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Abstract. Numerical solution of fractional order diffusion problems with homogeneous
Dirichlet boundary conditions is investigated on a square domain. An appropriate extension
is applied to have a well-posed problem on R

2 and the solution on the square is regarded
as a localization. For the numerical approximation a finite difference method is applied
combined with the matrix transformation method. Here the discrete fractional Laplacian
is approximated with a matrix power instead of computing the complicated approxima-
tions of fractional order derivatives. The spatial convergence of this method is proved and
demonstrated in some numerical experiments.
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1. Introduction

Numerical solution techniques for fractional order diffusion problems have been

intensively studied in the last decade. The corresponding mathematical models de-

scribe superdiffusion or subdiffusion, which were observed in several phenomena [3],

[8] due to the increasing accuracy of the measurement techniques. Since in these

models fractional order differential operators are used they are tied closely with the

theory of the fractional calculus [15], [23], [24], which has a long history. Moreover,

a novel framework has been recently elaborated to generalize the Fick’s law and the

fractional calculus, called the non-local calculus [6], [7].
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The majority of the numerical solution techniques is based on finite difference

discretizations. A stable method based on shifted finite differences was first developed

in [19]. Based of this work, higher-order methods [27], [30] were constructed and

analyzed and the results were extended to some related non-linear problems [16].

The analysis has been extended also for the finite volume discretization, see [10] and

[29].

A non-trivial aspect of the modeling and the precise error analysis is the handling

of boundary conditions. The non-local nature of the fractional order diffusion opera-

tors [6] and the reduced regularity implies that the classical Dirichlet type boundary

condition may not make sense. An approach to solve this problem has been de-

veloped in [25] in the one-dimensional situation dealing both with the homogenous

Neumann and the Dirichlet type boundary conditions.

A difficulty in the practice of the numerical approximations is to compute the in-

volved finite differences in two (or three) space dimension [28], [30]. To alleviate

this procedure, the so-called matrix transform (or matrix transfer) method (MTM)

has been proposed in [12], [13] and [17] and generalized in [14] for time and space-

fractional diffusion problems. This approach makes possible to deal with the sparse

matrix Â corresponding to the standard Laplacian operator −∆: for the discretiza-

tion of −∆α we have to use Âα. The computational experiments confirmed the favor

of this method. A corresponding error analysis was carried out only for the finite

element methods with respect to the L2-norm, see [26].

The aim of the present work is twofold.

• The first objective is to define a well-posed problem which corresponds to the

space-fractional diffusion equation and involves homogeneous Dirichlet type

boundary conditions.

• Second, we intend to develop a convergence theory for the matrix trans-

formation method corresponding to the finite difference approximation and

establish the order of convergence in the L2-norm.

In the rest of the paper, after some preliminaries, an extension operator is in-

troduced corresponding to homogeneous Dirichlet type boundary conditions. It is

pointed out that in this way we arrive at a well-posed problem. We verify then

the approximation property of the matrix transform approach. Based on this, a

corresponding general semidiscrete numerical scheme is defined and the spatial con-

vergence of this method is proved. Whenever our final result concerns finite difference

approximation, the analysis is mainly based on spectral arguments and we use some

recent results of the numerical aspects of the semigroup theory. The work is closed

with some numerical experiments, which confirm the presented convergence theory.
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2. Mathematical preliminaries

We examine the fractional diffusion equation in R
2 using its divergence form.

2.1. Fractional Laplacian and its eigenspace. We define first the fractional

Laplacian operator on the domain Ω = (0, 1) × (0, 1) and the fractional Hilbert

spaces following [13].

Definition 1. Let {ϕj}j∈N and {λj}j∈N denote the eigenfunctions and the cor-

responding eigenvalues of the Laplace operator (−∆D) : L2(Ω) → L2(Ω), which is

defined on a bounded Lipschitz domain Ω with homogeneous Dirichlet boundary

conditions. These functions form a complete orthonormal set in L2(Ω). For α ∈ R
+

we introduce

Fα =

{
f =

∞∑

n=1

cnϕn, cn = 〈f, ϕn〉 :

∞∑

n=1

|cn|2|λn|α < ∞
}

such that the fractional Laplacian (−∆D)α/2 : Fα → L2(Ω) with homogeneous

Dirichlet boundary conditions is defined with

(2.1) (−∆D)α/2f :=
∑

j

λ
α/2
j cjϕj .

While both the operator −∆D and the linear space Fα depend on Ω, this is not

shown for the sake of simplicity. Note that alternative definitions of the fractional

Laplacian are available. Corresponding to the pointwise approximation of the Lapla-

cian, in [5] for the case Ω = R
2 its fractional power is defined as:

(2.2) −
(
− ∆

)α/2

u(x) :=
Cα

2

∫

R2

u(x + y) + u(x − y) − 2u(x)

|y|2+α
dy ,

where Cα =

(∫

R2

1 − cos ζ1

|ζ|2+α
dζ

)−1

.

According to [20], the right hand side of (2.2) can be given as

div J(x), where J(x) =
Cα

α2
grad

∫

R2

u(y)

|x − y|α dy ,

which is a divergence form corresponding to a non-local Fick’s law [7]. Accordingly,

we will use the following definition of the fractional Laplacian on R
2:

(2.3) −
(
− ∆

)α/2

u(x) :=
Cα

α2
∆

(∫

R2

u(y)

|x − y|α dy

)
(x).
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Definition 2. For u ∈ Fα

2
with α ∈ R

+ let

‖u‖α

2
=
(
|u|20 + |u|2α

2

) 1

2 ,

where

|u|2α
2

=

∞∑

k,l=1

(
(kπ)2 + (lπ)2

)α

2 |uk,l|2

with the Fourier coefficients uk,l of u. Then H
α

2 (Ω) := (Fα

2
, ‖ · ‖α

2
), see [4], [21].

dsds Remarks: Usually, H
α

2 (Ω) is only defined for α ∈ (0, 2) as this can be related

with the classical Sobolev spaces, see [21] and [22].

According to Definition 2, we frequently use ‖ · ‖0 for the L2(Ω)-norm.

Definition 3. For each N ∈ N
+ the linear space SN ⊂ L2(Ω) is defined with

SN = span
{

2 sin(kπx) sin(lπy) : x, y ∈ [0, 1], 1 ≤ k, l ≤ N − 1, k, l ∈ N

}

and the corresponding projection operator PN : L2(Ω) → SN with

PNf(x, y) =

N−1∑

k,l=1

fk,l2 sin(kπx) sin(lπy),

where

f(x, y) =

∞∑

k,l=1

fk,l2 sin(kπx) sin(lπy).

Remarks: Since PN is a projection, we obviously have ‖PN‖ ≤ 1 and PN

∣∣∣
SN

is

the identity.

Also, since PN projects to the eigenfunctions of the operator (−∆D)α/2, we have

(2.4) (−∆)α/2PNf = PN (−∆)α/2f ∀f ∈ Fα

2
.

2.2. Discretization and Fourier interpolation. We define a uniform grid with

the gridsize h = 1
N and the corresponding interior gridpoints

Ωh := {(xk, yl) = (kh, lh) : 1 ≤ k, l ≤ N − 1}.

In the error estimates we always assume that h < 1, because we are interested in the

fine-grid limit. The finite difference method results in a nodal approximation. We

can relate it to a continuous analytic solution by using the following interpolation.
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Definition 4. Let IN : R
(N−1)×(N−1) → SN denote the sine Fourier interpolation

given by

(IN f)(x, y) =

N−1∑

k,l=1

fk,l2 sin(kπx) sin(lπy),

where

fk,l = h2
N−1∑

m,n=1

f(m,n)2 sin(kπxm) sin(lπyn).

Here the entries of f in the interior gridpoints are denoted with f(m,n) for 1 ≤
m,n ≤ N − 1.

Remarks: One can easily verify that for any u ∈ C(Ω̄) we have

(2.5)

(
IN

(
u
∣∣∣
Ωh

))
(x) = u(x) ∀x ∈ Ωh,

moreover, for any g ∈ C0(Ω̄) and Θ ∈ SN we have

(2.6) (g,Θ) = (IN (g
∣∣∣
Ωh

),Θ)

where (·, ·) denotes the L2(Ω)-inner product and C0(Ω̄) denotes the continuous func-

tions on Ω with vanishing boundary values.

3. Results

Our objective is to find u : [0, T ] → C(Ω) such that

(3.1)






∂u
∂t (t, x) = −µ (−∆D)

α/2
u(t, x), x ∈ Ω, t ∈ (0, T )

u(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ),

limt→0 u(t, x) = u(0, x) = u0(x), x ∈ Ω.

Here Ω = (0, 1) × (0, 1), u0 ∈ Fα+1 are given and we assume that α ∈ (1, 2]. In the

applications, this assumption is not restrictive, at the same time, it implies sufficient

smoothness.

Lemma 1. If f ∈ F2 then f ∈ C0(Ω).

Proof. Taking the eigenfunction expansion

(3.2) f(x, y) =

∞∑

k,l=1

fk,l2 sin(kπx) sin(lπy)
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Figure 1. The extension procedure · and annihilation between A3

and A. Values equal to u(A) are denoted with •, while their negative

with ◦. Ω is the shaded domain.

the relation f ∈ F2 implies that
∑∞

k,l=1 f2
k,l(k

2 + l2)2 is convergent. Then using the

Cauchy–Schwartz inequality we have for all N ∈ N that

√√√√
N∑

k,l=1

(fk,l(k2 + l2))2

√√√√
N∑

k,l=1

1

(k2 + l2)
4

3

≥
N∑

k,l=1

|fk,l|(k2 + l2)

(k2 + l2)
2

3

≥
N∑

k,l=1

|fk,l|,

where the left hand side and hence the right hand side is finite. Therefore, the

series in (3.2) converges uniformly, which results in a continuous sum with vanishing

boundary values as stated. �

3.1. Extension corresponding to homogeneous Dirichlet boundary condi-

tions. The extension · : C0(Ω) → C(R2) is defined as follows: The reflection of

A ∈ Ω across the faces of Ω is denoted with A1, A2, A3 and A4 in a fixed order. With

these

u(A1) = u(A2) = u(A3) = u(A4) := −u(A).

Following this procedure repeatedly on the boundary of the new unit squares and

using the equality u(Ai,j) = −u(Ai) = −u(Aj) = u(A) we have that the extension ·
is well-defined on R

2. See also Figure 1.
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Remarks: Note that this is an odd extension in the sense that the following iden-

tities are valid for all x, y ∈ R:

(3.3)
u(1 + x, y) = −u(1 − x, y); u(x, y) = −u(−x, y)

u(x, 1 + y) = −u(x, 1 − y); u(x, y) = −u(x,−y).

A physical motivation of the extension procedure is that taking particles in Ω with

positive weight, their mirror images should be equipped with the negative weights

since in this way, after a collision on ∂Ω they will be annihilated making the boundary

an absorbing wall. This is also depicted in Figure 1 between A and A3.

Note that for any integers k and l the extension of the function sin kπx sin lπy from

Ω to R
2 is given with the same formula, which is used without further reference.

3.1.1. The extended problem and its solution. Using the extension procedure we pose

the following extended problem for u:

(3.4)

{
∂u
∂t (t, x) = −µ̃ (−∆)

α/2
u(t, x), x ∈ R

2, t ∈ (0, T )

limt→0 u(t, x) = u(0, x) = u0(x), x ∈ R
2,

where u0 ∈ C(Ω) and µ̃ > 0 are given.

To highlight the relation between (3.1) and (3.4) our main tool is the fact that the

definitions in (2.1) and (2.2) are equivalent in a sense. Using also the formulation in

(2.3) we state the following.

Theorem 1. Using the assumptions for (3.1), the following equality holds true

for all u ∈ Fα(Ω):

(−∆D)α/2u(x) =
1

2C̃α

α2

Cα
(−∆)α/2u(x), x ∈ Ω

with a constant C̃α ∈ R
+.

The technical proof is postponed to the appendix.

Lemma 2. Using the assumptions for (3.1), the solution of (3.4) is smooth in

the sense that for t > 0 u(t, ·) ∈ C∞(R2) and it satisfies homogeneous “boundary”

condition: u(t, x, y) = 0 for (x, y) ∈ ∂Ω.

Proof. We first note that (3.4) is well-posed and its solution can be given as

u(t, x, y) =
(
Φt ∗ u0

)
(x, y),
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where Φt denotes the fundamental solution of (3.4), see [18]. With a straightforward

generalization of Lemma 2.3 in [25] we obtain that Φt ∈ C∞(R2) which implies also

the required smoothness of u(t, ·).
Concerning the boundary conditions we only show that u(t, x0, 1) = 0 for x0 ∈

(0, 1), the proofs for the remaining cases can be obtained similarly. Using the fact

that Φt is even in both of its variables and the equalities in (3.3) we obtain

u(t, x0, 1) = lim
ǫn→0−

u(t, x0, 1 − ǫn) = lim
ǫn→0−

u0 ∗ Φt(x0, 1 − ǫn)

= lim
ǫn→0−

∫

R

∫

R

u0(x0 − x, 1 − ǫn − y)Φt(x, y) dy dx

= − lim
ǫn→0−

∫

R

∫

R

u0(x0 − x, 1 + ǫn + y)Φt(x, y) dy dx

= − lim
ǫn→0−

∫

R

∫

R

u0(x0 − x, 1 + ǫn + y)Φt(x,−y) dy dx

= − lim
ǫn→0−

(
u0 ∗ Φt

)
(x0, 1 + ǫn) = − lim

ǫn→0−
u(t, x0, 1 + ǫn) = −u(t, x0, 1),

which gives that u(t, x0, 1) = 0. �

3.2. Analytic solution with sine Fourier expansion. Using Theorem 1 the so-

lution of (3.1) is nothing but the restriction of the solution of (3.4) to Ω. We also

need its Fourier expansion, which is given in the following.

Theorem 2. Using the assumptions for (3.1), for all t > 0 there exists a unique

solution u(t, ·) of (3.1) such that u(t, ·) = u(t, ·)
∣∣∣
Ω
∈ Fα, where µ̃ = µ α2

2C̃αCα

. More-

over, ‖u(t, ·)
∣∣∣
Ω
‖α

2
≤ ‖u0

∣∣∣
Ω
‖α

2
and u(t, ·) satisfies the homogeneous Dirichlet bound-

ary conditions.

Proof. We seek the solution of (3.1) in the following form:

u(t, x, y) =
∞∑

k=1

∞∑

l=1

uk,l(t)2 sin(kπx) sin(lπy).

Taking the scalar product of (3.1) with the function 2 sin(kπx) sin(lπy) on Ω, we get

the following system of differential equations:




u′

k,l(t) = −µ
(
(kπ)2 + (lπ)2

)α/2

uk,l(t)

uk,l(0) = u0,k,l,

where u0,k,l are the coefficients of the Fourier series of u0 and k, l ∈ N. Therefore,

we have that

u(t, x, y) =

∞∑

k=1

∞∑

l=1

u0,k,l exp
{
− tµ

(
(kπ)2 + (lπ)2

)α/2}
2 sin(kπx) sin(lπy).
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such that u(t, ·) ∈ Fα for any α > 0.

To see uniqueness, we note that using Theorem 1 for the extension of any solution

of (3.1) we have

∂tu(t, x, y) = ∂tu(t, x, y) = −µ(−∆D)
α

2 u(t, x, y) = −µ
α2

2C̃αCα

(−∆)
α

2 u(t, x, y)

for all (x, y) ∈ Ω and by the extension procedure,

∂tu(t, x, y) = −µ̃(−∆)
α

2 u(t, x, y)

for all (x, y) ∈ R
2. On the other hand, this solution (as mentioned in Lemma 2) is

unique, which also implies the uniqueness of the solution of (3.1).

Since −tµ
(
(kπ)2 + (lπ)2

)α/2

≤ 0, we have that

‖(u(t, ·)
∣∣∣
Ω
)‖2

α

2

=

∞∑

k=1

∞∑

l=1

[u0,k,l exp
{
− tµ

(
(kπ)2 + (lπ)2

)α/2}
]2

+

∞∑

k=1

∞∑

l=1

(
(kπ)2 + (lπ)2

)α/2

[u0,k,l exp
{
− tµ

(
(kπ)2 + (lπ)2

)α/2}
]2

≤
∞∑

k=1

∞∑

l=1

[u0,k,l]
2 +

(
(kπ)2 + (lπ)2

)α/2

[u0,k,l]
2 = ‖(u0

∣∣∣
Ω
)‖2

α

2

as stated. �

3.3. Numerical solution of (3.1). We analyze here the numerical solution of (3.1)

using the matrix transformation method (MTM). First we investigate an approxi-

mation with a spectral method using Fourier projection for the initial value. Using

this result, we will show that the MTM also gives a good approximation.

3.3.1. The spectral method. We will use the following approximation results, which

are stated in [4] for periodic boundary conditions, but can be adopted (with a minimal

change) to the case of Dirichlet boundary conditions.

Proposition 1. For all 0 ≤ η ≤ s there is a constant C such that for all u ∈ H
s(Ω)

we have

(3.5) ‖u − PNu‖η ≤ CNη−s|u|s,

moreover, if s > 1 then we also have

(3.6) ‖u − IN (u|Ωh
)‖η ≤ CNη−s|u|s.
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First we define an approximation uN (t, ·) ∈ SN as the solution of the following

problem:

(3.7)






∂uN

∂t (t, x) = −µ (−∆D)
α/2

uN (t, x), x ∈ Ω, t ∈ (0, T ),

limt→0 uN (t, x) = uN (0, x) = IN (u0

∣∣∣
Ωh

)(x), x ∈ Ω.

A corresponding error estimate is given as follows:

Theorem 3. Let uN be the solution of the problem in (3.7) and u is the solution of

(3.1), using again the assumptions here. Then there exists a constant C independent

of u0 such that for all t ∈ (0, T ) the following error estimation is valid:

‖u(t) − uN (t)‖0 ≤ Ch‖u0‖α+1, t ∈ [0, T0].

Proof. Let Lf := µ(−∆)α/2f and LNf = PNLf . Taking the scalar product of (3.1)

and (3.7) with a function Θ ∈ SN we get the following equalities:

(3.8)
(
∂tPNu,Θ

)
+
(
LPNu,Θ

)
= −

(
L(u − PNu),Θ

)
,

(3.9)
(
∂tuN ,Θ

)
+
(
LuN ,Θ

)
= 0,

where, indeed, the notations PN (u(s)), LPN (u(s)) and uN (s) should be used, which

for the brevity is simplified over the proof. The difference of (3.8) and (3.9) gives for

e = uN − PNu and Θ = e the following:

(
∂te, e

)
+
(
Le, e

)
=
(
L(u − PNu), e

)
.

Since L is positive definite, we obtain

2‖e‖0∂t‖e‖0 = ∂t‖e‖2
0 =

∫

Ω

∂te
2 =

∫

Ω

2e∂te

= 2
(
L(u − PNu), e

)
− 2
(
Le, e

)
≤ 2
(
L(u − PNu), e

)
≤ 2‖e‖0‖L(u − PNu)‖0,

which implies

∂t‖e‖0 ≤ ‖L(u − PNu)‖0.

Integrating both sides on [0, t] gives

(3.10) ‖e(t)‖0 ≤ ‖e0‖0 + t sup
(0,t)

‖L(u − PNu)‖0.
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Using (3.7), (3.5) and (3.6) with η = 0, we get

(3.11)

‖e0‖0 = ‖uN (0)− PNu(0)‖0 ≤ ‖IN (u0

∣∣∣
Ωh

)− u0‖0 + ‖u0 − PNu(0)‖0 ≤ CN−α‖u0‖α

and (3.5) implies that

(3.12) ‖L(u − PNu)‖0 ≤ ‖u − PNu‖α ≤ N−1‖u‖α+1.

Therefore, inserting (3.11) and (3.12) into (3.10) with the inequality in Theorem 2

gives the following estimate:

‖e(t)‖0 ≤ CN−α‖u0‖α + tN−1‖u‖α+1.

Combining this with the triangle inequality and using (3.5) with η = 0 we obtain

(3.13) ‖u(t) − uN (t)‖0 ≤ ‖u(t) − PNu(t)‖0 + ‖e‖0 ≤ 2CN−α‖u0‖α + tN−1‖u‖α+1.

Finally, using that α > 1, we obtain 2CN−α‖u0‖α ≤ 2CN−1‖u0‖α+1, which com-

pared with (3.13) completes the proof of the theorem. �

3.3.2. The matrix transformation method. In this subsection, we establish the order

of convergence for the MTM. Âh ∈ R
(N−1)2×(N−1)2 denotes the matrix corresponding

to the standard five-point difference scheme of the Laplacian (−∆) with homogeneous

Dirichlet boundary conditions.

The eigenvectors of the matrix Âh and the corresponding eigenvalues in the order

of increasing value are given for k, l ∈ {1, 2, ..., N − 1} by

(
vk,l

)

i,j
= 2 sin(kπih) sin(lπjh) and λk,l =

( 2

h
sin

kπh

2

)2

+
( 2

h
sin

lπh

2

)2

.

Since Âh is positive definite, we can take its singular value decomposition V T ΛV .

Here the k-th column of V is the k-th eigenvector of Âh belonging to the k-th

eigenvalue and the diagonal matrix Λ contains the corresponding eigenvalues.

The basic idea of the MTM is to use the matrix Â
α/2
h for the approximation of

the operator
(
− ∆D

)α/2
. Accordingly, we define Â

α/2
h := V T Λα/2V and with this

we have to solve the semidiscretized problem

(3.14)






∂ÛN

∂t
(t) = −µÂ

α/2
h ÛN (t), ∀t ≥ 0,

ÛN (0) = u0(·)
∣∣∣
Ωh

,

where ÛN (t) is a vector in R
(N−1)2 and its components are given in the gridpoints

of Ωh.
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3.4. Convergence result. We also introduce the operator A
α/2
h : SN → SN with

A
α/2
h u(x, y) =

N−1∑

k,l=1

uk,l2 sin(kπx) sin(lπy)
[( 2

h
sin

kπh

2

)2

+
( 2

h
sin

lπh

2

)2]α/2

,

where u(x, y) =

N−1∑

k,l=1

uk,l2 sin(kπx) sin(lπy).

Remark: The operators Ah and Âh are equivalent in the following sense

(3.15)
[
Ahu(x, y)

]∣∣∣
Ωh

= Âh

[
u(x, y)

∣∣∣
Ωh

]
and IN

{
Âh

[
u(x, y)

∣∣∣
Ωh

]}
= Ahu(x, y),

for all u ∈ SN . To relate the operators (−∆) and Ah we need the following estimate.

Proposition 2. For arbitrary α ∈ (0, 2] and integers k, l with 1 ≤ k, l ≤ N − 1

there is a mesh-independent constant Cα,0 such that the following estimation is valid:

[
(kπ)2 + (lπ)2

]α/2

−
[( 2

h
sin

kπh

2

)2

+
( 2

h
sin

lπh

2

)2]α/2

≤ Cα,0h
α((kπ)2α + (lπ)2α).

Proof. We first note that using the Taylor expansion of the function sin2 around zero

we have that ( 2

h
sin

kπh

2

)2

= (kπ)2 − h2 (kπ)4

12
cos ξk

is satisfied for all 1 ≤ k ≤ N − 1 with some ξk ∈ [0, π].

Since sinx ≤ x is satisfied for x ≥ 0, we obviously get

B =
( 2

h
sin

kπh

2

)2

+
( 2

h
sin

lπh

2

)2

≤ (kπ)2 + (lπ)2 = A

such that cos ξk ≥ 0 should also be satisfied. Therefore, using the inequality A
α

2 −
B

α

2 ≤ (A − B)
α

2 for α
2 ∈ (0, 1], we finally obtain the following estimate for all

1 ≤ k, l ≤ N − 1:

[
(kπ)2 + (lπ)2

]α/2

−
[( 2

h
sin

kπh

2

)2

+
( 2

h
sin

lπh

2

)2]α/2

≤ (h2 (kπ)4

12
cos ξk)α/2 + (h2 (lπ)4

12
cos ξl)

α/2 ≤
[(

(kπ)4

12

)α/2

+

(
(lπ)4

12

)α/2
]

hα

=
1

12α/2
hα((kπ)2α + (lπ)2α),

which proves the statement. �
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We can now quantify the difference between A
α/2
h and (−∆)α/2.

Lemma 3. If u ∈ SN and α ∈ (0, 2], then we have

‖
(
− ∆D

)α/2
u − A

α/2
h u‖0 ≤ CNhα|u|α+1.

Proof. If u ∈ SN with u(x, y) =
∑N−1

k,l=1 uk,l2 sin(kπx) sin(lπy) then

(
− ∆D

)α/2
u(x, y) = Cα

N−1∑

k,l=1

uk,l

(
(kπ)2 + (lπ)2

)α/2
2 sin(kπx) sin(lπy)

A
α/2
h u(x, y) =

N−1∑

k,l=1

uk,l

((
2

h
sin

kπh

2

)2

+

(
2

h
sin

lπh

2

)2
)α/2

2 sin(kπx) sin(lπy)

such that using Proposition 2 we obtain

‖
(
− ∆D

)α/2
u − A

α/2
h u‖2

0

=
N−1∑

k,l=1

u2
k,l



((kπ)2 + (lπ)2
)α/2 −

((
2

h
sin

kπh

2

)2

+

(
2

h
sin

lπh

2

)2
)α/2





≤ Cα,0h
α

N−1∑

k,l=1

u2
k,l

(
(kπ)2α + (lπ)2α

)
≤ Cα,0h

α
N−1∑

k,l=1

u2
k,l

(
(kπ)2 + (lπ)2

)α+1

= Cα,0h
α|u|2α+1,

as stated in the lemma. �

To use a key approximation theorem, we pose some assumptions following the

setting in [2].

Assumption 1: For the Banach spaces
(
Xn

)
n∈N

and X, the operators Pn : X →
Xn and Jn : Xn → X satisfy the following:

• there exists a constant K > 0 such that ‖Pn‖, ‖Jn‖ ≤ K ∀n ∈ N,

• PnJn = In, where In is the identity operator on the space Xn,

• JnPnf → f , ∀f ∈ X for n → ∞.

Assumption 2: For the generators
(
An

)
n∈N

and A of the strongly continuous

semigroups
(
Tn

)
n∈N

and T on
{
Xn

}
n∈N

and X, respectively, we have

• ‖Tn(t)‖ ≤ Meωt ∀n ∈ N for some constants M > 1 and ω ∈ R

On the Banach space (Y, ‖ · ‖Y ) with Y ⊂ D(A) dense we have the following:

• ‖T (t)‖Y ≤ Meωt with the above constants M > 1 and ω,

13



• for all g ∈ Y there exists a sequence (yn) with yn ∈ D(An) which satisfies

the following:

(3.16) ‖yn − Png‖Xn
→ 0 and ‖Anyn − PnAg‖Xn

→ 0 for n → ∞.

Theorem 4. Suppose that Assumption 1 and 2 hold true and there exist con-

stants C > 0 and p ∈ N such that for all f ∈ Y the following inequality holds:

‖AnPnf − PnAf‖Xn
≤ C

‖f‖Y

np
.

Then for all t > 0 there exists a constant C ′ > 0 such that we have the error estimate

‖Tn(t)Pnf − PnT (t)f‖Xn
≤ C ′ ‖f‖Y

np

and this convergence is uniform in t on compact intervals.

This statement is an easy consequence of Corollary 1.11 in [9], page 163 and the

detailed proof can be found in [2].

To use the above results we investigate the following problem:

(3.17)






∂UN

∂t (t, x) = −µA
α/2
h UN (t, x), x ∈ Ω, t ∈ (0, T )

UN (t) ∈ SN t ∈ (0, T )

limt→0 UN (t, x) = IN (u0

∣∣∣
Ωh

)(x), x ∈ Ω, t ∈ (0, T ),

which is related with (3.14) to obtain the main result. We intend to use also Propo-

sition 2 and Theorem 3 and therefore, we need to assume some smoothness on the

initial condition and restrict the exponent of the Dirichlet Laplacian to preserve the

initial accuracy.

Theorem 5. Using the assumptions for (3.1), we have that the numerical solution

ÛN in (3.14) satisfies the following error estimate:

‖u(t) − IN (ÛN (t))‖0 ≤ hC‖u0‖α+1 t ∈ [0, T ].

Proof. Using (3.17) and the interpolation property of IN in (2.5) we obviously have

that

(3.18) UN (0, x) = (IN (u0

∣∣∣
Ωh

))(x) = u0(x) for x ∈ Ωh.

Therefore, applying (3.17) in the gridpoints using (3.15) gives that

(3.19)
∂UN

∂t
(t, x) = −µA

α/2
h UN (t, x) = −µÂ

α/2
h UN (t, x)

∣∣∣
Ωh

.
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The equalities in (3.18) and (3.19) imply that (3.17) in the gridpoints coincides with

(3.14) such that

(3.20) UN (t)
∣∣∣
Ωh

= ÛN (t) and vice versa IN (ÛN (t)) = UN (t).

If u ∈ SN then using Lemma 3 we get

‖
(
− ∆

)α/2
u − A

α/2
h u‖0 ≤ Cαh|u|α+1.

We can now apply the Theorem 4 with the following choice for the function spaces:

Xn = (SN , ‖ · ‖0), X = L2(Ω), Y = Fα+1(Ω)

and for the corresponding operators:

Pn = PN , Jn = SN →֒ L2(Ω), An = A
α/2
h , and A =

(
− ∆

)α/2
,

where →֒ denotes the identical embedding, i.e. Jn(v) = v. Finally, we define the

semigroups Tn(t) ∈ SN and T (t) ∈ L2(Ω) to be the solution operators of (3.17) and

(3.1), respectively.

To verify Assumption 1, we first note that ‖PN‖ = 1, see the remark after the

definition of PN . The subspace SN is also equipped with the ‖ · ‖0-norm, so that

‖Jn‖ = 1. Since PN is a projection, we also have Pn(Jn(uk)) = PN (uk) = uk for

all uk ∈ SN . Finally, the orthogonal system
{

2 sin(kπx) sin(lπy) : x, y ∈ [0, 1], k, l ∈

N
+
}

is complete and therefore, Jn(Pn(v)) → v for all v ∈ L2(Ω).

For the first estimate in Assumption 2, we note that

Tn(UN (0, ·)) = UN (t, ·) = exp{−µA
α/2
h t}UN (0, ·)

and therefore, ‖Tn‖ = ‖ exp{−µA
α/2
h t}‖ ≤ 1 since the matrix Ah is positive definite.

Using Theorem 2 we have that ‖u(t, ·)‖α ≤ ‖u(0, ·)‖α for the solution of (3.1) such

that we obtain ‖T (t)‖Y ≤ 1.

Finally, with the choice yn = PNg the first item in (3.16) is obviously satisfied and

the second one is an easy consequence of (2.4) and Lemma 3:

‖AnPNg − PNAg‖0 = ‖
(
− ∆D

)α/2
g − A

α/2
h g‖0 ≤ Cα,0h

α‖g‖α+1.

Finally, using AnPnu = A
α/2
h PNu and (2.4) again with Lemma 3 gives that

‖AnPnu − PnAu‖0 = ‖Aα/2
h PNu − PN (−∆)α/2u‖0

= ‖Aα/2
h PNu − (−∆)α/2PNu‖0 ≤ Cα,0h

α‖u‖α+1
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such that the assumption in Theorem 4 is satisfied. Therefore, Theorem 4 implies

the following inequality

‖uN (t) − UN (t)‖0 ≤ C1h
α‖u0‖α+1.

According to Theorem 3, we also have

‖u(t) − uN (t)‖0 ≤ hC2‖u0‖α+1,

such that using (3.20) the triangle inequality and α > 1 implies

‖u(t) − IN )(ÛN (t))‖0 = ‖u(t) − UN (t)‖0 ≤ ‖u(t) − uN (t)‖0 + ‖uN (t) − UN (t)‖0

≤
(
C1 + C2

)
h‖u0‖α+1

as stated in the theorem. �

Remarks: Theorem 5 gives the spatial accuracy of the MTM method, which is a

consequence of the standard five-point stencil in the underlying finite difference dis-

cretization. The accuracy of the full discretization depends on the time integration

to approximate ÛN (t).

The method presented here can also be applied for rectangular domains in any

space dimensions. In such a case we know the eigenvalues of the matrix Ah corre-

sponding to the Dirichlet Laplacian −∆D and the extension procedure in Section

3.1 can also be applied. By using sharp estimates for the eigenvalues of Ah one

could mimic the presented analysis. At the same time, in this case additional strong

smoothness assumptions would be necessary to ensure that applying the fractional

Dirichlet Laplacian will lead to solutions with homogeneous boundary conditions

since in general, the extension procedure can not be performed.

The treatment of inhomogeneous boundary conditions is still an open problem. Even

the correct formulation of a corresponding continuous problem is still under discus-

sion in the literature [1].

4. Numerical experiments

We investigate the following test problem:

(4.1)

{
∂u
∂t (t, x) = −0.01 (−∆)

1.4/2
u(t, x), t ∈ (0, 1),

u(0, x, y) =
[
100
(
x(1 − x) +

(
x(1 − x)

)2)(
y(1 − y) +

(
y(1 − y)

)2)]
,

where x = (x, y) ∈ Ω = (0, 1) × (0, 1). Note that this is a restriction of the corre-

sponding problem in R
2 such that according to Lemma 2, the homogeneous Dirichlet
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boundary condition is also satisfied. The sine Fourier series of the analytic solution

of (4.1) is

u(t, x, y) =
∞∑

k=1

∞∑

l=1

230400 sin(kπx) sin(lπy)

(
1 + (−1)k+1)

)(
1 + (−1)l+1)

)

(kl)5π10

· exp
[
− 0.01t

(
(kπ)2 + (lπ)2

)0.7]
.

The semidiscretization of (4.1) with MTM for the point values in Ωh is given by

(4.2)






∂ÛN

∂t
(t) = −0.01Â0.7

h ÛN (t), t ∈ (0, 1),

ÛN (0) = 100
(
x(1 − x) +

(
x(1 − x)

)2)(
y(1 − y) +

(
y(1 − y)

)2)∣∣∣
Ωh

.

To solve this ODE we used the implicit Euler and Crank–Nicolson method. Based

on these approximations, we can estimate the error ‖IN

[
ÛN (t)

]
(·) − u(t, ·)‖0.

To compare (IN )
[
ÛN (t)

]
(·) with u(t, ·) we cut off the Fourier-series of u(t, ·) at

the first N terms in both variables, this results an extra error term of order O(h2),

which does not harm the accuracy of the method since u ∈ Fα+2.

h time step IE ‖ · ‖0 convergence order CN ‖ · ‖0 convergence order
0.2 0.2 0.0111 0.0083
0.1 0.1 0.0036 1.6245 0.0021 1.9822
0.05 0.05 0.0013 1.4695 5.309610−4 1.9837
0.025 0.025 5.015310−4 1.3741 1.32810−4 1.9993
0.0125 0.0125 2.178310−4 1.2031 3.320310−5 1.9999

Table 1. Error and convergence for the test problem in (4.1) using

the MTM with implicit Euler (IE) and Crank–Nicolson (CN)

method

In this case we obtain a second order convergence for the full discretization if the

Crank–Nicolson method is used for the time steps. We can not expect this (full)

convergence order, if the implicit Euler method is applied. Accordingly, we obtain

an order near to one.

Appendix

4.1. Equivalence of different forms of the fractional Laplacian. For the proof

of Theorem 1 we recall the Bessel functions Kν(z), Iν(z) and the modified Struve

function Lν(z); see the definitions in the work [11] at the points of 8.55, 8.43 and

8.407. We summarize these properties in the following.
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Proposition 3. For all a ∈ R
+ and β, µ, ν ∈ C with Re β > 0,Re µ > −1/2 and

Re ν < 1/2 with ν 6= − 1
2 ,− 3

2 ,− 5
2 , . . . the following properties hold:

1.
∫∞
0

(
β2 + x2

)ν−1/2
cos (ax) dx = 1√

π

(
2β
a

)ν

cos (πν)Γ
(
ν + 1

2

)
K−ν(aβ),

2.
∫∞
0

(
β2 + x2

)ν−1/2
sin (ax) dx =

√
π

2

(
2β
a

)ν

cos (πν)Γ
(
ν + 1

2

)(
I−ν(aβ) −

Lν(aβ)
)
,

3. Kν(x) = K−ν(x),

4.
∫∞
0

xµKµ(ax) cos (bx) dx =
√

π
2 (2a)µΓ

(
µ + 1

2

)(
b2 + a2

)−µ−1/2
.

In the following statement, we use the notation ∆ for the differential operator

∂xx + ∂yy.

Proposition 4. For each α ∈ (1, 2] there exists a constant C̃α > 0 such that for

all k, l ∈ N and x, y ∈ R
2 we have

(
−∆

)∫

R

∫

R

sin (kπs1) sin (lπs2)
[
(x − s1)2 + (y − s2)2

]α/2
ds1ds2 = C̃α

[
(kπ)2+(lπ)2

]α/2

2 sin (kπx) sin (lπy).
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Proof:

(4.3)∫

R

∫

R

sin (kπs1) sin (lπs2)
[
(x − s1)2 + (y − s2)2

]α/2
ds1 ds2

=

∫

R

sin (lπs2)
{∫

R

sin (kπs1)
[
(x − s1)2 + (y − s2)2

]α/2
ds1

}
ds2

=

∫

R

sin (lπs2)
{∫

R

sin (kπ(x + s1))
[
s2
1 + (y − s2)2

]α/2
ds1

}
ds2

=

∫

R

sin (lπs2)

|y − s2|α
{∫

R

sin (kπ(x + s1))
[(

s1

y−s2

)2
+ 1
]α/2

ds1

}
ds2

=

∫

R

sin (lπs2)

|y − s2|α−1

{∫

R

sin (kπ(x + s1|y − s2|))
[
s2
1 + 1

]α/2
ds1

}
ds2

=

∫

R

sin (lπs2)

|y − s2|α−1

·
{

sin (kπx)

∫

R

cos (kπs1|y − s2|)
[
s2
1 + 1

]α/2
ds1 − cos (kπx)

∫

R

sin (kπs1|y − s2|)
[
s2
1 + 1

]α/2
ds1

}
ds2

= sin (kπx)

∫

R

sin (lπs2)

|y − s2|α−1
ds2

∫

R

cos (kπs1|y − s2|)
[
s2
1 + 1

]α/2
ds1

= 2 sin (kπx)

∫

R

sin (lπs2)

|y − s2|α−1
ds2

∫ ∞

0

cos (kπs1|y − s2|)
[
s2
1 + 1

]α/2
ds1.

.

Using the first formula of proposition 3 with parameters β = 1, a = kπ|y−v|, ν = 1−α
2

we obtain

∫ ∞

0

cos (kπs1|y − s2|)
[
s2
1 + 1

]α/2
ds1

=
1√
π

( 2

kπ

) 1−α

2

cos
(
π

1 − α

2

)
Γ
(
1 − α

2

)
Kα−1

2

(kπ|y − s2|)
1

|y − s2|
1−α

2

.

Inserting this into (4.3) gives the following equality:

(4.4)

∫

R

∫

R

sin (kπs1) sin (lπs2)
[
(x − s1)2 + (y − s2)2

]α/2
ds1 ds2 =

2√
π

sin (kπx)
( 2

kπ

) 1−α

2

· cos
(
π

1 − α

2

)
Γ
(
1 − α

2

) ∫

R

sin (lπs2)

|y − s2|
α−1

2

Kα−1

2

(kπ|y − s2|) ds2.
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We also have

∫

R

sin (lπs2)

|y − s2|
α−1

2

Kα−1

2

(kπ|y − s2|) ds2

=

∫ y

−∞

sin (lπs2)

|y − s2|
α−1

2

Kα−1

2

(kπ|y − s2|) ds2 +

∫ ∞

y

sin (lπs2)

|y − s2|
α−1

2

Kα−1

2

(kπ|y − s2|) ds2

=

∫ ∞

0

sin
(
lπ(y − s2)

)
s
−α−1

2

2 K 1−α

2

(kπs2) ds2

+

∫ ∞

0

sin
(
lπ(y + s2)

)
s
−α−1

2

2 K 1−α

2

(kπs2) ds2

= 2 sin
(
lπy
) ∫ ∞

0

cos
(
lπs2

)
s
−α−1

2

2 K 1−α

2

(kπs2) ds2.

Using the fourth formula of proposition 3 with the parameters µ = 1−α
2 , a = kπ, b =

lπ gives

∫

R

sin (lπs2)

|y − s2|
α−1

2

Kα−1

2

(kπ|y − s2|) ds2

= 2 sin
(
lπy
)
Γ
(
1 − α

2

)√π

2
(2kπ)

1−α

2

(
(kπ)2 + (lπ)2

)α

2
−1

and therefore, with the aid of (4.4) we obtain

∫

R

∫

R

sin (kπs1) sin (lπs2)
[
(x − s1)2 + (y − s2)2

]α/2
ds1 ds2

= sin
(
lπy
)
sin
(
kπx

)[
(kπ)2 + (lπ)2

]α

2
−1

22−α sin
(απ

2

)[
Γ
(
1 − α

2

)]2
.

Applying the operator
(
− ∆) for the last formula we get the statement with the

constant

C̃α = 22−α sin
(απ

2

)[
Γ
(
1 − α

2

)]2
.

Proof of Theorem 1: Let u(x, y) =
∑∞

k,l=1 uk,l2 sin kπx sin lπy be the spectral

expansion of u ∈ Fα. The extension u defined on R
2 is automatically obtained just

by extending the domain of x and y in the same formula. Using (2.1), Proposition 4
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and finally (2.3) we obtain that

(−∆D)α/2u(x, y) =

∞∑

k,l=1

uk,l

[
(kπ)2 + (lπ)2

]α/2

2 sin kπx sin lπy

=
1

2C̃α

∞∑

k,l=1

uk,l

(
− ∆

)(∫

R

∫

R

2 sin (kπs1) sin (lπs2)
[
(x − s1)2 + (y − s2)2

]α/2
ds1 ds2

)
(x, y)

=
1

2C̃α

(
− ∆

)




∫

R

∫

R

1
[
(x − s1)2 + (y − s2)2

]α/2

∞∑

k,l=1

uk,l2 sin (kπs1) sin (lπs2) ds1 ds2



 (x, y)

=
1

2C̃α

(
− ∆

)(∫

R

∫

R

u(s1, s2)

|(x, y) − (s1, s2)|α
ds1 ds2

)
(x, y) =

1

2C̃α

α2

Cα
(−∆)α/2u(x, y)

as we stated in the theorem.
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