthetic all-trans-carotene, E160a refers to 

complex mixtures of α-, β- and γ-carotene and other 

carotenoids, and its pigment composition may vary 

depending on the source used for extraction. For example, 

Dunaliella carotenes consist of 94-95% β-carotene, with 

other carotenes (α-carotene, lutein, zeaxanthin, β-

cryptoxanthin) being present in minor amounts [57]. The 

carotene from Blakeslea trispora contains 97% of trans-β-

carotenes and appr. 3% other carotenoids. Carrot and plant 

species also contain a species-specific composition of the 

different isomers. One major advantage of the natural algal 

carotene is that in contrast to cheaper synthetic β-carotene 

produced in all-trans configuration, and carotene of 

Blakeslea trispora composed mostly of trans-β-carotene, 

algal cells produce an almost 50-50% mixture of all-trans 
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and 9-cis stereoisomers (trans-isomers have to be in the 

range 50-71% according to legislation), which has thus 

probably increased biological and health effects [417]. 

The different stereoisomers also have slightly 

different spectral properties and, thus, color. Therefore, at 

the same total carotenoid concentration, the color of red 

palm oil carotene mixture is more yellowish than that of 

synthetic all-trans-β-carotene, which has orange color, and 

the carotenes of Dunaliella have in general similar color to 

red palm oil or a color in-between those of the two other 

pigment mixtures [57]. 

E160 is very widely used by the food industry to 

obtain yellowish-orange hues, with the best-known example 

probably representing margarine and butter. 
 

6.2. Astaxanthin (E161j) 
Astaxanthin (3,3-dihydroxy-β,β-carotene-4,4-dione) is an 
orange-red colored ketocarotenoid derived from 
canthaxanthin [85] containing both hydroxyl and ketone 
functional groups (Fig. 8). Its structure was first proved by 
chemical synthesis in 1975 [418]. In nature, astaxanthin is 
synthesized and accumulated to relatively large extent in 
some green algae (Haematococcus pluvialis, Chlorella 
zofingiensis and Chlorococcum sp.), some fungi (most 
importantly in the red yeast Xanthophyllomyces dendrorhous 
earlier termed Phaffia rhodozyma), and bacteria (like the 
marine bacterium Agrobacterium aurantiacum), but it also 
occurs in some red algae [11,20,25-32,99,419] (Table 1). 
Dietary astaxanthin is absorbed and deposited in animals 
such as krill, shrimp, and fish. The most striking natural 
examples of astaxanthin accumulation in animals (and food 
products) are flamingo feathers, salmon and trout flesh, and 
crustacean shells (e.g., lobsters in which astaxanthin is 
bound to proteins [420]). Astaxanthin is used mostly as a 
pigmentation source in animal feed in marine aquaculture, 
including primarily salmonids (where it is responsible for the 
flesh coloration of salmon and trout), red sea bream and 
ornamental fish (where it provides skin pigmentation), 
shrimps (the hypodermal chromophores and the pigmented 
layer of the epidermal exoskeleton of several cultured 
species contain astaxanthin), and to a lesser extent in poultry 
(for coloration of egg yolk) [421]. It also has applications in 
nutraceuticals (human dietary supplements) and the cosmetic 
industry [421]. The EU considers astaxanthin as a food dye 
(E161j). In the United States, the FDA has approved 
astaxanthin and astaxanthin dimethyldisuccinate (Fig. 8), 
Haematococcus algae meal, and Xanthophyllomyces 
dendrorhous as food colorings and additives for specific uses 
in animal and fish feed and recognizes natural astaxanthin as 
safe (GRAS – generally recognized as safe). However, as 
food coloring astaxanthin is restricted to use in animal food 
and astaxanthin shall not exceed 80 mg kg

-1
 of finished feed 

[410]. This pigment is quite expensive (approx. 5000-6000 
USD per kg, with natural astaxanthin estimated to reach 
14000 USD per kg in 2018 [7]), and although its circa 220 
million USD global market is dominated by the synthetic 
pigment (more than 95%), consumer demand for natural 
products has raised interest in natural astaxanthin. The 
natural pigment is primarily extracted from Haematococcus 
pluvialis [11,22]. Under certain conditions, astaxanthin 
accumulates up to 4-5% cell dry weight in the green alga 
Haematococcus pluvialis, which is now cultivated on a large 

scale by several companies using different approaches 
[22,99,419]. 
 Alternatively, shrimp (Pandalus borealis) or krill species 
(Euphausia sp.) [11,22] can be used for astaxanthin 
extraction, however, krill fishing under extreme weather 
conditions in Antarctic waters is expensive, and only slowly 
developing, therefore, gaining astaxanthin from shrimp 
processing waste is more current, and microalgae clearly 
represent the most sustainable and environment-friendly 
production platform. 

Natural astaxanthin is preferred in dietary 

supplements in different forms (e.g., soft gels, tablets, 

capsules, syrups, oils and creams), which are getting more 

and more popular due to its potent antioxidant health-

promoting effects (see Section 5). However, it has to be 

noted that there are only few studies available about its 

stability, biochemistry, bioavailability, pharmacokinetics and 

toxicology (safety) [99]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (8). New forms of astaxanthin esters obtained through 
genetic engineering. 
 
7. CONCLUSIONS AND PERSPECTIVES 
Natural colorants are two to ten times more expensive than 
synthetic ones and are often not very convenient or easy-to-
handle stock commodities [57,422]. Microalgae constitute a 
very promising platform for the production of high value 
molecules, including natural carotenoids [7,12,17]. Even if 
suitable microalgal strains are used to produce only one type 
of carotenoid in economically viable concentrations e.g., 
astaxanthin in Haematococcus pluvialis or β-carotene in 
Dunaliella sp., the chemical properties of the accumulated 
carotenoid can be heterogenous making utilization more 
complicated. A good example is astaxanthin that 
accumulates under three different forms, i.e., as 
nonesterified, monoesterified and diesterified astaxanthin 
[85] and in different proportions according to the taxon and 
culture conditions [27]. In addition, the fatty acid 
composition is not homogeneous [423]. The changes of the 
polarity linked to different proportions of esterified 
astaxanthin lowers the use of astaxanthin esters as a coloring 
agent for hydrophilic media or as a drug. This represents an 
important limitation because astaxanthin is a molecule 
exhibiting a very high antioxidant activity. To circumvent 
these difficulties carotenoid polarity can be modified either 
through hemi-synthesis or through molecular engineering. 
For instance, disodium disuccinate astaxanthin (Cardax

TM
) 

(Fig. 8), has been chemically prepared at multi-gram scale 
[424]. The new molecule, that presents a water dispersibility 
of 8.64 mg mL

-1
, is an effective superoxide anion scavenger 

in the aqueous phase [425] and efficient in plasma protein 
binding [426]. Administration of Cardax provided 
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cardioprotection in dog hearts [427]. Alternatively, the 
cloning of heterologous gene(s) coding for carotenoid 
modifying enzymes into the genome of a microalga could be 
also envisioned. For instance, the bacterium Sphingomonas 
astaxanthinifaciens TDMA-17

T
 (Fig. 8) uses the 

glucosyltransferase CRTX [428] to add glucoside residues 
on the astaxanthin backbone [429]. The resulting polar 
astaxanthin dirhamnoside presents a very high antioxidant 
activity [429]. 
 Another possibility to extend and diversify the 
production of carotenoids consists in the exploitation of 
biodiversity. Indeed, it is usually admitted that biodiversity 
constitutes the richest source of bioactive molecules [430]. 
Unfortunately, since World War II, the search for such 
compounds from natural sources has been gradually replaced 
by synthetic and combinatorial chemistry (for a review, see 
[431]. In the recent past, many different scale bioprospecting 
programs such as Tara Cruise 
(http://oceans.taraexpeditions.org/en/m/science/news/the-
oceanomics-project/)) have aimed to find new sources 
and/or high value molecules from nature. This shift back to 
bioprospecting programmes partly relies on the assumption 
that living organisms are a storehouse for carotenoids that 
are just waiting to be discovered. For instance, Deli et al. 
[432] have characterized the carotenoid composition of three 
non-toxic algal isolates namely Dunaliella salina, Euglena 
sanguinea and a Nostoc strain. All three species contained 
high amounts of carotenoids. Biotechnological interest in 
carotenoids has focused on their antioxidant, anticancer and 
anti-inflammatory activities both for human health 
application as well as for food/feed [433] that has strongly 
increased the demand for these compounds. To speed up and 
reduce the costs of carotenoid production, other organisms 
than microalgae but modified genetically with algal genes 
have been proposed. For instance, Chang et al. [434] have 
used yeast as an astaxanthin production platform. To reach 
this goal, they cloned β-carotenoid hydroxylases from 
different algae. Transformation with the genes from 
Haematococcus pluvialis provided the highest yield of β-
carotene (224 µg g

-1
 dry weight) and canthaxanthin (39.8 µg 

g
-1

 dry weight) [434]. Recently, overexpression of 
cyanobacterial genes involved in carotenoid biosynthesis 
within a β-carotene accumulating Escherichia coli host 
enabled a 23.5-fold improvement in total carotenoid yield 
(1.99 mg g

−1
), over the parental strain, with >90% 

astaxanthin [435]. This opens up new possibilities for 
increased yields of natural astaxanthin synthesis in 
genetically modified organisms. The combination of 
carotenoid biosynthetic genes from different organisms can 
be also used to produce rare and/or novel carotenoids the 
properties of which should be tested. 

Additionally, the sustainability and ecomic viability 
of industrial production could be improved by using the 
same strains to obtain different high value added products, 
pigments and/or molecules. This way, for instance 
Arthrospira sp. (commonly termed spirulina) could not be 
only used for the production of the dietary supplement 
‘spirulina’ containing dried algal biomass, but the so-called 
inferior quality spirulina obtained during large-scale 
production due to different stressors may be used to prepare 
food coloring ‘spirulina extract’ containing mostly 
phycobiliproteins, or phycocyanin, chlorophylls and/or 
distinct carotenoids (β-carotene, zeaxanthin) ([436], for 
reviews see [437,438]). All these examples and recent 

findings demonstrate that carotenoids from microalgae 
represent a rapidly expanding and developing field of high 
value added natural products. Important and interesting basic 
and applied (food and health industrial) developments are 
expected in this field in the near future. 
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ABBREVIATIONS 

6-OHDA = 6-hydroxydopamine 

AD = Alzheimer's disease 

AGE = advanced glycation end-produits 

ALS = amyotrophic lateral sclerosis 

AMD = age-macular degeneration 

Bcl-xL = B-cell lymphoma-extra large 

COX-2 = cyclooxygenase-2 

CVD = cardiovascular diseases 

HDL-C = high-density lipoprotein cholesterol 

IC50 = half maximal inhibitory concentration 

IgE = immunoglobulin E 

IL = interleukin 

INOS = inducible nitric oxide 

IPP = isopentenyl diphosphate 

LDL = low-density lipoprotein 

LDL-C = low-density lipoprotein cholesterol 

LPS = lipopolysaccharides 

MAPK = mitogen-activated protein kinases 

MDR = multidrug resistant 

MI = myocardial infarction 

MIP-2 = macrophage inflammatory protein 2 

NF-κB = NF-kappa-B 

NF-κB p65 = NF-kappa-B with a MM of 65 kD 

NO = nitric oxide 

NOX2 = NADPH oxidase 2 

PD = Parkinson disease 

http://oceans.taraexpeditions.org/en/m/science/news/the-oceanomics-project/
http://oceans.taraexpeditions.org/en/m/science/news/the-oceanomics-project/
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PGE2 = prostaglandin E2 

ROS = reactive oxygen species 

RNS = reactive nitrogen species 

TNF-a = tumor necrosis factor alpha 

TAG = triglyceride 
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