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Abstract

Journey planning is a key process in public transport, where travelers get informed how to make the best use of a given public
transport system for their individual travel needs. A common trait of most available journey planners is that they assume
deterministic travel times, but vehicles in public transport often deviate from their schedule. The present paper investigates the
problem of finding journey plans in a stochastic environment. To fully exploit the flexibility inherent in multi-service public
transport systems, we propose to use the concept of a routing policy instead of a linear journey plan. A policy is a state-dependent
routing advice which specifies a set of services at each location from which the traveler is recommended to take the one that
arrives first. We consider current time dependent policies, that is, when the routing advice at a given location is based solely on
the current time. We propose two heuristic solutions that find routing policies that perform better than deterministic journey
plans. A numerical comparison shows the achievable gains when applying the different heuristic policies based on extensive
simulations on the public transport network of Budapest. The results show that the probability of arriving on time to a given
destination can be significantly improved by following a policy instead of a linear travel plan.
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1. Introduction

Transport infrastructures of large cities are becoming overwhelmed by the growing number of private vehicles.
As the use increases, traffic congestion becomes increasingly prevalent, causing significant losses to the economy.
Public transport can play an essential role in reducing the traffic load. To facilitate the use of a public transport
system, journey planners have been deployed that help passengers to find a route satisfying their needs. When given
the start and the destination location of the journey, these applications offer one or multiple alternative routes - i.e.
sequences of journey legs in transportation vehicles, potentially connected by interchange activities — that bring the
traveler from the start to the destination based on the schedule of all transportation services available.

A common weakness of this approach is that it assumes a deterministic environment. However, disturbances due
to congestion as well as unplanned events such as accidents or maintenance work can have strong effects on travel,
and when public transportation vehicles are behind or before schedule, the precomputed deterministic journey plan
might become infeasible, e.g. because of a missed connection. Motivated by this, we consider a stochastic
environment in which travel times follow presumed probabilistic distributions.

In many cases, there are multiple equivalent services which a passenger can choose from, depending on which
one comes first; such situations are difficult to handle by a linear journey plan. Public transport providers are trying
to take advantage of such options and offer dynamic journey planning capabilities, for example by offering push
services to alert travelers of broken connections. However, linear journey plans are not able to capture the full
amount of flexibility inherent in multi-service public transport systems as the re-planning always occurs only after
some deviation from the original conditions has occurred.

We therefore propose a novel approach that makes use of this flexibility. Instead of linear journey plans, we
introduce the notion of a routing policy, which is a time-dependent routing advice at each location. A routing advice
may consist of more than one service and the passenger is advised to take whichever comes first. Our aim is to
determine a routing policy which performs better under uncertainty than deterministic solutions. The performance of
a policy is measured in terms of expected utility. Travelers may define an arrival time dependent utility value at the
destination representing their preferences. The goal is thus to compute a policy that maximizes the expected value of
the utility that can be achieved by following the routing advice.

The aim of the present paper is to examine current time dependent policies with multiple service choices for
monotone non-increasing utility functions. The monotonicity assumption is plausible as it is always possible to wait
at a given stop when using public transportation. The paper is organized as follows. The problem together with basic
notation is introduced in Section 3. Besides showing that an optimal policy may not always exist, two heuristic
solutions for finding a ‘good’ current time dependent policy are proposed. Section 4 gives an evaluation of the
heuristic solutions by comparing them to deterministic routing plans through extensive simulations, and Section 5
gives some conclusions from the findings and outlook to open questions

2. Previous work

The classical algorithms of Dijkstra (1959), Bellman (1958), Ford (1956) and Floyd (1962) are fundamental
methods for route planning. Improved versions, like the A* algorithm of Hart et al. (1968), serve as the basis of
many widely used route planning applications. All these methods work with deterministic arc costs and provide a
single route as a solution.

One way to add uncertainty to the problem is to model the travel times on the arcs as independent random
variables with given probability distributions. In this model both the mean and the variance of the total travel time
may serve as performance measures of routes. For time-independent travel time distributions, both problems can be
reduced to a standard shortest path problem. Hall (1986) showed that for time-dependent distributions this is not the
case. He also introduced a time-adaptive decision rule in which the next node is defined for each step as a function
of the arrival time at the node.

Another generalization is given when the effectiveness of a route is defined by a utility function depending on the
arrival time. Only a few exact results exist in the literature for this problem due to the computational difficulty of
determining the expected utility. Loui (1983) provided a list of utility functions for which an optimal solution can be
efficiently found. Frank (1969) defined an optimal path as a path maximizing the probability of arriving before a
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given deadline and called this the stochastic on-time arrival (SOTA) problem. Nikolova et al. (2006) characterized a
family of realistic models and travel time distributions that are closed under convolution.

Another line of research focuses on finding optimal stochastic journey plans. Polychronopoulos et al. (1996)
considered a recourse model for stochastic shortest paths. Fan et al. (2005) applied stochastic dynamic programming
to find on-line travel plans, where the next arc is computed depending on the travel times on the path already visited.
The SOTA problem was reformulated in terms of stochastic dynamic programming by Fan et al. (2006). Results on
the SOTA problem were theoretically and numerically further improved by Samaranayake et al. (2012).

In contrast to the road transport case, multi-modality and interchanging between transport services is a central
concept in public transport. Multi-modal public transport journey planning in the presence of uncertainty was
investigated by Botea et al. (2013) and Dibbelt et al. (2014). In their model uncertainty appears as times of arrival of
transport services. As there are typically multiple services serving the same stop, it is a natural extension to
recommend for each node a set of alternative services, instead of just a single service, so that the passenger would
take the service from the list that arrives first. This model was introduced by Nonner (2012) and is the starting point
of the present paper. Bérczi et al. (2016) further developed the notion of travel alternatives by introducing time
dependent journey plans consisting of a set of services, in order to make the resulting traveling advice more robust
to uncertainty.

3. Model development

When defining the mathematical model of the public transport system, we use a simplification: we assume
throughout that the system consists of individual services between two nodes, meaning that each service has only
two stops. Although this simplified model gives only a very rough description of real public transport systems, it
allows us to use a simpler notation and description of the algorithms. However, the proposed algorithms can be
adapted to the more general case when services have several stops. According to this, the computational results of
Section 4 are based on the data of a real-life public transport, namely on the General Transit Feed Specification
(GTFS) data of the Budapest public transport network (Centre for Budapest Transport (2017)).

In our stochastic model, the public transport network is represented as follows. The set of stops is associated with
a set of nodes V, while the set of services is denoted by S. Each service s has an origin and a destination node
denoted by os and ds, respectively. The set of services with origin node v is denoted by S,. The network is then
represented by a directed graph D(V,A), where A is a set of directed edges with vw being in A if and only if there
exists a service s with o,=v and ds=w.

The model considers the probability distributions of arrival, departure and travel times. To formalize this
mathematically, let s be a service. The random variable of the departure time of s from o is denoted by Ds, the
random variable of the arrival time of s to ds is denoted by As, and the random variable of the travel time of s from
0s to ds is denoted by Ts. Clearly, these random variables are not independent since : As=Ds+Ts.

For a given random variable X, its cumulative distribution function (CDF) is denoted by Fx(t) and its
probability density function (PDF), if exists, by fx(t). The indicator variable of some logical statement is denoted
by x, for example yxex) is 1 if xeX and 0 otherwise.

Now we are ready to give a definition of a policy. Informally, a routing policy is a routing advice that assigns a
set of services to each stop and time. As we are considering current time dependent policies, the set of recommended
services is continuously updated and only depends on the actual time. Formally, a policy is a function p: V'xR—25
(where R stand for the set of real numbers) so that p(v,t) SS.. Policies can be interpreted as follows. If a passenger is
at stop v in time t, then he is recommended to take any service from p(v,t) if such a service departs at time t (if
multiple services are leaving simultaneously, ties are broken uniformly at random). The set of possible policies is
denoted by P.

The quality of a routing policy will be measured in terms of a utility function, provided by the passenger. A
utility function is a function u. R— R that represents the passenger’s utility depending on the time of arrival at the
destination. It is natural to assume that u is monotone non-increasing as it is always possible to wait at a given node
and simply let time pass. We further assume that there is a deadline T on the time horizon after which the utility
function has value -co. Given a policy p, the utility induced by p in stop v at time t is denoted by up(v,t). That is,
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up(v,t) denotes our expected utility supposing we are in stop v at time t and we continue our journey according to the
policy p. The conditional utility induced by p and service s at stop v and time t is denoted by up(v,t,s) and is
defined as our expected utility if we take service s in stop v at time t and continue our journey according to the
policy p.

When considering continuous time, the induced utility can be computed as

o0

u, (v,t) = j > ouvtis)- ] (1— j fDS.(t")Z(s.ep(V’t..))dt"J dt' o)

t \ sep(v,t) s'eS,,8'%S

where the induced utility is given by
up(v,t,s)=Iup(ds,t+t')fTs(t')dt'_ @
0

3.1. Existence of optimal policies

A natural way to define optimality of a policy is the following. Policy p€&P is called optimal if up(v,t)=u,(v,t) for
every p’eP, veVand teR This property is usually fulfilled by optimal policies in Markov decision processes. It
would be desirable to find such an optimal policy, but the next example shows that such a policy does not
necessarily exist.

Assume that the network consists of two services s; and s, going from stop v to w. Service s; departs in time
interval [0,1] at uniformly at random while s, departs in time interval [1-&2] uniformly at random. The travel times
of s;and sy are 1 and 1+, respectively. The utility function u in node w is defined as

2, if t<2,
u(t) =<1, if2<t<3, (3)
0 otherwise.

We claim that there exists no optimal policy in the above sense. Indeed, a policy p such that s, &p(v,t) for some 1-
£ <t<1 cannot be optimal as it may happen that s; already left stop v and s, departs at time t. In this case the
passenger would be advised not to take service s, and so the realized utility would be -co since no arrival at the
destination would be possible at all. That is, if there exists an optimal policy p, then necessarily s, ep(v;¢t) for any 1-
£ <t<1. This immediately implies that up(v,0)<2. However, the policy p’(v,t)={s:} for 0<t<2 induces u,(v,0)=2,
contradicting the optimality of p.

3.2. Heuristics
The previous example shows that we may not expect to find a policy which is optimal ‘globally’. Still, as policies
should give a reasonable and natural generalization of deterministic journey plans, it would be interesting to give
some heuristic solution which in general provides higher expected utility than deterministic solutions. In the
following, we develop two procedures to find such a heuristic solution.

3.2.1. Weak induced policy

The formal definition of a weak induced policy is as follows. By going back in time (starting from the deadline
T), for each time t, node v and service s€&S, do the following:
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1. Letp’ be the policy defined as p’(w,¢’)=p(w,t’) for t’>t and weV, and let p’(v,t)={s}.
2. Compute u(v,t), and add s to p(v,t) if up,(v,t) > lim up(v,t .
t'—>t*

In other words, the concept of weak policies is the following. When determining p(v,t) for a given node v and
time t, we compute the expected utility in v for time t’>t induced by the partial policy determined so far. Note that
this value would be our expected utility if our policy simply was to stay in node v for time t. Then for each service
s&S,, we compare this value to the expected utility that we get if we take service s at stop v at time t and we continue

our travel according the policy determined so far. A service s is added to policy p(v,t) if U, (v,t) > limu (v,t’).
t'—t*

The reason for calling the obtained policy ‘weak’ is that in some sense this is the naivest approach for defining a
policy: a service is recommended for the passenger if taking it induces better expected utility then just staying at the
stop and doing nothing.

3.2.2. Strong induced policy

Now we turn to a more sophisticated method and give a definition of strong induced policies. By going back in
time (starting from the deadline T), for each time t and node v do the following:

1. For each subset S° S, of services, let p’ be the policy defined as p’(w,t’)=p(w,t’) for ¢’>t and weV, and
let p’(v,t)=S".

2. Compute u,(v,t) and let X be the subset of S, for which this value is maximal.

3. Set p(v,t):=X.

The main difference between weak and strong induced policies is that in the latter case policy p(v,t) is chosen as
the best one among certain subsets of S, while in the weak case services were only compared to a given value one by
one. Hence it is natural to expect that strong policies provide better expected induced utility values than the weak
induced policy.

4. Computational case study and validation

In this section, we present computational results obtained by the different policies defined in the previous section.
The computations are based on the General Transit Feed Specification (GTFS) data of the Budapest public transport
Network (see Centre for Budapest Transport (2017)). The algorithms are implemented in C++ with heavy use of the
open source LEMON graph optimization library (see Dezsé et al. (2011)). The code is platform independent, the
actual tests were performed on a Linux-based server with a 3.50 GHz Intel Core i7-5930K CPU and 32 GB RAM.

4.1. Extending the model for the computational experiments

For the computational case study, we considered a discretization of the problem. The time horizon was divided
into smaller intervals indexed by 1, 2,..., T (the set of the intervals is denoted by [T]), and every event was assumed
to happen in one of these intervals. For the description and analysis of the algorithms above, we have assumed
without loss of generality a simplified model where the services were given as simple trips between two nodes
without intermediate stops. For the computational case study, we use a more complex and realistic model which,
according to the GTFS data format, considers services with several trips (following each other in a prescribed
order). A service has several trips consisting of several hops, hence the definition of policy must be modified
accordingly. In this case, a policy is a function p:V x/T]—25" such that if (s,w)€p(v,t) then

e SES,
e w#v is astop of service s which is after v,
o (s,w)gZp(v,t) for each stop w%w of service s.
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Here, (s,w)€& p(v,t) means that a passenger is advised to take service s at stop v and time t, if it arrives, and to
alight from it at stop w.

4.2. Data preprocessing and generation of the stochastic model

In order to prepare the necessary input data, the raw GTFS data is preprocessed in several steps. In a first step,
irrelevant services are discarded so that only services operating on the date of travel are considered. In a second step
the list of services is filtered according to the given passenger preferences, only keeping those services that
theoretically may play role in the journey. Simultaneously, a deterministic shortest path is computed between the
start and the destination node as a reference solution.

Next, a probabilistic model is set up for the arrival, departure and travel time distributions. The model may be
based on the assumption of a simplified distribution (e.g., Gamma distribution for travel times), but can also take
into account GTFS real-time data and statistics obtained from real-life measurements.

4.3. Policy generation

As a starting step, an optimal deterministic solution is computed that has the highest utility in the time period
defined by the passenger and has the latest departure time from the starting node. This is later used as a reference
solution by the method to find a routing policy. Then, a dynamic programming procedure is used to determine the
induced utility of being at stop v at time t for each node and time.

In the main part of the procedure, a queue of ‘active’ nodes is maintained, which is initialized with the destination
node vq. At the beginning, only vq is marked as active. In the following iterations, assume that policies and induced
utilities are computed for all veV and ¢’>t. The top node v is removed from the queue, and for each service s&S,,
time t€T] and stop w preceding v on the route of s we update up(w,t) and up(w,t,s) according to the policy
computation algorithms specified in the previous section, and also change p(w,t) if necessary. If an improvement is
found for some triple (s,t,w), then stop w is pushed to the end of the queue and is marked as ‘active’. This Bellman-
Ford-like algorithm computes the induced utilities for each stop and each time. The algorithm terminates when no
improvement is found or an upper bound on the number of iterations is reached.

4.4. Test instance and results

The above procedure was applied to the GTFS data of the Budapest public transport network. This timetable

consists of 5290 stops and 135.959 services. We considered three types of policies:
e deterministic solution given by the Bellman-Ford algorithm,
e weak induced policy,
e strong induced policy.

It is not straightforward how to measure the performance of a policy in a stochastic environment. As the
introduction of policies versus simple routes was motivated by the lack of reliability of deterministic journey plans,
we measure the performance of a policy by comparing it to the usual deterministic approach. We chose an arbitrary
stop v as a destination node from the map of Budapest uniformly at random, and determined the above mentioned
three policies for each stop different from v for a given date and time. We considered the SOTA (Stochastic On
Time Arrival) problem in all cases, that is, the utility function at the destination v was defined to be 1 until a certain
deadline T until which the passenger wishes to arrive, and 0 afterwards. The policies thus obtained were tested by
running 100 simulations for each node. In each instance of the simulation, we assumed that the departure times
follow normal distributions with expected value equal to the deterministic departure time of the corresponding
service. The distribution of the travel times was simulated by a simple formula depending on the deterministic travel
time and some other parameters such as service-dependent parameters, time of day, number of hops, etc. This
method is fast and easy, and also correlation may be built into the model.

For each node w different from v and each time t&[T], we checked whether a passenger leaving from node w at
time t and following either the deterministic solution or the weak or the strong induced policy succeeds to get to v in
time. For each of the three policies and each node w we computed the latest time instance when a passenger has to
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leave from w in order to arrive to v before the deadline with probability at least 90%. These values can be compared
to each other for the three solutions, hence giving a performance measure for evaluating their effectiveness. In
addition, it enables us to introduce the notion of safety margin, which tells us how much earlier we should start
compared to the latest deterministic departure so that we achieve a 90% probability of arriving in time in the
stochastic environment.

Figure 1 provides two illustrative examples of the achievable probability of arriving in time for different
departure times and policies from a fixed stop to a destination node. As an optimal current time dependent policy
might not exist in general, it may happen that the deterministic journey plan has better expected utility after a certain
departure time than a heuristic solution.

Probtily
Probabi iy

o .
noe 1000 08 1090 1045 1620 025 1630 A5 1040 1245 IS0 10855
Time Time

Figure 1. Probability of arriving on time vs. departure tim

Figure 2 compares the deterministic solution and the weak induced policy for a given destination node v. Each
dot on the scatter plot represents a starting node w different from v. The x coordinate of a dot is the time when a
passenger should leave from w in order to arrive to v in time with probability at least 90% when following the route
of the weak policy, while its y coordinate is defined similarly based on the deterministic journey plan.
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Figure 2. Weak policy vs. deterministic route Figure 3. Strong policy vs. deterministic route

Figure 3. compares the deterministic journey plan with the strong induced policy in the same way. In both cases,
dots above the diagonal y=x corresponds to stops from where one may leave later when following the induced
policy instead of the deterministic route. Note that in general, the stronger solution is only marginally better than the
weak one, but it can eliminate basically all cases in which the deterministic route is better than the weak policy.
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Figure 4. shows the average safety margin of the methods as a function of the deterministic travel time. The
average is taken from computing the policies from all possible starting positions to 4 representative destinations
chosen from various parts of the city.
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Figure 4. Average safety margin

5. Conclusion

We presented a public transport journey planning approach that can cope with the typically non-deterministic
public transport environment. At each location, a policy can prescribe multiple services from which the traveler is
advised to take any one depending on which one arrives first, and this selection can even depend on the remaining
travel time. Instead of deterministic travel-, arrival- and departure times, our model uses probability distributions,
which results in a more robust and on average more effective journey plan. Our approach can handle any passenger-
defined monotone non-increasing utility functions, which allows to encode sophisticated passenger preferences
beyond just ‘arriving in time’ or ‘as fast as possible’.
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