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The effect of the O(∂4) terms of the gradient expansion on anomalous dimension η and the
correlation length’s critical exponent ν of the Wilson-Fisher fixed point has been determined for
the Euclidean O(N) model for N = 1 and the number of dimensions 2 < d < 4 as well as for
N ≥ 2 and d = 3. Wetterich’s effective average action renormalization group method is used with
field-independent derivative couplings and Litim’s optimized regulator. It is shown that the critical
theory for N ≥ 2 is well approximated by the effective average action preserving O(N) symmetry
with the accuracy of O(η).
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I. INTRODUCTION

In the present paper it is investigated the effect of the
term of O(∂4) of the gradient expansion (GE) on the
anomalous dimension η and the correlation length’s crit-
ical exponent ν at the Wilson-Fisher (WF) fixed point
(FP) for Euclidean O(N) models for N = 1 and the
number of dimensions 2 < d < 4 as well as for N ≥ 2
and d = 3. Wetterich’s effective average action (EAA)
renormalization group (RG) approach [1, 2] is applied in
the GE using field-independent (uniform) derivative cou-
plings and Litim’s optimized regulator [3]. The N = 1
case for the number of dimensions 2 < d < 4 is investi-
gated in detail in order to show that the RG scheme used
by us provides qualitatively reasonable results for the ex-
ponents η and ν, even if we do not pretend to achieve an
accuracy available only for taking the field-dependence
of all couplings properly into account [2, 4, 5]. Then we
apply the same RG scheme to O(N) models with N ≥ 2
and d = 3 in order to show that the critical theory cor-
responding to the WF FP is well approximated by an
EAA in which the derivative couplings for the radial and
the Goldstone modes of the field take different values and
show up different N -dependences. Such an EAA breaks
O(N) symmetry explicitly, but not more than the order
of magnitude of the anomalous dimension. According
to our knowledge the effect of the terms of O(∂4) on
the exponents η and ν has only be investigated for the
3-dimensional O(1) model [5] but not for O(N) models
with N ≥ 2 and d = 3. Therefore even our qualitative
statements on the N -dependence of the modification of
the values of η and ν due to the inclusion of the run-
ning higher-derivative term of O(∂4) may fill this lack of
informations.

As a rule, the RG flow equations can not be solved
exactly, but their solution requires some truncated ap-
proximation scheme. For the GE the leading order is the
local potential approximation (LPA) when only the local
potential evolves, whereas in the next-to-leading order
(NLO) and the next-to-next-to-leading order (NNLO)
also the couplings of the gradient terms of the quadratic

and quartic orders are evolved, respectively. In more
advanced applications one takes into account the field-
dependence of the derivative couplings (like e.g., in Refs.
[2, 4, 5]), let us call below these approximation schemes
NLOf and NNLOf, respectively. Here we restrict our-
selves to the more simple NLOu and NNLOu approxi-
mation schemes, when the field-dependence of the deriva-
tive couplings is neglected. This means that in our RG
scheme only the momentum-dependence of the wavefunc-
tion renormalization is taken into account truncated at
the terms quartic in the gradient. Although we are aware
of the loss of obtaining very accurate values of the critical
exponents in that manner, the more simple form of the
RG evolution equations in the NNLOu scheme is advan-
tageous for making qualitative conclusions on the NNLO
effect, i.e., on the effect of the inclusion of the terms of
O(∂4) on the critical exponents of the WF FP. In Ap-
pendix A we give a short overview of the more recent
efforts on the determination of the anomalous dimension
and the correlation length’s critical exponent by means of
various functional RG schemes. The summary of various
results in Tables VIII and IX shows that the NLOu val-
ues of the anomalous dimension are in the range of the
various NLOf values, so that the usage of the uniform
wavefunction renormalization seems to be quite accept-
able when one goes further and asks for the qualitative
behaviour of the NNLO effect on the critical exponents.

In many cases the critical exponents were evaluated by
the functional RG with the neglection of the Ṙf effect,
i.e., that of the terms containing the scale derivatives
of the derivative couplings in the scale-derivative Ṙk of
the cutoff function. Such an approximation is believed to
be justified by the smallness of the anomalous dimension.
For the 3-dimensional O(1) model we separate the NNLO

effect and the Ṙf effect and show that they cause com-
parable modifications of the NLO results on the critical
exponents, but it turns out that the Ṙf effect weakens by
an order of magnitude when the NNLO approximation is
used, at least in the case of using uniform wavefunction
renormalization and Litim’s optimized regulator. There-
fore, it is justified to neglect the Ṙf effect when we investi-
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gate the N -dependence of the NNLO effect on η and ν in
the O(N) models with N ≥ 2. Otherwise the treatment
of the RG evolution equations would become extremely
involved in the NNLO of the GE even if one restricts one-
self to the usage of uniform wavefunction renormalization
and generates the RG evolution equations for the various
couplings by means of a computer algebraic program.

Below we shall apply the EAA RG approach by making
an ansatz for the EAA in the NNLO of the GE. Apply-
ing the usual techniques of the GE, one has to split the
N -component (N ≥ 2) field variable into a homogeneous
background piece plus the quantum fluctuations. The
homogeneous background defines an arbitrary but fixed
direction in the internal space and the fluctuating field
can be split into radial and transverse modes, where the
latter play the role of the Goldstone modes in the symme-
try broken phase of the O(N) model for d = 3. Then the
projection of the evolution equation onto the subspaces of
the radial and the Goldstone modes yields different evo-
lution equations for their momentum-dependent wave-
function renormalizations. Therefore one is enforced to
introduce different momentum-dependent wavefunction
renormalizations for the radial and the Goldstone modes.
When the field-dependence of the wavefunction renor-
malizations is taken into account, the gradient terms for
the radial and the Goldstone modes can be distinguished
by different field-dependences and the O(N) symmetry of
the EAA can be kept (like e.g. in Refs. [2, 6]). Here we
neglect the field-dependence of the wavefunction renor-
malization completely. Then we have to distinguish the
radial and the Goldstone modes by means of their differ-
ent scale-dependent derivative couplings. In this way the
symmetry broken phase of the model shall be described
by an EAA in which the gradient terms break O(N) sym-
metry explicitly, while the potential keeps the symmetry.
Such an EAA imitates spontaneous breaking of symme-
try partially by explicit symmetry breaking, although the
nontrivial minimum of the potential remains an evolving
parameter vanishing in the limit when the gliding scale
k goes to zero. We shall show that when this explicit
breaking of symmetry is minimized, it does not exceed
the order of magnitude of the anomalous dimension for
the radial mode. Then ourasymetric ansatz for the EAA
provides a reasonable framework to describe the scaling
behaviour near the WF FP.

Our strategy consists of the following steps: the de-
termination of the quantities characterizing the WF
crossover region by solving the RG evolution equations
for nearly critical trajectories, the determination of the
quantities characterizing the WF FP by solving the fixed-
point equations, and finally establishing that the corre-
sponding quantities obtained in the first two steps agree
with high accuracy. As mentioned above in the case
of O(N) models with N ≥ 2 our ansatz for the gra-
dient piece of the EAA breaks O(N) symmetry explic-
itly. Therefore it enables one to introduce the ratio ẑ
of the wavefunction renormalization of the radial mode
to that of the Goldstone modes, and the declination of

the value of ẑ from 1 measures the strength of that sym-
metry breaking. The above described strategy of the
investigation of the WF FP is then applied under the
constraint ẑ(k) ≡ 1, i.e., that the O(N) symmetry of the
EAA is enforced on the NLO level. Then the agreement
between the corresponding quantities characterizing the
WF crossover region and the WF FP are established, al-
though an inconsistency of the RG scheme is observed.
Namely, the anomalous dimensions for the radial and the
Goldstone modes of the field turn out to be different, so
that the beta-function of the ratio ẑ does not vanish, but
takes a value of the order of the anomalous dimension
for the radial mode. Therefore, we repeat the whole pro-
cedure with evolving the ratio ẑ. In the latter case the
difference of the anomalous dimensions of the radial and
the Goldstone modes determines the evolution of ẑ to
critical values ẑ∗ generally much larger than 1 and the
quantities characterizing the WF crossover region show
up power-law dependences on the gliding scale k. Then
the solution of the fixed-point equations for fixed ẑ∗ are in
agreement with the corresponding characteristics of the
WF crossover region. Nevertheless, we shall show that
the above described inconsistency of the RG scheme may
even be enhanced. However, the power-law behaviour of
the various quantities characterizing the WF crossover
region enables one to look for a version of the applied
RG scheme when the inconsistency is minimized. The
latter turns out be the RG scheme with fixed ẑ(k) = 1
and can be interpreted as the physically realistic one.

The paper is organized as follows. In Sect. II our
ansatz for the EAA for the O(N) model is given and
the general form of the RG evolution equations for the
local potential and the momentum-dependent wavefunc-
tion renormalizations are derived. This RG framework is
applied to the O(1) model in Sect. III where our strat-
egy of the determination of the quantities characterizing
the WF FP is described. Particular emphasis is given to
the determination of the NNLO and Ṙf effects for the
3-dimensional O(1) model, and the dependence of the
NNLO effect on the continuous dimension d in the in-
terval 2 < d < 4 is discussed. The same RG framework
and strategy are used to study the N -dependence of the
NNLO effect for N ≥ 2 in Sect. IV. It is pointed out
that the EAA of the critical theory preserves O(N) sym-
metry with an accuracy of the order of the anomalous
dimension of the radial mode of the field. The results are
summarized in Sect. V. Appendix A contains a short
overview of the most recent results on the determination
of the anomalous dimension and the correlation length’s
critical exponent in the framework of the functional RG
approach. Appendix B contains the RG evolution equa-
tions in the approximation NNLO2η which takes the Ṙf
effect into account and involves a quartic potential.
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II. EFFECTIVE AVERAGE ACTION

RENORMALIZATION GROUP APPROACH

Applying the EAA RG approach to the N -component
scalar field φa

x (a = 1, 2, . . . , N) one splits the EAA
Γ̄k[φ] = Γk[φ] + ∆Γk[φ] into the reduced EAA (rEAA)
Γk[φ] and the regulator piece

∆Γk[φ] =
1

2

∫

x

φa
xR

a,b
k,x,yφ

b
y , (1)

where

Ra,b
k,x,y = Ra,b

k (−�)δ(x− y) (2)

with the choice of a field-independent infrared (IR) cutoff

matrix Ra,b
k (u). Here and below the formulas are casted

into the form that the differential operators act always
on the index x and k denotes the running cutoff. The
Wetterich equation (WE) for the rEAA Γk is given as

Γ̇k =
1

2
Tr

(

[Γ
(2)
k +Rk]

−1Ṙk

)

, (3)

where the dot over the quantities indicates the scale-

derivative k∂k, Γ
(2)
k is a shorthand for the second

functional derivative matrix Γ
(2)a,b
k,x,y = δ2Γk[φ]

δφa
xδφ

b
y

(a, b =

1, 2, . . . , N). The trace is taken over a complete set of
field configurations. Now we make an ansatz for the
rEAA in the NNLO of the GE. Application of the usual
GE techniques involves the split of the field φa

x = Φa+ηax
into the homogeneous background piece Φa = Φea and
the inhomogeneous fluctuating field ηax, where ea is an
arbitrarily fixed unit vector in the internal space (eaea =
1). For later convenience we introduce the projectors
Pab
‖ = eaeb and Pab

⊥ = δab−eaeb acting on the N -vectors

of the internal space and define the field components
φa
‖x = Pab

‖ φb
x and φa

⊥x = Pab
⊥ φb

x of the radial and the

transverse modes, respectively. It is well-known that the
transverse modes play the role of the Goldstone modes
in the symmetry broken phase of the model. The latter
are absent for the case with N = 1. For the rEAA we
make the NNLO ansatz

Γk[φ] =
1

2

∫

x,y

φa
‖xD

−1
‖x,y(−�)φa

‖y

+
1

2

∫

x,y

φa
⊥xD

−1
⊥x,y(−�)φa

⊥y +

∫

x

Uk(ρx) (4)

with

D−1
Ax,y(−�) = ZA k(−�)δx,y = (−ZAk�+ YAk�

2)δx,y

(5)

where ZA k(−�) are the momentum-dependent wave-
function renormalizations for the radial (A =‖) and the
Goldstone (A =⊥) modes and ρx = 1

2φ
a
xφ

a
x. In the sym-

metry broken phase the ρ-dependence of the potential is
parametrized as

Uk(ρx) = u0 +

M
∑

n=2

un

n!
(ρx − ρ∗)n (6)

with the scale-dependent couplings un (n ≥ 2) and the
position of the minimum of the potential at ρ∗, while in
the symmetric case, i.e., for ρ∗ = 0, the parametrization

Uk(ρx) =
M
∑

n=0

vn
n!

ρnx (7)

with the scale-dependent coupling vn can be used. There-
fore, the potential is approximated by a polynomial
of degree M of the O(N)-invariant variable ρx. The
parametrization (6) can only be used in the symmetry
broken phase, whereas the parametrization (7) can be
used in both phases. For the symmetry broken phase and
the truncation M = 2 the two parametrizations of the
potential are related by v0 = u0 +

1
2u2ρ

∗2, v1 = −2u2ρ
∗,

and v2 = u2, but we shall use the parametrization (6)
in the symmetry broken phase. The mass squared of
the elementary excitations at the minimum of the po-
tential are then given as m2

SB = 2u2ρ
∗ and m2

S = v1
in the symmetry broken and symmetric phases, respec-
tively. The ansatz (4) treats the radial and the transverse
(Goldstone) modes of the field separately. This explicit
breaking of O(N) symmetry provides the flexibility to
our RG approach that in the symmetry broken phase the
dynamics may govern the system to states in which the
momentum-dependent wavefunction renormalizations for
these modes evolve differently with the gliding scale k, al-
though one starts the evolution with the initial condition
Z⊥Λ(−�) = Z‖Λ(−�) at the ultraviolet (UV) scale Λ
ensuring unbroken O(N) symmetry of the bare action.
In this manner spontaneous symmetry breaking may be
mimicked by an explicit one.
The ansatz (4) with Eqs. (5)-(7) has been inserted

into the WE (3), then evolution equations derived for
the couplings of the gradient terms and those of the local
potential by using usual GE techniques. The radial and
the Goldstone modes were split as φa

‖x = Φea + ηa‖x and

φa
⊥x = ηa⊥x, respectively. Both sides of the WE have been

functional Taylor-expanded in powers of the fluctuating
fields ηa‖x, η

a
⊥x and the evolution equations for the local

potential Uk(ρ) and the momentum-dependent wavefunc-
tion renormalizations Zk‖(Q

2) and Zk⊥(Q
2) read off by

comparing the zeroth order terms and the quadratic ones
on both sides of the WE, respectively. The explicit eval-
uation of the traces on the right-hand side of the WE
have been performed in the momentum representation.
Denoting by Qµ the momentum of the Fourier modes
of the fluctuating field, and by pµ the loop-momentum
appearing in the explicit expressions of the traces, the
regulator matrix has been specified as a block-diagonal

one Ra,b
k (p2) =

∑

A=‖,⊥RAk(p
2)Pa,b

A choosing the regu-

lator functions RAk(p
2) in the form of Litim’s optimized

regulator,

RAk(p
2) = [ZAk(k

2 − p2) + YAk(k
4 − p4)]Θ(k2 − p2)

(8)

with the Heaviside function Θ(u). This choice reduces
the loop-integrals appearing in the traces to those over
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the Euclidean sphere of radius k and has the advantage
that the loop-integrals can be taken analytically.

Truncating the functional Taylor-expansion at the
quadratic term, the left-hand side of the WE takes the
form

Γ̇k[Φ + η] = Γ̇k[Φ] +
1

2

∫

x,y

ηaxȦ
a,b
k,x,yη

b
y, (9)

while the expansion of the right-hand side can be written
as

Γ
(2)a,b
k,x,y [Φ + η] = Aa,b

k,x,y + (ηB)a,bk,x,y +
1

2
(ηCη)a,bk,x,y ,(10)

where

Aa,b
k,x,y = Γ

(2)a,b
k,x,y [Φ], (11)

(ηB)a,bk,x,y =

∫

z

ηcz
δ3Γk

δφa
xδφ

b
yδφ

c
z

∣

∣

∣

∣

φz=Φ

, (12)

(ηCη)a,bk,x,y =

∫

z,u

ηcz
δ4Γk

δφa
xδφ

b
yδφ

c
zδφ

d
u

∣

∣

∣

∣

φz=Φ

ηdu. (13)

The first-order term on the left-hand side vanishes be-
cause ηx contains no zero mode. The field-independence
of the gradient terms leads to the great simplification
that the third and fourth functional derivatives of the
rEAA come from the derivatives of the potential alone.
The functional Taylor-expansion of the trace on the right-
hand side of the WE is then achieved by performing
the truncated Neumann-expansion of the inverse matrix

[Γ(2)[φ] +Rk]
−1 at the IR cutoff propagator

Ga,b
p,q = ([Γ(2)[φB ] +Rk]

−1)a,bp,q =
∑

A=‖,⊥

GA(p
2)Pa,b

A ,(14)

where

G‖(p
2) = [Z‖ k(p

2) + U ′
k(r) + 2rU ′′

k (r) +R‖ k(p
2)]−1,(15)

and

G⊥(p
2) = [Z⊥ k(p

2) + U ′
k(r) +R⊥ k(p

2)]−1 (16)

with r = 1
2Φ

2 are the propagators of the radial and the
Goldstone modes, respectively. Here and in what fol-
lows the notation of the r-dependence of the propagators
has been suppressed in order to make our formulas more
transparent. The trace on the right-hand side of the WE
(3) can then be rewritten as

Tr

(

[Γ(2) +Rk]
−1Ṙk

)

= T0 + T1 + T2B + T2C , (17)

where

T0 = Tr[GṘk],

T1 = −Tr[G · (ηB) ·GṘk],

T2B = Tr[G · (ηB) ·G · (ηB) ·GṘk],

T2C = −
1

2
Tr[G · (ηCη) ·GṘk]. (18)

(Here the dot ‘·’ indicates matrix product both in the ex-
ternal and the internal spaces.) One finds T1 = 0 because
the background is homogeneous and ηx exhibits no zero
mode. The other terms are given as

T0 = V
∑

A=‖,⊥

dA

∫

p

GA(p
2)ṘA k(p

2), (19)

T2B =

∫

Q,p

2r

{[

[G‖(p
2)]2G‖(q

2)δ2(r)Ṙ‖k(p
2) + (N − 1)[G⊥(p

2)]2G⊥(q
2)ǫ2(r)Ṙ⊥k(p

2)

]

q=Q−p

η‖Qη‖−Q

+ǫ2(r)

[

[G‖(p
2)]2G⊥(q

2)Ṙ‖k(p
2) + [G⊥(p

2)]2G‖(q
2)Ṙ⊥k(p

2)

]

q=Q−p

ηa⊥Qη
a
⊥−Q

}

, (20)

T2C = −
1

2

∫

Q,p

{[

[G‖(p
2)]2γ(r)Ṙ‖k(p

2) + (N − 1)[G⊥(p
2)]2δ(r)Ṙ⊥k(p

2)

]

η‖Qη‖−Q

+

[

[G‖(p
2)]2δ(r)Ṙ‖k(p

2) + (N + 1)[G⊥(p
2)]2ǫ(r)Ṙ⊥k(p

2)

]

ηa⊥Qη
a
⊥−Q

}

(21)

with the degeneracies d‖ = 1 and d⊥ = N − 1 of the radial and the transverse modes, respectively, and

γ(r) = 4r2U ′′′′
k (r) + 12rU ′′′

k (r) + 3U ′′(r),

δ(r) = 2rU ′′′
k (r) + U ′′

k (r),

ǫ(r) = U ′′
k (r). (22)
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The comparison of the terms of the orders O(η0) and
O(η2) on both sides of Eq. (17) results in the evolution
equations

Γ̇k[φB] =
1

2
T0, (23)

and

(ηȦkη) = T2B + T2C , (24)

respectively, where both sides of Eq. (24) are diagonal in
the radial and the Goldstone modes. Therefore one finds
the evolution equations

U̇k(r) =
1

2

∑

A=‖,⊥

dA

∫

p

GA(p
2)ṘA k(p

2) (25)

for the local potential,

Ż‖k(Q
2)

=

∫

p

2r

{[

[G‖(p
2)]2G‖(q

2)[2rU ′′′
k + 3U ′′

k ]
2Ṙ‖k(p

2)

+(N − 1)[G⊥(p
2)]2G⊥(q

2)[U ′′
k ]

2Ṙ⊥k(p
2)

]

q=Q−p

−[G‖(p
2)]3[2rU ′′′

k + 3U ′′
k ]

2Ṙ‖k(p
2)

−(N − 1)[G⊥(p
2)]3[U ′′

k ]
2Ṙ⊥k(p

2)

}

r=r∗
(26)

for the momentum-dependent wavefunction renormaliza-
tion of the radial mode, and

Ż⊥k(Q
2) =

∫

p

{

2r[U ′′
k ]

2

[

[G‖(p
2)]2G⊥(q

2)Ṙ‖k(p
2)

+[G⊥(p
2)]2G‖(q

2)Ṙ⊥k(p
2)

]

q=Q−p

−[G⊥(p
2)]2U ′′

k Ṙ⊥k(p
2)

}

r=r∗
(27)

for the momentum-dependent wavefunction renormaliza-
tion of the Goldstone modes. The last two equations
have been obtained by making use of the first and second
derivatives of Eq. (25) with respect to the field variable
r. The notation of the r-dependence has been suppressed
in the equations for the momentum-dependent wavefunc-
tion renormalizations. Furthermore, the right-hand sides
of Eqs. (26) and (27) should be taken at the minimum
of the potential r = r∗ in accordance with the usage of
field-independent derivative couplings. Since there are
propagators in Eqs. (26) and (27) taken at the momen-
tum p − Q where p is the loop-momentum, one has to
Taylor-expand both sides of these equations in powers of
Qµ and make use of O(d) symmetry when performing
integrals of the types

∫

p

pµpνf(p
2) = d−1δµν

∫

p2f(p2),

∫

p

pµpνpκpλf(p
2) = [d(d+ 2)]−1

∫

p

(p2)2f(p2). (28)

Then the comparison of the terms of the orders O(Q2)
and O(Q4) on both sides of Eqs. (26) and (27) provide
the evolution equations for the various couplings ZA k

and YA k, respectively. The introduction of the dimen-
sionless quantities shall be discussed below separately for
the cases N = 1 and N ≥ 2. The explicit forms of the
evolution equations for the dimensionless couplings have
been generated by computer algebra.

At this point one has to emphasize that the introduc-
tion of the homogeneous background field Φa pointing
into an arbitrary, but fixed direction ea in the internal
space leads necessarily to different diagonal derivative
pieces for the radial ηa‖ and the Goldstone ηa⊥ modes,

and finally to evolution equations of different forms even
if identical momentum-dependent wavefunction renor-
malizations Z‖(Q

2) = Z⊥(Q
2) (and identical cutoffs

R‖k(p
2) = R⊥k(p

2)) would have been assumed. In the
latter case, however, Eqs. (26) and (27) would have been
in contradiction. Therefore, one can not avoid the intro-
duction of different momentum-dependent wavefunction
renormalizations Z‖(Q

2) 6= Z⊥(Q
2) for the radial and

the Goldstone modes. This breaks the O(N) symmetry
of the rEEA explicitly, but can be considered as a kind
of bookkeeping the consequences of the existence of the
nontrivial minimum of the potential at r = r∗ in the
symmetry broken phase. Our ansatz allowing for dif-
ferent RG evolutions of Z‖(Q

2) and Z⊥(Q
2) makes the

RG scheme more flexible and raises the question that
starting the evolution from a symmetric initial state with
Z‖(Q

2) = Z⊥(Q
2) at the UV scale, whether the critical

theories at the WF FP for N ≥ 2 exhibit this symmetry
or not.

The ansatz (4) with Eq. (5) enables one to discuss
various truncations of the GE: the LPA for Z‖k = Z⊥k ≡
1, Y‖k = Y⊥k ≡ 0, the NLO of the GE with scale-
dependent wavefunction renormalizations Z‖k, Z⊥k and
Y‖k = Y⊥k ≡ 0, whereas the running of all derivative cou-
plings Z‖k, Z⊥k, Y‖k, and Y⊥k corresponds to the NNLO
of the GE. These truncations of the GE with given M of
the truncation of the field-dependence of the local poten-
tial shall be referred to below as NLOM and NNLOM
approximations, when the Ṙf effect is neglected. The no-
tations NLOMη and NNLOMη refer to approximations
when the Ṙf effect was taken into account. Our results
are obtained with uniform wavefunction renormalization,
i.e., field-independent derivative couplings. This will not
be indicated in the notation of the approximation except
of the cases when it should be emphasized with compar-
ison of results from the literature obtained by the usage
of either uniform (NLOu, NNLOu) or field-dependent
(NLOf, NNLOf) derivative couplings. We have found
that our results became numerically stable for the trun-
cation M = 6.
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III. O(1) MODEL FOR DIMENSIONS 2 < d < 4

A. Evolution equations

Formally one has to set N = 1, remove the evolution
Eq. (27) for Z⊥(Q

2) and work with the derivative cou-
plings Zk = Z‖k and Yk = Y‖k. Then the evolution Eqs.
(25) and (26) reduce to the equations

U̇k(r) =
1

2

∫

p

G(p2)Ṙk(p
2) (29)

for the potential Uk(r) and

Żk(Q
2) = 2r∗[2r∗U ′′′

k (r∗) + 3U ′′(r∗)]2

×

∫

p

(

G2(p2)[G(q2)]q=Q−p −G3(p2)

)

Ṙk(p
2) (30)

for the momentum-dependent wavefunction renormal-
ization Zk(Q

2), where G(p2) = G‖(p
2) and Rk(p

2) =

R‖k(p
2).

As to the next one introduces the dimensionless quan-
tities r̄ = Zkk

−(d−2)r, r̄∗ = κ̄, ūn = Z−n
k k−d+n(d−2)un,

v̄n = Z−n
k k−d+n(d−2)vn, and Ȳk = Z−1

k k2Yk. These defi-
nitions of the dimensionless quantities incorporating ap-
propriate powers of the uniform wavefunction renormal-
ization is advantageous because they make disappear the
coupling Zk from the beta-functions. Then one arrives
to the explicit form of the RG equations for the various
couplings. These have been generated by computer alge-
bra for the various approximation schemes both for the
symmetry broken and symmetric phases.
For the symmetry broken phase and the approximation

scheme NNLO2 (with λ̄ = ū2) the evolution equations are
given as

˙̄κ = −(d− 2 + η)κ̄+ a(1 + 2Ȳk)ḡ
2 ≡ βκ̄, (31)

˙̄λ = (d− 4 + 2η)λ̄+ b(1 + 2Ȳk)λ̄
2ḡ3 ≡ βλ̄, (32)

˙̄Yk = (2 + η)Ȳk + 18αdκ̄λ̄
2(1 + 2Ȳk)ḡ

4

{[

48

d(d+ 2)(d+ 4)
+

576Ȳk

d(d+ 2)(d+ 6)
+

192

d(d+ 8)

(

1

d
+

12

d+ 2

)

Ȳ 2
k

+
1280

d(d+ 10)

(

1

d
+

3

d+ 2

)

Ȳ 3
k +

1

d(d + 12)

(

1792

d
+

6144

d+ 2

)

Ȳ 4
k

]

ḡ3

−

[

12

d(d + 2)
+

40

d(d+ 4)

(

3 +
2

d

)

Ȳk +
160

d(d+ 6)

(

3 +
4

d

)

Ȳ 2
k +

192

d(d+ 8)

(

5 +
6

d
+

12

d+ 2

)

Ȳ 3
k

]

ḡ2

+

[

1

d
+

8

d+ 2

(

1 +
6

d

)

Ȳk +
24

d+ 4

(

1 +
12

d

2

d2
+

6

d(d+ 2)

)

Ȳ 2
k

]

ḡ −
3Ȳk

d

}

≡ βȲ , (33)

where the anomalous dimension is given now as

η = −36αdκ̄λ̄
2

(

1 + 2Ȳk

)

ḡ4
{

4

d

[

1

d+ 2
+

8Ȳk

d+ 4

+
24Ȳ 2

k

d+ 6

]

ḡ −
1 + 6Ȳk

d

}

≡ η(κ̄, λ̄, Ȳk), (34)

and we have introduced

ḡ = [1 + Ȳk + 2κ̄λ̄]−1 (35)

and the constants a = 6αd/d, b = 6a, αd = 1
2Ωd(2π)

−d

with the d-dimensional solid angle Ωd. In order to deter-
mine the RG trajectories one has to solve first the coupled
set of first order ordinary differential equations (31)-(33)
for initial conditions given at the UV scale k = Λ by mak-
ing use of Eq. (34), and then determine the evolution of
the wavefunction renormalization Zk by the integration
of the equation

Żk = −ηZk. (36)

The evolution equations for the more restrictive trunca-
tions of the GE can be obtained from the NNLO equa-
tions, as described above.

The truncation of the EAA with field-independent
wavefunction renormalization Zk(Q

2) has the disadvan-
tage that in the symmetric phase the wavefunction renor-
malization Zk does not evolve, keeps its UV value Zk = 1.
The modification of the wavefunction renormalization in
the symmetric phase occurs as a two-loop effect in the
perturbative approach, the RG aproach reveals it only
if the field-dependence of the wavefunction renormaliza-
tion is taken with. Therefore we shall concentrate our
numerical work on the symmetry broken phase of the
model. Then the scale-dependence of Zk may occur due
to the nonvanishing value of κ, i.e., that of the nontrivial
minimum of the potential.

In order to calculate the most important quantities
characterizing the WF FP, we use the following strategy.
First we solve the RG evolution equations for the bunch
B of nearly critical trajectories running in the symme-
try broken phase but in the close neighbourhood of the
separatrix between the symmetric and symmetry broken
phases of the model. The existence of the WF crossover
scaling region shall be established in which these quan-
tities take almost constant, i.e, scale-independent val-
ues, (κ̄∗, λ̄∗, Ȳ∗), and η∗ = η(κ̄∗, λ̄∗, Ȳ∗). The closer the
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RG trajectory runs to the separatrix, the more pregnant
is the crossover scaling region. In order to control our
procedure for the determination of the WF FP, we use
the values found in the above described manner as ed-
ucated guess for the solution (κ̄∗, λ̄∗, Ȳ ∗) of the fixed-
point equations and finally establish that the solution of
the latter is in good agreement with the ‘plateau’ val-
ues. Then the anomalous dimension is redetermined as
η∗ = η(κ̄∗, λ̄∗, Ȳ ∗). As a byproduct, the lower end of the
WF scaling region at the scale kc shall be used for the
determination of the critical exponent ν in the manner
described below.

B. Crossover scaling

The quantities characterizing the WF crossover region
have been determined numerically by solving the RG evo-
lution equations (31)-(33) and (36) (taking Eqs. (34) and
(35) into account) for a bunch B of nearly critical RG tra-
jectories. The trajectories of bunch B were chosen to be-
long to the UV couplings λ̄Λ = 0.1, ZΛ = 1, and ȲΛ = 0.
The value κ̄sep

Λ identifying the separatrix was determined
by fine tuning, by looking for the RG trajectory on which
the vanishing of κ̄ occurs at kc ∼ 10−10, κ̄(kc) = 0. The
numerical investigation has been performed for various
truncations M of the potential both in the NLO and
NNLO of the GE, and it has been established that the
truncation M = 6 provides stable numerical values for
the exponents η and ν. The typical evolution of the cou-
plings κ̄, λ̄ ,Zk, Ȳk, and the anomalous dimension η are
shown in Fig. 1 for d = 3. Similar behaviours were ob-
tained for d = 4 − ǫ too. Beyond the short UV scaling
region there occurs a rather long crossover scaling region
stretched over cca. 6 orders of magnitude change of the
gliding scale k, in which κ̄ and λ̄ keep their constant val-
ues κ̄∗ and λ̄∗, respectively. Also the function Ȳk turned
out to be rather flat at its minimum with the value Ȳ∗

and that flat region coincides with the position of the
plateaus of the functions κ̄(k) and λ̄(k). Then even the
anomalous dimension η∗ = η(κ̄∗, λ̄∗, Ȳ∗) determined by
means of Eq. (34) turns out to be scale-independent in
the same region of the scale k. Since η is constant in
the scaling region, the wavefunction renormalization Zk

scales as Zk ∼ k−η in the WF crossover region. All these
values characterizing the WF FP are independent on the
particular trajectory in the bunch B.
Beyond the WF crossover region the coupling κ̄ sud-

denly falls down to zero at some finite scale kc, κ̄(kc) = 0,
signalling the lower end of the crossover region. Had
been followed the evolution just on the separatrix, kc = 0
would be obtained. At the scale kc the minimum of the
potential is suddenly shifted to vanishing homogeneous
background field, so that the symmetry of the vacuum
state gets restored. The couplings λ̄ and Ȳk keep their
finite nonvanishing values λ̄∗ and ≈ Ȳ∗, respectively, at
the scale kc, while the wavefunction renormalization Zk

goes to infinity on the separatrix and to some finite val-

ues on the various trajectories of the bunch B. Below the
scale kc, i.e., in the IR scaling region it holds κ = 0, the
anomalous dimension vanishes, and the field-independent
wavefunction renormalization freezes out at its value Zkc

reached at the lower end kc of the WF crossover region,
while the couplings of the potential and the coupling Ȳk

show up tree-level scaling (see Eqs. (31), (32) and (33)
for κ̄ = 0).

FIG. 1. Typical scale-dependence of κ̄, λ̄, Zk, Ȳk, and η on
nearly critical RG trajectories with ZΛ = 1 and ȲΛ = 0,
determined in the approximation scheme NNLO6 for d = 3.

The reciprocal of the scale kc can be identified with
the correlation length ξ = 1/kc. Let the separatrix be
given by the initial conditions (κ̄sep

Λ , λ̄Λ, ZΛ = 1, ȲΛ = 0).
Then the dependence of the correlation length ξ on the
distance κ̄sep

Λ − κ̄Λ = t2 of the particular RG trajectory
with (κ̄Λ, λ̄Λ, ZΛ = 1, ȲΛ = 0) from the separatrix can be
identified with the square of a kind of reduced tempera-
ture t for any given initial value λ̄Λ [7]. It has been found
that the correlation length scales with the reduced tem-
perature as ξ ∝ t−ν , where the critical exponent turned
out to be constant for the bunch of the trajectories B (see
Fig. 2 for that typical scaling behaviour). This qualita-
tive behaviour is the same in the NLO and NNLO of the
GE for dimensions d = 3 as well as d = 4− ǫ.
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FIG. 2. Dependence of the correlation length ξ on the reduced
temperature t at the end of the WF crossover region in the
approximation scheme NNLO6 for d = 3.

C. Fixed points

The fixed points are the solutions of the fixed-point
equations

βκ̄ = βλ̄ = βȲ = 0. (37)

We shall pay particular emphasis on the determination of
the WF FP, the solutions (κ̄∗, λ̄∗, Ȳ ∗) of Eqs. (37). The
wavefunction renormalization Zk does not occur in Eqs.
(37), because it can be merged into the ‘renormalization’
of the field variable for field-independent wavefunction
renormalization. Therefore one should not require the
vanishing of βZ , instead of that Eq. (34) can be used
to evaluate the value of the anomalous dimension η∗ =
η(κ̄∗, λ̄∗, Ȳ ∗) at the FP.
It is instructive to have a closer look on the fixed-point

equations in the case of the truncation M = 2. Then
the fixed-point equations βκ̄ = βλ̄ = 0 can be solved
analytically for any given Ȳ ∗, η∗, and dimension d,

κ̄∗(Ȳ ∗, η∗) =
2αd

3d

(1 + 2Ȳ ∗)[4d+ 5(η∗ − 2)]2

(1 + Ȳ ∗)2(d− 2 + η∗)3
, (38)

λ̄∗(Ȳ ∗, η∗) = −
3d

22αd

(1 + Ȳ ∗)3(d− 2 + η∗)3(d− 4 + 2η∗)

(1 + 2Ȳ ∗)[4d+ 5(η∗ − 2)]3
.

(39)

In the approximation NLO2 one obtains the implicit
equation η∗ = η(κ̄∗(Ȳ ∗ = 0, η∗), λ̄∗(Ȳ ∗ = 0, η∗), Ȳ ∗ = 0)
for the anomalous dimension which can be rewritten as

η∗
NLO2
=

−
(d+ 2η∗ − 4)2[3d2 − 16d+ 28 + (16− 3d)η∗]

9(d+ 2)(d− 2 + η∗)2
. (40)

Moreover, the equations

0 = βȲ (κ̄∗(Ȳ∗, η∗), λ̄(Ȳ∗, η∗), Ȳ∗) (41)

and

η∗ = η(κ̄∗(Ȳ∗, η∗), λ̄(Ȳ∗, η∗), Ȳ∗) (42)

represent a system of equations for the determination of
Ȳ∗ and η∗ in the approximation NNLO2.

We restricted our discussion to dimensions 2 < d < 4
and to the parameter region Zk > 0, Ȳk ≥ 0, λ̄ ≥ 0
excluding unphysical cases such as the trivial fixed-point
solution Zk = Ȳ = λ̄ = κ̄ = 0 and those with Euclidean
action unbounded from below. The fixed-point equations
(37) have a solution with λ̄∗

G = 0 and Ȳ ∗
G = 0 implying

η∗ = 0 and κ̄∗
G = a for any fixed value of Zk = Z. Clearly,

this represents the Gaussian FP in the LPA when the
wavefunction renormalization is restricted to the value
Zk = 1. In the approximation schemes NLO and NNLO
there exists rather a Gaussian fixed line.
Eqs. (37) were solved in various approximation

schemes of the GE with a routine which employs the
Newton-Rhapson method. Its advantage is that it con-
verges rapidly because the roots are calculated from gra-
dients avoiding the calculation of numerical derivatives.
The method needs rather good guesses as initial condi-
tions for the roots. For these guesses we have taken the
’plateau’ values (κ̄∗, λ̄∗, Ȳ∗) read off from the crossover
scaling.

D. Numerical results

1. Dimension d = 3

The above described numerical method yielded the re-
sults for the position of the WF FP, the anomalous di-
mension η∗, and the critical exponent ν as listed in Table
I for various approximation schemes. The values κ̄∗, λ̄∗,

Approximation κ̄∗ λ̄∗ Ȳ∗ η∗ ν

NLO2 0.025 7.94 − 0.0537 0.554
NLO6 0.027 6.23 − 0.057 0.615

NLOu [6] 0.041 9.25 − 0.045 0.638
NLOf [4] − 0.044 0.628
NNLO2 0.025 7.94 0.0003 0.0538 0.560
NNLO6 0.031 6.02 0.0005 0.059 0.634
NNLOf[5] 0.033 0.632

TABLE I. The values of the various couplings, the anomalous
dimension η∗, and the critical exponent ν characterizing the
WF scaling region for d = 3, obtained in various approxima-
tion schemes. For comparison the NLOu results taken from
[6] and the NNLOf results taken from Refs. [4, 5] are also
shown.

Ȳ∗ (and correspondingly η∗) determined in this manner
are consistent with the fixed-point Eqs. (37). Namely,
inserting the values η∗ and Ȳ∗ = 0 for NLO2 and those of
(η∗, Ȳ∗) for NNLO2 given in Table I into Eqs. (38) and
(39) reproduce the values κ̄∗ and λ̄∗ in Table I with high
accuracy. Moreover, Eq. (40) exhibits the numerical so-
lution η∗ = 0.0537 which agrees with the value found for
NLO2 (see the first raw in Table I). Similar agreement
has been found for the truncation M = 6 too. There-
fore below we do not make any distinction between the
dynamically obtained values κ̄∗, λ̄∗, etc. and the values
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κ̄∗, λ̄∗, etc. obtained as the solution of the fixed-point
equations.
One recognizes from Table I that the inclusion of

higher-order polynomial terms of the potential has rather
significant effect on the position of the WF FP as well
as on the values of the critical exponents, as expected.
It is found that the WF FP is characterized by a non-
vanishing value Ȳ ∗ of the higher-derivative coupling Ȳk;
this UV irrelevant coupling becomes relevant at the WF
FP. Our NLOu results for η and ν obtained with Litim’s
optimized regulator overestimate those obtained in [6]
with the use of an exponential regulator, although the
Ṙf effect has been neglected in both cases, so that the
difference has to occur due to the use of different reg-
ulators. According to our NLO6u and NNLO6u results
the NNLO effect increases the values of η and ν by ∼
2 per cents. The comparison of the NLOu result from
Ref. [6] and the NLOf results from Ref. [4] (obtained
also with the use of the exponential regulator and with
the full scale-derivative of the regulator function) shows

together the Ṙf effect and the effect that the inclusion
of the field-dependence of the wavefunction renormaliza-
tion make out: these together alter the values of η and ν
by not more than ∼ 10 and ∼ 2 per cents, respectively.
When the field-dependence of the derivative couplings as
well as the Ṙf effect are taken properly into account, the
NNLO effect seems to be of ∼ 30 and ∼ 0.6 per cents on
η and ν, respectively, as the comparison of the NLOf[4]
and NNLOf[5] data shows. Our estimates of the NNLO
effect (obtained with uniform wavefunction renormaliza-

tion and the neglection of the Ṙf effect) differ significantly
from those observed in the NLOf[4] and NNLOf[5] data
and our NNLO6u values of η and ν are overestimated
as compared to the NNLOf[5] value. This may be the

consequence of using Litim’s regulator, neglecting the Ṙf
effect and neglecting the field-dependence of the deriva-
tive couplings.
In order to separate the NNLO and the Ṙf effects when

uniform wavefunction renormalization is used, we per-
formed the determination of the critical exponents η and
ν in the framework of the NNLOMη approximations too.
The full expression of the scale-derivative of the cutoff
function can be rewritten as

Ṙk = Zkk
2

[

2− η(1 − y) + 2Ȳk(1 + y2)

+( ˙̄Y k − ηȲk)(1− y2)

]

, (43)

where y = p2/k2, while neglecting the scale-derivatives
of the derivative couplings reduces this to

Ṙk = Zkk
2(2 + 4Ȳk). (44)

The expressions (44) and (43) have been used in the
approximations NNLOM and NNLOMη, respectively.
The corresponding expressions for the approximations
NLOM and NLOMη were obtained by setting Ȳk = 0
in expressions (44) and (43), respectively. The evolution

equations for the dimensionless couplings become rather
involved in the approximations NNLOMη. This is illus-
trated in Appendix B, where the NNLO2η analogues of
evolution Eqs. (31)-(34) are given. Our numerical results
obtained in the approximations NLO6η and NNLO6η are
given in Table II. One can see that (i) the Ṙf effect at the
NLO level results in increments of ∼ 4 per cents of the
NLO values of η and ν (compare the values in the third
and first raws of Table II), which is comparable to the

NNLO effect when the Ṙf effect is neglected (compare the
values in the second and first raws of Table II); (ii) but

the Ṙf effect at the NNLO level becomes much weaker
and results in increments of ∼ 0.3 and ∼ 0.6 per cents of
the values of η and ν, respectively (compare the values
in the fourth and second raws of Table II). Thus we have

found that the Ṙf effect becomes less significant in the
NNLO approximation as compared to the NLO approx-
imation, at least when uniform wavefunction renormal-
ization and Litim’s optimized regulator are used. This
also means that the discrepancy between our NNLO6η
values and the NNLOf values in [5] should to be pre-
scribed to the regulator-dependence and the neglection
of the field-dependence of the derivative couplings.

Approximation κ̄∗ λ̄∗ Ȳ ∗ η ν

NLO6 0.027 6.23 − 0.0570 0.6150
NNLO6 0.031 6.02 0.0005 0.0590 0.6340
NLO6η 0.031 6.12 − 0.0590 0.6377
NNLO6η 0.031 6.11 0.0005 0.0592 0.6379
NNLOf[5] 0.033 0.632

TABLE II. The Ṙf effect on the anomalous dimension η
and the correlation length’s critical exponent ν for the 3-
dimensional O(1) model.

2. Dimension d = 4− ǫ

For dimension d = 4 − ǫ we restricted our discus-
sion to the case of quartic potentials, i.e., to the trun-
cation M = 2. The characteristics of the WF FP have
been determined in the first nonvanishing orders of the
ǫ-expansion analytically on the base of the fixed-point
equations (37) and numerically by identifying the WF
crossover region along the RG trajectories of bunch B.
The fixed-point Eqs. (37) can be used to find the first
nonvanishing correction to the coupling of the O(∂4)
derivative term in the ǫ-expansion. The analytical so-
lution of Eqs. (37) was determined with the accuracy
of the first nonvanishing ǫ-dependent corrections for the
truncation M = 2 of the potential,

κ̄∗ = κ0 + κ1ǫ+ . . . , λ̄∗ = λ0 + λ1ǫ+ . . . ,

Ȳ ∗ =

3
∑

n=0

1

n!
Ynǫ

n + . . . , η∗ = η0 + η1ǫ+
1

2
η2ǫ

2.(45)



10

Here the truncations of the ǫ-expansions were dictated
by the order-by-order successive solution of the fixed-
point equations. The vanishing of the zeroth-order terms
of the beta-functions provides the zeroth-order solution
λ0 = 0 (implying η0 = 0 since η0 ∝ κ0λ

2
0), Y0 = 0, and

κ0 = 3
2α4(1 + 2Y0)(1+ Y0)

−2(2 + η0)
−1 = 3

4α4. Inserting
these results into the equations obtained by requiring the
vanishing of the first-order terms of the beta-functions
one finds nonvanishing values for κ1 and λ1 and again
Y1 = 0 and η1 = 0 since those are proportional to κ0λ

2
1ǫ

2.
Making use of the first-order results we find η2 = 1/18
and surprisingly Y2 = 0 because the expression in the
curled bracket on the right-hand side of Eq. (33) van-
ishes in zeroth order of ǫ, so that actually the first non-
vanishing correction to the higher-derivative coupling is
of the order O(ǫ3). Thus we find for the characteristics
of the FP

κ̄∗ =
3

4
α4

[

1 +
1

2

(

11

3
− 2γ + ln(16π2)

)

ǫ

]

,

λ̄∗ =
16π2

9
ǫ, Ȳ ∗ =

1

6 · 192
ǫ3, η∗ =

1

36
ǫ2 (46)

with the Euler-Mascheroni constant γ ≈ 0.577. These
analytic results are summarized in the second coloumn
of Table III. The result for λ̄∗ agrees with the two-loop

Quantity Analytic result Numerical result

κ̄∗ 0.0047 + 0.009ǫ 0.0048 + 0.01ǫ
λ̄∗ 17.5ǫ 16.5ǫ
Ȳ ∗ 8.7× 10−4ǫ3 8.9× 10−4ǫ3

η∗ 0.028ǫ2 0.028ǫ2

ν 0.5 + 0.083ǫ[8] 0.51 + 0.095ǫ

TABLE III. Position of the WF FP in the parameter space
(κ̄, λ̄, Ȳ ) as well as the anomalous dimension η∗ and the crit-
ical exponent ν estimated for quartic potentials (truncation
M = 2) in the NNLO of the GE for dimension d = 4− ǫ (for
ǫ ≪ 1). The two-loop analytical result for ν is taken from [8].

perturbative result in [8] (see Eq. (A1) and the note
following it on the various definitions of the quartic cou-
pling), while the two-loop result for the anomalous di-
mension differs of our result by the factor 2/3. Since
our Eq. (34) for the anomalous dimension is the NNLO
generalization of the NLO Eq. (5) in [9], this discrep-
ancy is independent of the RG scheme. It reflects that
the EAA RG method sums up an infinite number of loop
corrections in a nonperturbative manner. On the base
of our analytic analysis we can also establish that the
WF FP is characterized by a nonvanishing coupling of
the O(∂4) term which turns out to be of the order ǫ3

in the ǫ-expansion. This also means that the inclusion
of the running coupling Ȳk into the gradient expansion
does not affect the leading-order terms of κ̄∗, λ̄∗, and η∗

in their ǫ-expansion.
The characteristic quantities of the WF crossover re-

gion were also determined numerically for several (a num-
ber of 100) values of ǫ taken with equal logarithmic dis-
tances in the interval [10−7, 10−1]. The solution of the

RG evolution equations as well as the identification of the
scale kc were performed for the bunch B of trajectories
for each of these ǫ values. Then the ǫ-dependence of the
various quantities was fitted by polynomials of degrees
given in Eq. (45) and by the linear relation ν = ν0 + ν1ǫ.
The characteristics of the WF FP obtained analytically
and numerically are gathered in Table III. We see that
the numerical results are in good agreement with the ana-
lytical ones, and the same holds for our numerical result
and the two-loop result presented in [8] for the critical
exponent ν.

3. Dependence on the continuous dimension d

We have also evaluated the dependence of the various
quantities characterizing the WF FP as the function of
the continuous dimension d in the interval 2 < d < 4 by
solving the RG evolution equations numerically for the
trajectories of bunch B and identifying the WF crossover
region. Here the correlation length’s exponent ν was eval-
uated in a more straightforward and less time-consuming
way from the derivative relation

ν−1
β = −

∂βκ̄

∂κ̄

∣

∣

∣

∣

κ̄∗,λ̄∗,Ȳ ∗

(47)

like in [9]. The results are shown in Fig. 3. The quali-
tative behaviour of the anomalous dimension η∗(d) and
that of the critical exponent ν(d) known from Ref. [9]
have been reproduced. It was found that κ̄∗(d), η∗(d),
and ν(d) fall off strictly monotonically with increasing di-
mension d in the interval d ∈ [2, 4], while λ̄∗(d) exhibits
a maximum at d ≈ 3.5. The coupling Ȳ ∗ of the O(∂4)
term takes positive values for d0 ≈ 2.7 < d < 4 with a
maximum at dmax ≈ 3.0 and exhibiting a zero at d0. It
decreases to negative values with decreasing dimension d
in the interval d0 > d > 2 indicating that the Euclidean
action is not bounded from below for these dimensions in
the RG scheme used. This may happen due to the neglec-
tion of the field-dependence of the derivative couplings or
the truncation of the GE at terms of the order O(∂4). In
the latter case additional higher-derivative terms might
turn the fixed-point action into a one bounded from be-
low. In the insets of the plots of η∗(d) and ν(d) in Fig.
3 we see that the NNLO effect results in increments not
exceeding 2 per cents of the values of η and ν in the va-
lidity range d0 < d < 4 of the applied RG scheme and it
becomes more important with decreasing dimension d in
the interval 2 ≤ d < d0. For d = 2 our results deviate
significantly from Onsager’s exact values, but one has to
keep in mind that d = 2 lies out of the range of the valid-
ity of our RG scheme. We also see on the insets of 3 that
the NNLO effect on η∗ vanishes for dimensions d = 4− ǫ
with ǫ → 0+ as an effect of O(ǫ3) on the quantity of
O(ǫ2). Although being small the NNLO effects on η∗

and ν may be comparable to the effect of the inclusion of
the field-dependence of the wavefunction renormalization
(see e.g. [5, 9]).
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FIG. 3. Various quantities characterizing the WF FP vs.
the continuous dimension d in the RG scheme NNLO6. The
values taken at d = 4 are in agreement with those given
by the ǫ-expansion, Eq. (46) for ǫ = 0. The insets show
the NNLO effects δη = 100 × (ηNNLO − ηNLO)/ηNNLO and
δν = 100×(νNNLO−νNLO)/νNNLO on the anomalous dimen-
sion η and the critical exponent ν, respectively. We have also
plotted Onsager’s exact results (full squares) and the NLOu
values obtained in [6] (empty circles).

IV. O(N) MODELS FOR N ≥ 2 AND d = 3

A. Evolution equations

For the O(N) models with N ≥ 2 the dimensionless
couplings are defined like in the O(1) case except that
the dimensionless field-variable r̄ is defined by the help
of the field-independent wavefunction renormalization of
the Goldstone-modes as r̄ = Z⊥kk

−(d−2)r. The explicit
forms of the evolution equations for the dimensionless
couplings have been generated in the NLO and NNLO
approximations for various truncations up toM = 6 from
Eqs. (25)-(27) by means of computer algebra.
It is instructive to write out the evolution equations in

the NLO2 scheme,

βκ̄ = −(d− 2 + η)κ̄+
2αd

d
(3ẑḡ2 +N − 1), (48)

βλ̄ = (d− 4 + 2η)λ̄+
2αd

d
λ̄2[9ẑḡ3 + 2(N − 1)], (49)

βẑ = −ẑ(η̄ − η), (50)

where we have introduced the propagator

ḡ = (ẑ + 2κ̄λ̄)−1, (51)

the ratio

ẑ = Z−1
⊥kZ‖k, (52)

and the anomalous dimensions via the relations

Ż‖k = −η̄Z‖k,

Ż⊥k = −ηZ⊥k, (53)

where

η̄ =
4αd

d
κ̄λ̄2

[

d− 2

d+ 2

N − 1

ẑ
+ 9ẑḡ4

(

1−
4ẑḡ

d+ 2

)]

, (54)

η =
16αd

d(d+ 2)
κ̄λ̄2ẑḡ2[d− 2ẑḡ]. (55)

We see that assuming uniform wavefunction renormaliza-
tion, one can work with the single coupling ẑ instead of
the wavefunction renormalizations for the radial and the
Goldstone modes of the field. This holds for the NNLO
approximation too.

B. Numerical results

Our numerical investigation of the O(N) models has
been restricted to the number of dimensions d = 3. The
RG evolution has always been started from an O(N)
symmetric state with Z‖Λ = Z⊥Λ = 1 (ẑ(Λ) = 1) and

with vanishing higher-derivative terms, Ȳ‖Λ = Ȳ⊥Λ = 0.
The numerical search for the WF FP and its character-
istics has been performed applying two different proce-
dures: Procedure A and Procedure B. Both procedures
consisted of two steps. At first, we solved the RG evo-
lution equations for the bunch B of the trajectories and
identified the crossover region. At second, the fixed-point
equations were solved by means of a Newton-Rhapson al-
gorithm started at the educated guess of the roots read
off from the behaviour of the crossover region in the first
step. In Procedure A (i) the O(N) symmetry of the EEA
has been enforced on the NLO level by considering ẑ = 1
at all scales, i.e., Z‖k = Z⊥k during the evolution and
the FP was searched for setting ẑ∗ = 1; and (ii) the evo-
lution equations for κ̄, λ̄, Ȳ‖k, Ȳ⊥k and the fixed-point
equations βκ̄ = βλ̄ = βȲ‖

= βȲ⊥
= 0 have been solved by

making use of the explicit expressions for η and η̄. The
critical exponent ν has also been determined for vari-
ous N values by making use of the same numerical pro-
cedure as that applied in the case of the 3-dimensional
O(1) model. The critical exponent ν has also been de-
termined like in the case of the O(1) model, by inves-
tigating the ‘temperature-dependence’ of the correlation
length ξ ∼ 1/kc at the lower end of the crossover region.
In Procedure B (i) the ratio ẑ has also been evolved,
i.e., the evolution Eq. (50) has been included into the
set of the evolution equations; and (ii) the fixed-point
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equations βκ̄ = βλ̄ = βȲ‖
= βȲ⊥

= 0 have been solved

for setting ẑ∗ = ẑ(kc) determined in the first step of the
procedure at the scale kc for which it holds κ̄(kc) = 0.
The reason that we performed our investigation of the
NNLO effect by means of both procedures is that setting
ẑ = 1 fails to solve the equation βẑ = 0 even in the NLO
approximation, but one finds at the WF FP βẑ ∼ −O(η̄).
The results of Procedure A are shown in Figs. 4, 5, 6,

and 7 and the numerical values of the characteristics of
the WF FP obtained in the NNLO6 approximation are
listed in Table IV.

FIG. 4. Scale-dependences of the couplings κ̄ and λ̄ as well
as those of the anomalous dimensions η̄ and η of the radial
and the Goldstone modes, respectively, on the nearly critical
trajectories of the O(2) model for dimension d = 3 in NNLO6
approximation for ẑ(k) = 1.

N κ̄∗ λ̄∗ 104 × Ȳ ∗
‖ 104 × Ȳ ∗

⊥ η̄∗ η∗ ν

1 0.031 6.02 5.0 − 0.059 − 0.634
2 0.043 6.03 ≈ 0.0 2.0 0.077 0.0320 0.700
3 0.057 5.35 2.0 0.4 0.085 0.0300 0.739
4 0.072 4.73 2.4 −0.6 0.088 0.028 0.775
5 0.087 4.19 5.5 −1.0 0.090 0.026 0.806
10 0.168 2.54 16.0 −1.6 0.095 0.0165 0.896
100 1.68 0.29 33.0 −0.3 0.099 0.0020 0.990

TABLE IV. Position of the WF FP, the critical exponent ν,
and the anomalous dimensions η̄∗ and η∗ for the radial and
the Goldstone modes, respectively, for various values of N in
NNLO6 approximation evaluated with ẑ = 1.

The couplings κ̄, λ̄ and the anomalous dimensions
η̄ and η show up quite similar scale-dependences for
2 ≤ N ≤ 100 (see Fig. 4 for typical scalings). Namely,
they exhibit a cca. four-order-of-magnitude wide WF
crossover region in which they keep their constant val-
ues. These ’plateau’ values match almost perfectly (up

FIG. 5. Scaling of the higher-derivative couplings Ȳ‖ and
Ȳ⊥ for the radial and the Goldstone modes, respectively, for
various values of N in the NNLO6 approximation evaluated
with ẑ = 1.

FIG. 6. N-dependences of the ’plateau’ values of the higher-
derivative couplings Ȳ‖ and Ȳ⊥ for the radial and the Gold-
stone modes, respectively, evaluated with ẑ = 1.

to 3 to 4 valuable digits) the corresponding values ob-
tained by solving the fixed-point equations and given in
Table IV. Similarly to the case O(1), beyond the lower
end of the WF crossover region the parameter κ̄ as well
as the anomalous dimensions η̄ and η fall suddenly to
zero. Similarly to the other running couplings, the scale-
dependences of the higher-derivative couplings Ȳ‖ and Ȳ⊥

for the radial and the Goldstone modes exhibit crossover
regions at around k ∼ 10−6 with constant values (see Fig.
5) and the latter are in good agreement again with the
values obtained by solving the fixed-point equations. The
’plateaus’ of the higher-derivative couplings broaden with
increasing N . As shown in Fig. 6 the ‘plateau’ values of
Ȳ‖ increase monotonically and saturate, while those of Ȳ⊥

have a minimum at aroundN ≈ 10 and saturate for large
N too. It was found that the higher-derivative coupling
Ȳ⊥ of the Goldstone modes exhibit negative ’plateau’ val-
ues for N > 3 (see Figs. 5 and 6). Therefore the approx-
imations used lead to a critical theory with action un-
bounded from below for N > 3. This may happen due to
either the restriction to field-independent derivative cou-
plings or the lack of even higher derivative terms in the
EAA. The clarification of this problem needs further in-
vestigations in more sophisticated RG frameworks which
is out of the scope of the present paper.

As shown in Fig. 7, the NNLO effect, i.e., the inclusion
of the running higher-derivative terms generally results
in increments of the values of the anomalous dimensions
η̄∗, η∗, and a decrement of the critical exponent ν, as a
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FIG. 7. N-dependence of the NNLO effect on the various
critical exponents η̄∗, η∗, and ν in the approximation NNLO6,
evaluated with ẑ = 1. Here the NNLO effect in per cents is
given via δf = 100 × (fNNLO − fNLO)/fNNLO for f = η̄
(solid line), f = η (dashed line) in the plot to the left, and
f = ν in the plot to the right.

rule. The NNLO effect δη on the anomalous dimension
of the radial mode saturates for asymptotically large N
values, but does not exceed 1 per cent, while the NNLO
effects δη̄ on the anomalous dimension of the Goldstone
modes dies out for large N values and never exceeds ∼
0.2 per cents. The NNLO effect δν on the correlation
length’s critical exponent is very small and dies out too
with asymptotically increasing N .
Our results obtained in Procedure A by means of the

ansatz (4) (with the choice in Eq. (5)) show up the
rather striking feature that the critical values of η̄∗ and
η∗ turned out to be quite different, even in the NLO
approximation, although setting ẑ = 1 should enforce
by definition that the wavefunction renormalizations for
the radial and the Goldstone modes were identical at all
scales. Even more the higher-derivative couplings Ȳ‖ and

Ȳ⊥ for the radial and the Goldstone modes are far from
being identical, although there critical values remain cca.
4 orders of magnitude smaller than the value ẑ = 1. The
point is that the fixed-point equation βẑ = 0 is not satis-
fied for ẑ = 1 when the ’plateau’ values κ̄∗, λ̄∗, Ȳ ⊥∗, Ȳ ‖∗

are inserted in the explicit formulas for η̄ and η (like those
in Eqs. (54) and (55)), the right-hand side of Eq. (50)
takes the value ≈ −η̄∗. Therefore, in the RG framework
used there occurs an inconsistency of the order of the
anomalous dimension of the radial mode. Thus one has to
conclude that in the applied RG framework one obtains
a critical theory at the WF FP in which a slight explicit
symmetry breaking is present in the gradient terms. Let
us put it in another way: the critical theory preserves
O(N) symmetry with an accuracy of the order of the
anomalous dimension η̄∗.
Setting ẑ = 1 corresponds to an O(N) symmetric

ansatz for the EAA at the NLO level and enables one to
make comparisons with the NLOu results in Ref. [6] (see
Table V). This comparison shows that (i) the anoma-
lous dimension determined in Ref. [6] is essentially the
anomalous dimension for the Goldstone modes, and (ii)
our NNLOu data show the same qualitative dependences
on N as the NLOu data in [6] do. For the critical ex-
ponent ν of the correlation length the discrepancy is less

N ν ν [6] η∗ η [6]

1 0.634 0.638 0.059 0.045
2 0.700 0.700 0.032 0.042
3 0.739 0.752 0.030 0.038
4 0.775 0.791 0.028 0.034
10 0.896 0.906 0.0165 0.019
100 0.990 0.992 0.002 0.002

TABLE V. Comparison of our NNLO6u results (left columns)
with the NLOu results of Wetterich’s group (right columns)
[6], the latter obtained by the usage of the exponential regu-
lator.

than 2 per cents, for the anomalous dimension η∗ of the
Goldstone modes it makes 20 - 30 per cents, but seems
to disappear for large N . These discrepancies are much
larger than the NNLO effect (see Fig. 7), consequently,
they occur basicly at the NLO level and are caused es-
sentially by the usage of different regulators.

FIG. 8. Scale-dependences of the various couplings for the 3-
dimensional O(2) model on the nearly critical trajectories in
the NNLO6 approximation, evaluated by Procedure B. The
plot at the bottom to the right shows the scaling of the anoma-
lous dimensions η̄ of the radial mode (dashed line) and η of
the Goldstone modes (solid line).

Since our trial to enforce O(N) symmetry of the crit-
ical theory by setting ẑ = 1 has failed, we repeated the
analysis of the RG evolution with Procedure B, when the
ratio ẑ was also evolved. The typical scale-dependences
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are illustrated for the case N = 2 in Fig. 8. Even
now a clearcut identification of the crossover scaling re-
gion can be made independently of the value of N in
which all investigated quantities exhibit power-law scale-
dependences akα instead of keeping constant values. It is
remarkable that the ratio ẑ increases strictly monotoni-
cally with decreasing scale k and evolves to the peak value
ẑ(kc) significantly larger than 1 when the lower end of
the WF crossover region is reached at the scale kc where
κ̄(kc) = 0 sets on. At the same scale all the other investi-
gated couplings as well as the anomalous dimensions take
their maximum values. It should also be mentioned that
forN > 3 negative values of the scale-dependent coupling
Ȳ⊥ occur even now but in a rather narrow (one-order-of-
magnitude wide) region before the power-law like, posi-
tive valued WF scaling region is reached with decreasing
scale k, the WF crossover region extends through 3 to 4
orders of magnitude in k. This seems to be an advantage
of Procedure B as compared to Procedure A.

The numerical values of the parameters a and α char-
acterizing the power-law scalings of the various quantities
were determined by fitting the scale-dependences in the
WF crossover region and are given in Table VI. Since the
modulus of all exponents α are much smaller than 1 and
kc is less than 10−7, the values of the parameters a can
be identified with the fixed-point values. This is the case
indeed. The educated guess for the fixed-point values of
the couplings needed to start the Newton-Rhapson algo-
rithm for the search of the FP has been read off at the
lower end of the power-law scaling region at the scale kc.
(For the coupling κ̄ the power-law region ends up at the
scale kl somewhat larger but of the same order of mag-
nitude as kc.) It has been established that there exist
FPs for these values ẑ∗ = ẑ(kc) for any N . The fixed-
point values reproduced the values of the corresponding
parameters a with high precision. It has also been found
that the ratio ẑ scales as ẑ(k) = ẑ∗k−[η̄(kc)−η(kc)] in ac-
cordance with Eq. (50) in the WF crossover region.

Making use of the power-law dependences of the var-
ious investigated quantities in the crossover scaling re-
gion, one may start the Newton-Rhapson algorithm with
initial values ẑ(ks), κ̄(ks), etc. taken at some interme-
diate scale ks ∈ [kc, ku], where ku is the scale at which
the WF scaling region starts, i.e., the smallest value at
which it holds yet ẑ(ku) = 1. We have found numer-
ically, on the one hand, that in any of these cases the
Newton-Rhapson algorithm reproduces with high accu-
racy the initial values as fixed-point values. For ks = ku
these fixed-point values are those obtained in Procedure
A. On the other hand, the inconsistency of the used
RG scheme, i.e., the nonvanishing of the beta-function
|βẑ(ks)| ∼ O(ẑ(ks)η̄(ks)) is present for all scales ks and
for anyN ≥ 2, but it has been found minimal for ks = ku,
i.e., essentially for Procedure A. Therefore we see that in
the parameter space there is a quasi-fixed line the points
of which can be parameterized by the values ẑ∗ = ẑ(ks).
The term quasi-fixed line refers to the presence of increas-
ing inconsistency with the choice of decreasing ks values.

Thus, insisting upon the principle of minimal inconsis-
tency, i.e., that of minimal explicit breaking of the O(N)
symmetry of the critical theory, one has to identify the
best estimates for the parameters of the WF FP as those
obtained in Procedure A.

C. Asymptotics for large N

The investigation of the behaviour of the WF FP for
asymptotically large N also hints to that the critical the-
ory obtained in Procedure A should be favoured as the
physically realistic one. On the base of the numerical
NLO results obtained by Procedure A one may suggest
that the asymptotic behaviour for large N is given by the
rules

κ̄∗ ∼ κ∞N, λ̄∗ ∼
λ∞

N
, η∗ ∼

η∞
N

, η̄∗ ∼ η̄∞, ẑ∗ = z∞,

(56)

where the star refers to the values taken at the scale
kc at which the WF crossover region ends. Insert-
ing the assumptions (56) into the fixed-point equations
βκ̄ = βλ̄ = 0 and into the expressions (54) and (55) for
the anomalous dimensions, one finds that they are satis-
fied in the leading order of N with the constants

κ∞ =
2αd

d(d − 2)
, λ∞ =

d(4− d)

4αd

,

η̄∞ =
(4 − d)2

2(d+ 2)z∞
, η∞ =

2(4− d)2

d2 − 4
z∞g2∞(d− 2z∞g∞),

g∞ =

(

z∞ +
4− d

d− 2

)−1

(57)

for arbitrary value of ẑ∗ = ẑ(kc) = z∞.
We checked these asymptotic relations on the base of

our numerical NNLO results obtained for N = 100 and
d = 3 in Procedure A with z∞ = 1 and in Procedure B
with z∞ = 5. The corresponding values of the various
constants occurring in the asymptotic relations (56) are
given in Table VII. The comparison shows that Proce-
dure A yields NNLO6 values for the anomalous dimen-
sions in agreement with the analytically predicted large
N asymptotic behaviour, while there occurs some dis-
crepancy for Procedure B.

V. SUMMARY

The anomalous dimension and the correlation length’s
critical exponent characterizing the Wilson-Fisher (WF)
fixed point (FP) in O(N) models have been determined
by means of the effective average action (EAA) renormal-
ization group approach with the inclusion of the quartic
gradient term ofO(∂4), using Litim’s optimized regulator
and field-independent derivative couplings. For the O(N)
models with N ≥ 2 our ansatz for the EAA enables one



15

N ẑ∗ κ∗ λ̄∗ 104Ȳ‖ 104Ȳ⊥ η̄ η

2 1.65 0.05k0.025 4.1k−0.056 1.3k−0.12 1.6k−0.074 0.094k−0.06 0.020k−0.048

3 2.27 0.06k0.013 4.3k−0.038 1.4k−0.15 0.6k−0.11 0.073k−0.014 0.026k−0.021

5 2.78 0.09k0.008 3.7k−0.024 6.0k−0.08 0.1k−0.19 0.084k−0.008 0.028k−0.008

10 3.5 0.17k0.004 2.4k−0.011 160k−0.037 0.08k−0.2 0.093k−0.003 0.022k−0.037

100 5.0 1.9k0.011 0.3k−0.001 370k0.004 0.1k−0.05 0.11k0.01 0.0032k0.08

TABLE VI. Scaling laws of the form akα for the various quantities in the WF crossover region for the 3-dimensional O(N)
models found in the NNLO6 approximation in Procedure B. The coefficients a agree with high accuracy with the fixed-point
values.

ẑ∞ = 1 ẑ∞ = 5
Eq. (57) NNLO6u Eq. (57) NNLO6u

κ∞ 0.017 0.0168 0.017 0.019
λ∞ 29.6 29.0 29.6 30.0
η̄∞ 0.10 0.099 0.020 0.11
η∞ 0.20 0.20 0.074 0.32

TABLE VII. Comparison of the asymptotic behaviour of our
NNLO6u results with those evaluated on the asymptotic for-
mulas in Eq. (57) for the procedures ẑ = 1 and ẑ = ẑ∗. The
constants given in the table were obtained from our NNLO6u
values for N = 100.

to evolve the derivative couplings of the radial and the
Goldstone modes of the field independently. The next-to-
next-to-leading-order (NNLO) effect has been evaluated
as the relative change of the critical exponents compar-
ing their NNLO and next-to-leading-order (NLO) values.
The used RG framework is tested on the O(1) model for
dimensions 2 < d < 4. We have established that the
UV irrelevant higher-derivative coupling Ȳ becomes rele-
vant at the WF FP. On the example of the 3-dimensional
O(1) model we studied the Ṙf effect, i.e., the neglection
of the scale-derivatives of the derivative couplings in the
expression of the scale-derivative of the cutoff function.
It was found that the NNLO effect and the Ṙf effect
are comparable when the modification of the NLO val-
ues of the critical exponents are considered, but the Ṙf
effect becomes with an order of magnitude weaker when
the NNLO approximation is used. For the O(1) model
for dimensions d = 4 − ǫ it is shown that the higher-
derivative coupling vanishes proportionally to ǫ3 in the
limit ǫ → 0 of the ǫ-expansion. It is found that the va-
lidity range of the RG scheme used by us is restricted to
the dimensions d in the interval 2.7 < d < 4, otherwise
the EAA of the critical theory becomes unbounded from
below due to the negative sign of the higher-derivative
coupling Ȳ . The NNLO effect has been determined in
the validity range of the RG scheme.

The N -dependence of the NNLO effect on the criti-
cal exponents of the WF FP of the 3-dimensional O(N)
models for N ≥ 2 was determined. It was shown that the
treatment of the ratio ẑ of the wavefunction renormaliza-
tion of the radial mode to that of the Goldstone modes is
rather crucial when the WF crossover scaling is consid-
ered. Keeping ẑ = 1, i.e., keeping the O(N) symmetry of
the EAA at the NLO level yields crossover regions even
in the NNLO scheme in which the characteristic quan-
tities of the WF FP are constant, while letting ẑ evolve
leads to power-law like scalings. It was shown, on the
one hand, that the fixed-point equations have solution
for any given value of the ratio ẑ. On the other hand,
we have found that the applied RG schemes show up the
inconsistency that the beta-function of the ratio ẑ does
not vanish exactly, when calculated from the fixed-point
solutions. It was shown, however, that this inconsistency
minimizes for ẑ = 1 providing a critical theory which
preserves O(N) symmetry with the accuracy of the or-
der of the anomalous dimension of the radial mode of
the field. Therefore the RG scheme with keeping ẑ = 1
constant is favoured as the physically realistic one. The
N -dependence of the anomalous dimension of the Gold-
stone modes and that of the correlation length’s critical
exponent have been found for ẑ = 1 qualitatively simi-
lar to those of known NLO results. The NNLO effects
on these critical exponents have been determined as the
function of N . It was also shown that the coupling of
the quartic derivative term of the Goldstone modes takes
negative critical values for N > 3 and makes the EAA
unbounded from below.
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(2006), arXiv:hep-th/0606010.

[40] G.von Gersdorff and C. Wetterich, Phys. Rev. B64,
054513 (2001), arXiv:hep-th/0008114.

[41] T.R. Morris, Int. J. Mod. Phys. A9, 2411 (1994),
arXiv:hep-ph/9308265.

Appendix A: Short overview on the present status

of the determination of the critical exponents of the

WF FP in the functional RG framework

It is worthwhile to outline a rather short overall pic-
ture of the present status of the determination of the
exponents ν and η at the phase transition point of the
O(N) models by means of various functional RG meth-
ods. The critical exponents ν and η are universal and -as
it is well-known - the O(N) models with N = 1, N = 2,
and N = 3 belong to the Ising, XY-, and Heisenberg uni-
versality class, respectively. The determination of their
universal critical exponents has been one of the inten-
sive and successful applications of the various functional
RG methods such as the RG frameworks proposed by
Wilson [10], Wegner and Houghton [11], Polchinski [12],
Wetterich [1], Blaizot-Mendez-Wschebor(BMW) [13, 14],
and the proper-time RG method [15–17]. Most of the
investigations of the universal critical exponents of the
O(N) models were performed in some truncated forms
of the GE, an approximation scheme that relies on the
smallness of the wavefunction renormalization [18, 19]
and has been applied successfully in a great variety of
physical problems (see e.g. [2]). The GE is particularly
applicable to the determination of the quantities defined
at vanishing momenta such as the critical exponents and
the phase diagrams, but it does not allow to find the full
momentum-dependence of the correlation functions. As
opposed to it the BMW method [13, 14] relies on the flow
of the one-particle irreducible (1PI) vertices and enables
one to take with their full momentum-dependence prop-
erly [20, 21]. The GE has been applied in the LPA, the
NLO, and the NNLO of the GE. The BMW approxima-
tion scheme at the order s consists of setting the internal
momenta to zero in all 1PI vertices of order larger than s
and achieving a closed set of flow equations for the first s
1PI vertex functions. Beyond the determinations of the
critical exponent ν in the LPA, great efforts have been
made to determine ν and η in the NLO of the GE tak-
ing with the evolution of either the uniform (NLOu) [6]
or the field-dependent (NLOf) [2, 4–6, 18, 22–28] wave-
function renormalization. Recently results have been ob-
tained in NNLO of the GE [5] and in BMW with full
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momentum dependence up to the order s = 2 [21]. In
[5] the field-dependence of the gradient terms have been
properly taken into account (NNLOf) after a thorough
discussion of its truncation.
It is well-known that the NLO results (especially the

NLO values of the anomalous dimension η) depend on
the renormalization scheme, the choice and the param-
eter(s) of the regulator, but the optimization by apply-
ing the principle of minimal sensitivity [3, 29] or requir-
ing reparametrization invariance of physical quantities [2]
can remove the ambiguity caused by the choice of the reg-
ulator parameter(s). In Tables VIII and IX we listed the
values of the anomalous dimension η and the correlation
length’s critical exponent ν for the d = 3 dimensional
O(1) and O(N ≥ 2) models published in the recent years
(without pretending to be complete), concentrating on
the NLO and NNLO results of the GE. We also list the
best available BMW results [20, 21] and some results ob-
tained by other methods [30–37] that can be considered
the ‘world’s best’ values, as well as experimental values
for the Ising model [38]. Before turning to a discussion
of Tables VIII and IX, it is worthwhile to emphasize that
the results for the anomalous dimension are rather sen-
sitive to the field-dependence of the wavefunction renor-
malization and that of the coupling of the O(∂4) term
(see a detailed discussion in [5]). The field-dependence
of the wavefunction renormalization was found to show
up rather specific features in the IR limit [18, 23, 26, 39].
The results listed in Tables VIII and IX were obtained

in the following RG frameworks:

• in [2, 40] Wetterich’s EAA RG method with an
exponential regulator was used enabling a formu-
lation which respects reparametrization invariance
of physical quantities; the field-dependence of the
potential and that of the wavefunction renormal-
ization was approximated by polynomials of order
third and first orders, respectively, of the variable
ρ = 1

2φ
2 with expansion around the nontrivial min-

imum of the potential;

• in [4, 5] the EAA RG method with PMS optimiza-
tion for one-parameter families of exponential and
Litim type regulators [3] was used and good con-
vergence achieved for field-dependent potential and
derivative couplings of high order;

• in [24] the proper time RG method [15] with a
one-parameter family of proper time regulators was
used and an optimized limit found by sharpen-
ing the effective width of the regulator, the field-
dependence of the FP and the scaling functions at
the FP were determined both in LPA and NLO;

• in [23] Wetterich’s EAA RG method with an
exponential regulator was used, the full field-
dependence of both the critical potential and wave-
function renormalization were approximated by
higher-order polynomials plus their asymptotic ex-
pressions;

• in [22] Polchinski’s RG method with a one-
parameter family of generalized Lorentzian regu-
lator functions was used and optimal values were
determined after a rather involved discussion, the
full field-dependence of both the critical point and
the scaling functions was obtained;

• in [18] flow equations for the Legendre effective ac-
tion (determining the 1PI part of the Wilson effec-
tive action [41]) was used with a power-law regula-
tor and the full field-dependence of both the critical
point and the scaling functions obtained;

• in [6] and [27] the EAA RG method was used with
an exponential regulator and uniform wavefunction
renormalization;

• in [20, 21] the BMW method with a one-parameter
family of exponential regulators was used with PMS
optimization.

Approximation Ref. η ν

NLOf [2] 0.0467 0.6307
[4] 0.0443 0.6281

0.0470 0.6260
[24] 0.0330 0.6244
[23] 0.0467 0.6307
[22] 0.042 0.633
[18] 0.05393 0.6181

NLOu [6] 0.045 0.638

NNLOf [5] 0.033 0.632

BMW [20, 21] 0.039 0.632

MC [32] 0.03627(10) 0.63002(10)
FT [31] 0.0318(3) 0.6306(5)

7-loop [30] 0.0335(25) 0.6304(13)
Exp. [38] 0.045(11) 0.636(31)

TABLE VIII. The critical exponents for the O(1) model for
d = 3 obtained by various RG methods. For comparison the
‘world’s best’ values of the critical exponents of the Ising-
model for d = 3 are also listed from Monte Carlo simulations
[32], field theoric RG with summation of divergent series [31],
from perturbation theory including 7-loop contributions [30],
and from experiment in mixing transition [38].

It can be observed in Table VIII that the values of the
critical exponent ν for N = 1 and d = 3 obtained in
the NNLOf and NLOf of the GE in the frameworks of
various RG schemes agree within a few per cents, while
those of the anomalous dimension η may differ by several
10 per cents. In a given RG scheme, however, generally
the values of η increase and those of ν decrease when
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N Approximation Ref. η ν

2 NLOf [2, 40] 0.049 0.666
NLOu [6] 0.042 0.700
BMW [21] 0.041 0.674
MC [34] 0.0381(2) 0.6717(1)
FT [31] 0.0334(2) 0.6700(6)

3 NLOf [2, 40] 0.049 0.704
NLOu [6] 0.038 0.752
BMW [21] 0.040 0.715
MC [33] 0.0375(5) 0.7112(5)
FT [31] 0.0333(3) 0.7060(7)

4 NLOf [2, 40] 0.047 0.739
NLOu [6] 0.034 0.791
BMW [21] 0.038 0.754
MC [35] 0.0365(10) 0.749(2)

7-loop [30] 0.0350(45) 0.741(6)

10 NLOf [40] 0.028 0.881
NLOu [6] 0.019 0.906
BMW [21] 0.022 0.889
6-loop [36] 0.024 0.859

100 NLOf [40] 0.0030 0.990
NLOu [6] 0.002 0.992
BMW [21] 0.0023 0.990

1/N-exp. [37] 0.0027 0.989

TABLE IX. The critical exponents for the O(N) model for
d = 3 obtained by various RG methods. For comparison a few
recent results are also listed from Monte Carlo simulations[33–
35], field theoric RG with summation of divergent series [31],
from perturbation theory including higher-loop contributions
[30, 36],and from large N limit of quantum field theory in the
1/N expansion [37].

the field-dependence is properly taken into account: for
example, the increment of η is ∼ 4 per cents and the
decrement of ν is ∼ 1 per cents comparing the NLOf
results of [2] to the NLOu results of [6]. The importance
of the effect of taking into account the evolution of the
term of O(∂4) of the EAA reveals itself in comparison of
the NLOf data of [2] and the NNLOf data of [5]; it makes

out a decrement of ∼ 30 per cents and an increment of
0.2 per cents of the NLOf values of η and ν, respectively.
It is worthwhile mentioning that the NNLOf data of [5]
are in excellent agreement with the BMW values [20, 21]
and with the the world’s best estimates.
In Table IX we listed the most recent values of η and

ν for various O(N) models with N ≥ 2 for the number
of dimensions d = 3. One can see, on the one hand,
that the NLOf values for η are generally larger than
the NLOu values and the latter are closer to the BMW
values and the world’s best other estimates. Neverthe-
less, the NLOu data show similar qualitative behaviour
in their N -dependencies as the NNLO data. Moreover
the anomalous dimension decreases to zero whereas the
critical exponent saturates at ν = 1 for N increasing to
infinity, in agreement with field theoretic expectations
[37]. According to our knowledge there are no available
NNLO data neither in the NNLOu nor in the NNLOf
approximations which would enable one to make conclu-
sions on the significance and the N -dependence of the
NNLO effect on the values of the anomalous dimension
η and the critical exponent ν.
For the O(N) models for dimensions d = 4 − ǫ the

leading order results from the ǫ expansion are given as

λ̄∗
K =

1

α4

(

3

N + 8
ǫ+O(ǫ2)

)

,

η =
N + 2

2(N + 8)2
ǫ2 +O(ǫ3),

ν =
1

2
+

N + 2

4(N + 8)
ǫ+O(ǫ2), (A1)

where λ̄∗
K is the critical coupling of the quartic term φ4

[8] (related to our definition of coupling λ̄∗
K = 3λ̄∗). One

can see that the position of the WF FP and the critical
exponent ν depend linearly, the anomalous dimension η
depend quadratically on ǫ in the limit ǫ → 0 (see e.g.
[8, 10, 30]).

Appendix B: RG evolution equations in the

approximation NNLO2η for the O(1) model

Taking the Ṙf effect into account means that one has
to insert the full expression (43) of the scale-derivative of
the cutoff function into the flow Eqs. (29) and (30). Then
in the approximation NNLO2η one arrives after lengthy
manipulations to the following evolution equations for
the dimensionless couplings,

˙̄κ = −(d− 2 + η)κ̄+ a

(

1 + 2Ȳk −
η

d+ 2
+ 2

βȲ − (2 + η)Ȳ

d+ 4

)

ḡ2 ≡ βκ̄, (B1)

˙̄λ = (d− 4 + 2η)λ̄+ b

(

1 + 2Ȳk −
η

d+ 2
+ 2

βȲ − (2 + η)Ȳ

d+ 4

)

λ̄2ḡ3 ≡ βλ̄, (B2)
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˙̄Y =
2A2 −A2B1 +A1B2 + (32− 8A1 − 16B1 −A2C1 − 2B2C1 − 4C2 +A1C2 + 2B1C1)Ȳ

16− 8B1 −B2C1 − 2C2 +B1C2
≡ βȲ , (B3)

and the expression for the anomalous dimension

η = −
8A1 +A2C1 −A1C2

16− 8B1 −B2C1 − 2C2 +B1C2
. (B4)

The coefficients Ai, Bi, Ci (i = 1, 2) are given as

A1 = (2 + 4Ȳ )I(0), A2 = (2 + 4Ȳ )J(0),

B1 = I(0)− I(1), B2 = J(0)− J(1),

C1 = I(0)− I(2), C2 = J(0)− J(2) (B5)

through the (dimensionless) loop-integrals

I(2n) = k−2n

∫

p

p2(n−1)∂2
QΦ(Q; r, p2)

∣

∣

∣

∣

Q=0

,

J(2n) = k−2n

∫

p

p2(n−2)∂4
QΦ(Q; r, p2)

∣

∣

∣

∣

Q=0

(B6)

in terms of the function

Φ(Q; r, p2) = 2r∗[2r∗U ′′′
k (r∗) + 3U ′′(r∗)]2

×

(

G2(p2)[G(q2)]q=Q−p −G3(p2)

)

.(B7)

The notations ∂2
Q and ∂4

Q are symbolic, second and fourth
partial derivatives with respect to the Euclidean momen-
tum Qµ are meant followed by the replacements given in
Eq. (28). The explicit forms of the loop integrals are
given as

I(2n) = 18αdκ̄λ̄
2ḡ4

[(

4

d(d+ 2 + 2n)
+

32Ȳ

d(d+ 4 + 2n)
+

96Ȳ 2

d(d+ 6 + 2n)

)

ḡ −
6Ȳ

d+ 2 + 2n
−

12Ȳ

d(d + 2 + 2n)
−

1

d+ 2n

]

,

J(2n) = 72αdκ̄λ̄
2ḡ4

[(

1792Ȳ 4

d2(d+ 12 + 2n)
+

6144Ȳ 4

d(d+ 2)(d+ 12 + 2n)
+

1280Ȳ 3

d2(d+ 10 + 2n)
+

3840Ȳ 3

d(d+ 2)(d+ 10 + 2n)

+
192Ȳ 2

d2(d+ 8 + 2n)
+

2304Ȳ 2

d(d+ 2)(d+ 8 + 2n)
+

576Ȳ

d(d+ 2)(d+ 6+ 2n)
+

48Ȳ

d(d+ 2 + 2n)
+

48

d(d+ 2)(d+ 4 + 2n)

)

ḡ3

+

(

1152Ȳ 3

d2(d+ 8 + 2n)
+

960Ȳ 3

d(d+ 8 + 2n)
+

2304Ȳ 3

d(d+ 2)(d+ 8 + 2n)
+

640Ȳ 2

d2(d+ 6 + 2n)
+

480Ȳ 2

d(d+ 6 + 2n)

+
80Ȳ

d2(d+ 4 + 2n)
+

120Ȳ

d(d+ 4 + 2n)
+

12

d(d+ 2 + 2n)

)

ḡ2

+

(

48Ȳ 2

d2(d+ 4 + 2n)
+

288Ȳ 2

d(d+ 4 + 2n)
+

144Ȳ 2

d(d+ 2)(d+ 4 + 2n)
+

24Ȳ 2

d+ 4 + 2n
+

8Ȳ

d+ 2 + 2n
+

1

d+ 2n

)

ḡ −
3Ȳ

d+ 2n

]

(B8)

with ḡ given in Eq. (35).


